From Speech AI to Finance AI and Back

A brief review will be provided first on how deep learning has disrupted speech recognition and language processing industries since 2009. Then connections will be drawn between the techniques (deep learning or otherwise) for modeling speech and language and those for financial markets. Similarities and differences of these two fields will be explored. In particular, three unique technical challenges to financial investment are addressed: extremely low signal-to-noise ratio, extremely strong nonstationarity (with adversarial nature), and heterogeneous big data. Finally, how the potential solutions to these challenges can come back to benefit and further advance speech recognition and language processing technology will be discussed.





Li Deng