The image taken of the total solar eclipse of May 29, 1919, was among Albert Einstein’s possessions when he died in 1955, then Professor Emeritus in the School of Mathematics. The image, taken by astronomer Arthur...

There is an interesting connection between two of the best-studied nonlinear partial differential equations in physics: the equations of hydrodynamics and the field equations of gravity.

Let’s start with a brief review of hydrodynamics. At...

In 1935, Albert Einstein and collaborators wrote two papers at the Institute for Advanced Study. One was on quantum mechanics [1] and the other was on black holes [2]. The paper on quantum mechanics is very famous and influential. It pointed out...

Following the discovery in July of a Higgs-like boson—an effort that took more than fifty years of experimental work and more than 10,000 scientists and engineers working on the Large Hadron Collider—Juan Maldacena and Nima Arkani-Hamed, two...

The ancients thought that space and time were preexisting entities on which motion happens. Of course, this is also our naive intuition. According to Einstein’s theory of general relativity, we know that this is not true. Space and time are dynamical objects whose shape is modified by the bodies that move in it.

I sometimes like to think about what it might be like inside a black hole. What does that even mean? Is it really “like” anything inside a black hole? Nature keeps us from ever knowing. (Well, what we know for sure is that nature keeps us from...

*In the twentieth century, mathematicians developed a deep theory of knots, which was revolutionized by the discovery of the Jones polynomial—a way to calculate a number for every knot—by Vaughan F. R. Jones in the early*...

Physicists have used Feynman diagrams as a tool for calculating scattering amplitudes that describe particle interactions for more than six decades. Their broad utility was due initially in large part to the seminal work of Freeman Dyson,...