Joint IAS/PU Number Theory
Motivic Action Conjecture for Doi-Naganuma Lifts
A surprising property of the cohomology of locally symmetric spaces is that Hecke operators can act on multiple cohomological degrees with the same eigenvalues. In a series of papers, Venkatesh and his collaborators proposed an arithmetic reason for this: a hidden degree-shifting action of a certain motivic cohomology group. In this talk, we will explain the setup of this conjecture for coherent cohomology of Hilbert modular forms over $\mathbb{C}$, and give some recent result supporting it. This is joint work with Alex Horawa.
Date & Time
November 06, 2025 | 3:30pm – 4:30pm
Location
Simonyi 101 and Remote AccessSpeakers
Yingkun Li, University of Wisconsin