Video Lectures

Separate tags with a comma.

The Frontiers and Limits of Science

Robbert Dijkgraaf, Director and Leon Levy Professor

Every day, at the Institute for Advanced Study and elsewhere, scientists and scholars are exploring the frontiers of knowledge, from the structure of the universe to the patterns of human thought. But what is the shortest path from A to B, if you do...

A matrix A naturally defines a quadratic form x^tAy. If A is of rank <=r, then the rank<=r decomposition of A corresponds naturally to a size ~2nr circuit for computing the quadratic form. It is clear how to perform "white box" polynomial identity testing for such circuits, and the motivating question for this work is to explore black-box identity testing. The probabilistic method shows that there is a size ~2nr hitting set for such polynomials. In this work we match this bound (over large fields), which is optimal up to constant factors.

Further, we explore how A can be reconstructed from the evaluations of the quadratic form. Similar probabilistic constructions show that there exist ~4nr evaluations which determine any such matrix A. Again, we match this bound (over large fields) with an explicit construction, and furthermore give a polynomial-time algorithm to reconstruct A from such evaluations. More generally, we show an efficient reduction from (exact) low-rank matrix reconstruction to (exact) sparse recovery. This reduction is novel in the compressed-sensing realm as it is field independent and unrelated to convex optimization.

Finally, using matrices as a base case we also derive a quasi-polynomial hitting set for higher-order tensors.

Joint work with Michael Forbes.

Symplectic Geometry and Quantum Noise

Leonid Polterovich

We discuss a quantum counterpart, in the sense of the Berezin-Toeplitz quantization, of certain constraints on Poisson brackets coming from "hard" symplectic geometry. It turns out that they can be interpreted in terms of the quantum noise of...