Computer Science/Discrete Mathematics Seminar I

Reproducibility in Learning

Reproducibility is vital to ensuring scientific conclusions are reliable, but failures of reproducibility have been a major issue in nearly all scientific areas of study in recent decades. A key issue underlying the reproducibility crisis is the explosion of methods for data generation, screening, testing, and analysis, where, crucially, only the combinations producing the most significant results are reported. Such practices (also known as p-hacking, data dredging, and researcher degrees of freedom) can lead to erroneous findings that appear to be significant, but that don’t hold up when other researchers attempt to replicate them.  

In this talk, we introduce a new notion of reproducibility for randomized algorithms. This notion ensures that with high probability, an algorithm returns exactly the same output when run with two samples from the same distribution, simplifying the task of replication. We present new algorithms for fundamental learning problems that achieve this notion of reproducibility, and discuss connections to other well-studied algorithmic properties, such as differential privacy. 

Joint work with Russell Impagliazzo (UCSD), Rex Lei (UCSD), and Toniann Pitassi (Columbia University)

 

Date & Time

January 24, 2022 | 11:15am – 12:15pm

Location

Simonyi 101 and Remote Access

Speakers

Jessica Sorrell

Speaker Affiliation

University of California San Diego