Multiphase and multi-scale AGN feedback processes

AGN feedback is now widely considered to be one of the main drivers in regulating the growth of massive galaxies. In my talk I will describe several efforts in our group to understand the power, reach and impact of AGN feedback processes. We find significant evidence for AGN feedback signatures even in low-luminosity AGN and we are now using molecular gas as a tracer to investigate if and how feedback may impact and quench galaxies at low redshift. At higher redshift, it appears that AGN-driven outflows can indeed suppress star formation in their hosts, consistent with the AGN having a negative impact on galaxy evolution. However, both star formation and quasar activity peak at z ~ 2-3 where AGN are expected to impact the build-up of stellar mass the most and I will present recent efforts in our group to characterise feedback processes in powerful AGN on CGM scales at and near Cosmic Noon. In particular, our team recently discovered a unique population of luminous high-z quasars (ERQs) with extreme outflow properties. At the same time, more and more exotic AGN populations with extreme signatures are being discovered at that redshift. These populations are ideal to obtain a census of the overall mass and energy budget of both outflow and infall/feeding from the CGM, an essential requirement to probe the detailed and full feedback loop. Finally, I will also introduce the JWST ERS Program Q3D which studies the impact of three carefully selected luminous quasars on their hosts. Our program will serve as a pathfinder for JWST science investigations in IFU mode. Depending on JWST's science schedule, I may show some of the very first JWST science results.

Date

Speakers

Dominika Wylezalek

Affiliation

University of Heidelberg