Mapping Matter in Strong Gravity: Spectral-Timing of Black Holes and Neutron Stars

One of the best laboratories to study strong-field gravity is the inner 100s of kilometers around black holes and neutron stars in binary systems with low-mass stars like our Sun. The X-ray light curves of these systems show variability on timescales from milliseconds to months — the rapid variability can appear as quasi-periodic oscillations (QPOs), which may be produced by general relativistic effects. My research looks at QPOs from black holes and neutron stars by applying state-of-the-art “spectral-timing” techniques to constrain the physical origin of these signals. In this talk, I will discuss data from NICER, an X-ray telescope attached to the International Space Station, and an upcoming JWST and Hubble campaign to study variability in accreting black hole (microquasar) jets. I will also highlight the important role of open-source scientific software in astronomy research.



Michigan State University


Abigail Stevens