You are here

High Energy Theory Seminar

6j Symbols and Conformal Blocks

I will explain how conformally-covariant differential operators arise from finite-dimensional representations of the (global) conformal group. When combined with other conformal objects, such as tensor structures, these operators satisfy a number of useful identities, which, in particular, allow to express any conformal block as a differential operator acting a scalar conformal block. They also simplify the calculation of many other conformally-invariant quantities, such as shadow coefficients, crossing kernels, etc.  This talk is based on 1706.07813 and work in progress.

Featuring

Petr Kravchuk

Speaker Affiliation

Caltech

Affiliation

Natural Sciences

Date & Time
November 14, 2017 | 1:303:00pm

Location

Jadwin Hall, PCTS Seminar Room, Room 407