You are here

Virtual Workshop on Missing Data Challenges in Computation, Statistics and Applications

Supervised learning with missing values

Abstract: An abundant literature addresses missing data in an inferential framework: estimating parameters and their variance from incomplete tables. Here, we consider supervised-learning settings: predicting a target when missing values appear in both training and testing data.   We study the seemingly-simple case where the target to predict is a
linear function of the fully-observed data and we show that, in the presence of missing values, the optimal predictor is not linear in general. In the particular Gaussian case, it can be written as a linear function of multiway interactions between the observed data and the various missing-value indicators. Due to its intrinsic complexity, we study a simple approximation and prove generalization bounds with finite samples, highlighting regimes for which each method performs best. We then show that multilayer perceptrons with ReLU activation functions can be consistent, and can explore good trade-offs between the true model and approximations.


Julie Josse

Speaker Affiliation




Event Series

Additional Information

Date & Time
September 08, 2020 | 10:4011:00am