Workshop on Additive Combinatorics and Algebraic Connections

Tensorial Forms in Infinite Dimensions

Abstract: Let V be a complex vector space and consider symmetric d-linear forms on V, i.e., linear maps $Sym^d(V) \rightarrow > C$. When V is finite dimensional and $d>2$, the structure of such forms is very complicated. Somewhat surprisingly, when V has countably infinite dimension there is much more order. For instance, there is a unique isomorphism class of form that is ultrahomogeneous (joint work with N. Harman), and (at least for d=3) it is possible to classify forms up to a notion of isogeny (joint work with A. Danelon). This circle of ideas is closely related to the notion of strength of polynomials, and also to the geometry of polynomial representations.

Date & Time

October 26, 2022 | 10:00am – 11:00am

Location

Simonyi 101 and Remote Access

Speakers

Andrew Snowden

Speaker Affiliation

University of Michigan

Categories