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Motivation: Polynomial progressions in Primes

Given a system of k polynomials in r variables with integer
coefficients

P1(~m), . . . ,Pk(~m)

Can we have
x +P1(~m), . . . ,x +Pk(~m)

simultaneously prime ? How often?

Conjecture (Hardy-Littlewood, Schinzel, Bateman-Horn)

{x +Pi (~m)}ki=1 ⊂ P infinitely often ⇐⇒ no local obstructions

No local obstruction = trivial divisibility condition
Also conjecture asymptotics

Tamar Ziegler Concatenation of cubic structure



Motivation: Polynomial progressions in Primes

Given a system of k polynomials in r variables with integer
coefficients

P1(~m), . . . ,Pk(~m)

Can we have
x +P1(~m), . . . ,x +Pk(~m)

simultaneously prime ? How often?

Conjecture (Hardy-Littlewood, Schinzel, Bateman-Horn)

{x +Pi (~m)}ki=1 ⊂ P infinitely often ⇐⇒ no local obstructions

No local obstruction = trivial divisibility condition
Also conjecture asymptotics

Tamar Ziegler Concatenation of cubic structure



Motivation: Polynomial progressions in Primes

Given a system of k polynomials in r variables with integer
coefficients

P1(~m), . . . ,Pk(~m)

Can we have
x +P1(~m), . . . ,x +Pk(~m)

simultaneously prime ? How often?

Conjecture (Hardy-Littlewood, Schinzel, Bateman-Horn)

{x +Pi (~m)}ki=1 ⊂ P infinitely often ⇐⇒ no local obstructions

No local obstruction = trivial divisibility condition
Also conjecture asymptotics

Tamar Ziegler Concatenation of cubic structure



Motivation: Polynomial progressions in Primes

Given a system of k polynomials in r variables with integer
coefficients

P1(~m), . . . ,Pk(~m)

Can we have
x +P1(~m), . . . ,x +Pk(~m)

simultaneously prime ? How often?

Conjecture (Hardy-Littlewood, Schinzel, Bateman-Horn)

{x +Pi (~m)}ki=1 ⊂ P infinitely often ⇐⇒ no local obstructions

No local obstruction = trivial divisibility condition

Also conjecture asymptotics

Tamar Ziegler Concatenation of cubic structure



Motivation: Polynomial progressions in Primes

Given a system of k polynomials in r variables with integer
coefficients

P1(~m), . . . ,Pk(~m)

Can we have
x +P1(~m), . . . ,x +Pk(~m)

simultaneously prime ? How often?

Conjecture (Hardy-Littlewood, Schinzel, Bateman-Horn)

{x +Pi (~m)}ki=1 ⊂ P infinitely often ⇐⇒ no local obstructions

No local obstruction = trivial divisibility condition
Also conjecture asymptotics

Tamar Ziegler Concatenation of cubic structure



In a series of papers by Green-Tao, Green-Tao-Z we prove:

Theorem (Green-Tao-Z 2012)

Conjecture true when deg(Pi )≤ 1, and deg(Pi −Pj) is exactly 1.

{x +Pi (~m)}ki=1 ⊂ P infinitely often ⇐⇒ no local obstructions

also asymptotics !

Example: number of 4-term arithmetic progressions of primes:

#{x ,m≤N : x ,x +m,x +2m,x +3m ∈ P} ∼ 9
2 ∏
p≥5

(1− 3p−1
(p−1)3

)
N2

(logN)4
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What can we say when Pi are not linear ?

Theorem (Tao-Z)

Conjecture true when deg(Pi )≤ d , and deg(Pi −Pj) is exactly d .

{x +Pi (~m)}ki=1 ⊂ P infinitely often ⇐⇒ no local obstructions

also asymptotics !

For example:
x , x +n2, x +2n2 +n+4;

x , x +nm, x +nk, x +nm+nk
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Why are polynomial progressions difficult? Key is a scale problem.

Working example

x , x +nm, x +nk, x +nm+nk n,m,k ≤
√
N,x ≤ N

Compare to

x , x +u, x + v , x +u+ v x ,u,v ≤ N

The latter can be easily analyzed via discrete Fourier analysis:
if f : Z/NZ→ [−1,1], then f̂ (r) = Ex≤N f (x)e(rx/N)

Ex ,u,v≤N f (x)f (x +u)f (x + v)f (x +u+ v) = Er≤N |f̂ (r)|4 ≤ ‖f̂ ‖2∞

If 1A has small (non trivial) Fourier coefficients then

#{(x , x +u, x + v , x +u+ v) ∈ A4}

is like in a random set of size |A|.
The former (at least naively) can not !
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Working example: (x , x +nm, x +nk , x +nm+nk)

Consider a variant : H =
√
N

x , x +m, x +k , x +m+k ; m,k ≤ H,x ≤ N

Even easier baby case: x , x +m; m ≤ H,x ≤ N:

Ex≤N,m≤H f (x)f (x +m)∼ Ex≤N(Em≤H f (x +m))2

Problem: Arithmetic functions are difficult at short scales !

Classical: Ex≤Nµ(x) = o(1).

Theorem (Matomäki - Radziwill (2015))

Ex≤N(Em≤Hµ(x +m))2 = o(1)

when H → ∞ as slow as we wish.
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Working example: (x , x +nm, x +nk , x +nm+nk)

x , x +m, x +k , x +m+k ; m,k ≤ H,x ≤ N

Via Fourier analysis, we have "local" control: make local shift

x + y , x + y +m, x + y +k , x + y +m+k; y ,m,k ≤ H,x ≤ N

Fix x : have control with "local" Fourier coefficients - at scale H:

fx ,H(y) = f (x + y)

then think of fx ,H as a function on Z/HZ

Ey ,u,v≤H fx(y)fx(y +u)fx(y + v)fx(y +u+ v)≤ sup
r≤H
|f̂x ,H(r)|2

Problem: need to understand shorts scale Fourier coefficients of
arithmetic functions !
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Example

The Möbius function

µ(n) =


(−1)k n = p1 . . .pk where pi are distinct primes
0 otherwise
1 n = 1

Conjecture: short scale Fourier behavior of Möbius function

1
NH ∑

x≤N
sup

α

| ∑
n∈[x ,x+H]

µ(n)e(nα)|= o(1).

where H → ∞ as N → ∞. Not known even for H =
√
N ! would

imply

1
NH2 ∑

x≤N,m,k≤H
µ(x)µ(x +m)µ(x +k)µ(x +m+k) = o(1).
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Working example

x , x +nm, x +nk, x +nm+nk; n,m,k ≤
√
N,x ≤ N

K = {n1m}m∈√N and
H = {n2m}m∈√N

For many choices of n1,n2
K ,H are "independent subgroups":

K +H � |K ||H|= N
bounded multiplicity

Look at cubes along K ,H:

Key question
Can we concatenate "cubic" information along K and H to "cubic"
information along K +H ?

Tamar Ziegler Concatenation of cubic structure



Working example

x , x +nm, x +nk, x +nm+nk; n,m,k ≤
√
N,x ≤ N

K = {n1m}m∈√N and
H = {n2m}m∈√N
For many choices of n1,n2
K ,H are "independent subgroups":

K +H � |K ||H|= N
bounded multiplicity

Look at cubes along K ,H:

Key question
Can we concatenate "cubic" information along K and H to "cubic"
information along K +H ?

Tamar Ziegler Concatenation of cubic structure



Working example

x , x +nm, x +nk, x +nm+nk; n,m,k ≤
√
N,x ≤ N

K = {n1m}m∈√N and
H = {n2m}m∈√N
For many choices of n1,n2
K ,H are "independent subgroups":

K +H � |K ||H|= N

bounded multiplicity

Look at cubes along K ,H:

Key question
Can we concatenate "cubic" information along K and H to "cubic"
information along K +H ?

Tamar Ziegler Concatenation of cubic structure



Working example

x , x +nm, x +nk, x +nm+nk; n,m,k ≤
√
N,x ≤ N

K = {n1m}m∈√N and
H = {n2m}m∈√N
For many choices of n1,n2
K ,H are "independent subgroups":

K +H � |K ||H|= N
bounded multiplicity

Look at cubes along K ,H:

Key question
Can we concatenate "cubic" information along K and H to "cubic"
information along K +H ?

Tamar Ziegler Concatenation of cubic structure



Working example

x , x +nm, x +nk, x +nm+nk; n,m,k ≤
√
N,x ≤ N

K = {n1m}m∈√N and
H = {n2m}m∈√N
For many choices of n1,n2
K ,H are "independent subgroups":

K +H � |K ||H|= N
bounded multiplicity

Look at cubes along K ,H:

Key question
Can we concatenate "cubic" information along K and H to "cubic"
information along K +H ?

Tamar Ziegler Concatenation of cubic structure



Working example

x , x +nm, x +nk, x +nm+nk; n,m,k ≤
√
N,x ≤ N

K = {n1m}m∈√N and
H = {n2m}m∈√N
For many choices of n1,n2
K ,H are "independent subgroups":

K +H � |K ||H|= N
bounded multiplicity

Look at cubes along K ,H:

Key question
Can we concatenate "cubic" information along K and H to "cubic"
information along K +H ?

Tamar Ziegler Concatenation of cubic structure



Concatenating cubic structure

Let H,K < G be subgroups of an abelian group. Given info on
a-dim cubic averages along H

b-dim cubic averages along K

What can we say about cubic averages along K +H ?

Notion: ∆hf (x) = f (x +h)f (x)

∆h∆k f (x) = f (x)f (x +h)f (x +k)f (x +h+k)

Say that f is a H-polynomial of degree <m

∆h1 . . .∆hm f ≡ 1 ∀h1, . . . ,hm ∈ H

Example : G = Z2, H = {0}×Z, K = Z×{0}, f (x ,y) = e(xyα)

f is of degree < 2 in H and in K

but not in G; it is of degree < 3 in G .
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Concatenating polynomials and almost polynomials

Let H,K < G be subgroup of a finite abelian group.

Simple fact:
f is a H polynomial of degree < a

f is a K polynomial of degree < b

then f is a H +K -polynomial of degree < a+b−1.

Harder: "99% world":
∆h1 . . .∆ha f = 1 on 1−δ proportion of H-cubes.
∆k1 . . .∆kb f = 1 on 1−δ proportion of K -cubes.

Arguments of Alon-Kaufman-Krivelevich-Lytsin-Ron:
f is close to a H +K polynomial of degree < a+b−1.

What if we only have information on a small proportion of cubes ?
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Concatenating Gowers norms

The "1% world": suppose
∆h1 . . .∆ha f = 1 on δ proportion of H-cubes.
∆k1 . . .∆kb f = 1 on δ proportion of K -cubes.

The Ua
H -Gowers norm:

‖f ‖2aUa
H

= Ex∈G ,hi∈H∆h1 . . .∆ha f (x)

Difficulties:
No uniqueness: if f is a sum of a few H-polynomials (this is
not a polynomial !) then ‖f ‖2aUa

H
� 1.

‖f ‖2aUa
H
� 1 does not necessarily imply that f correlates with an

H-polynomial even when H = G (e.g. when G = Z/NZ by
inverse theorem for Gowers norms f correlates with an a−1
step nilsequence).

Want ‖f ‖Ua
H
> δ , and ‖f ‖Ub

K
> δ then ‖f ‖Ua+b−1

H+K
�δ 1
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Ergodic analogue

Let G be a countable abelian group, and let (X ,B,µ,(Tg )g∈G ) be
a measure preserving system.

Given H < G , can "differentiate": for h ∈ H, f : X → D,

∆hf (x) = f (Thx)f (x).

An H-polynomial: ∆ha . . .∆h1f (x)≡ 1 for all hi ∈ H.

‖f ‖2aUa
H(X ) = lim

N→∞

Ehi∈φN(H)

∫
∆h1 . . .∆ha f (x)dµ

There is a morphism π : X → Z a
H(X )

‖f ‖2aUa
H(X ) = 0 ⇐⇒ E (f |Z a

H(X )) = 0.

Question

Given K ,H < G Can we relate Z a
H(X ), Zb

K (X ) and Z a+b−1
H+K (X ) ?
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Theorem (Tao-Z); ergodic concatentation

Z a
H(X )∧Zb

K (X )⊂ Z a+b−1
H+K (X )

Namely: if f is measurable with respect to Z a
H(X ), and Zb

K (X )
then it is also measurable with respect to Z a+b−1

H+K (X ).

Recall: ‖f ‖2aUa
H(X ) = 0 ⇐⇒ E (f |Z a

H(X )) = 0.

Caution: this doesn’t quite mean that

‖f ‖Ua
H(X ) > 0,‖f ‖Ub

K (X ) > 0 =⇒ ‖f ‖Ua+b−1
H+K (X ) > 0.

Given a collection subgroups of Hi , with ‖f ‖Uai
Hi
(X ) > 0 for many i

then for many pairs i , j .

‖f ‖
U

ai+aj−1
Hi+Hj

(X )
> 0
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Back to finite world

Recall: G finite abelian group (say Z/NZ), H,K are "subgroups".

Want ‖f ‖Ua
H
> δ , and ‖f ‖Ub

K
> δ then

‖f ‖Ua+b−1
H+K

�δ 1

Theorem (Tao-Z): combinatorial concatenation

If ‖f ‖Uai
Hi

> δ for many i , then

‖f ‖
U

ai+aj−1
Hi+Hj

�δ 1 for many i , j .
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Corollary

Let Hn = {nm}m≤√N . Suppose ‖f ‖U3
Z/NZ

= o(1) , then (2+2−1= 3)

Ex≤N,n,m,k≤
√
N ∆nm∆nk f = o(1)

Example: ‖µ‖U3
Z/NZ

= o(1) implies

Ex≤N,n,m,k≤
√
N µ(x)µ(x +nm)µ(x +nk)µ(x +nm+nk) = o(1).

Application to the primes:
Need to transfer to functions f bounded by a psuedorandom
function (not entirely straight forward) + need to use all the
machinery developed for linear forms.
Using inverse theorem for (global) Gowers norms can replace
U3 norm with U2 norm. Do not know how to do this directly
using Fourier analysis !
Can use concatenation technique to get polynomial
progressions in primes with gap as small as (logN)O(1).
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machinery developed for linear forms.
Using inverse theorem for (global) Gowers norms can replace
U3 norm with U2 norm. Do not know how to do this directly
using Fourier analysis !
Can use concatenation technique to get polynomial
progressions in primes with gap as small as (logN)O(1).
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Dual functions

Good news: do not need classification of Ua
H ,U

b
K norms !

Work with Dual functions:

DH f (x) = Eh1,h2∈H f (x +h1)f (x +h2)f (x +h1 +h2)

so that
‖f ‖4U2

H
= 〈f ,DH f 〉

Advantages:
f correlates with DH f .
DH f "lies" in the "classifying space" of the U2

H norms.

Show that intersection of space "generated" by DK f ’s and space
"generated" by DH f ’s lies in the space "generated" by DH+K f ’s.
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