You are here

Princeton Center for Theoretical Science (PCTS)/Simons Foundation Special Talk

Black-Hole Head-On Collisions in Higher Dimensions

ADDED - In four dimensional General Relativity the properties of gravitational waves emitted in BH-BH mergers have been extensively studied using numerical relativity, largely in astrophysical settings. Understanding higher dimensional BH-BH collisions is an important goal for numerical relativity, firstly in order to observe the behaviour of the theory in its most extreme, non-linear regime, and also due to its applications to areas of high energy physics such as TeV gravity theories. In this work we present for the first time full non-linear simulations of head-on BH-BH collisions in up to 10 dimensions and present an analysis of the gravitational radiation emitted. We use a new method for analysis of the radiation, analogous to the well known Weyl scalar method based on the Newman-Penrose formalism in 4D. We find that as the number of dimensions is increased, the energy emitted in gravitational radiation is suppressed. We also present a comparison of our numerical data with point particle calculations.


Will Cook

Speaker Affiliation

Department of Applied Mathematics and Theoretical Physics, University of Cambridge


Natural Sciences

Date & Time
January 12, 2018 | 2:003:00pm


Jadwin Hall, Room 401