Basic loci of Shimura varieties

In mod-$p$ reductions of modular curves, there is a finite set of supersingular points and its open complement corresponding to ordinary elliptic curves. In the study of mod-$p$ reductions of more general Shimura varieties, there is a "Newton stratification" decomposing the reduction into finitely many locally closed subsets, of which exactly one is closed. This closed set is called the basic locus; it recovers the supersingular locus in the classical case of modular curves.

In certain cases, the basic locus admits a simple description as a union of classical Deligne-Lusztig varieties. The precise description in these case has proved to be useful for several purposes: to compute intersection numbers of special cycles and to prove the Tate conjecture for certain Shimura varieties.

We will describe a group-theoretic approach to understand this phenomenon. We will show that this phenomenon is closely related to the Hodge-Newton decomposition, and many other nice properties on the Shimura varieties. This talk is based on the joint work with Ulrich Gortz and Sian Nie.

Date

Speakers

Affiliation

University of Maryland; von Neumann Fellow, School of Mathematics