You are here

Vladimir Voevodsky Memorial Conference

Univalent foundations and the equivalence principle

Abstract: The "equivalence principle" says that meaningful statements in mathematics should be invariant under the appropriate notion of equivalence of the objects under consideration. In set-theoretic foundations, the EP is not enforced; e.g., the statement "1 ϵ Nat" is not invariant under isomorphism of sets. In univalent foundations, on the other hand, the equivalence principle has been proved for many mathematical structures. In this introductory talk, I give an overview of univalent foundations and the equivalence principle therein.

Featuring

Benedikt Ahrens

Speaker Affiliation

University of Birmingham

Affiliation

Mathematics

Video

https://video.ias.edu/VoevodskyMemConf-2018/0912-BenediktAhrens
Date & Time
September 12, 2018 | 10:1511:15am

Location

Wolfensohn Hall

Categories