Concatenation of cubic structure

Tamar Ziegler

Analysis and Beyond, May 2016

Motivation: Polynomial progressions in Primes

Given a system of k polynomials in r variables with integer coefficients

$$
P_{1}(\vec{m}), \ldots, P_{k}(\vec{m})
$$

Motivation: Polynomial progressions in Primes

Given a system of k polynomials in r variables with integer coefficients

$$
P_{1}(\vec{m}), \ldots, P_{k}(\vec{m})
$$

Can we have

$$
x+P_{1}(\vec{m}), \ldots, x+P_{k}(\vec{m})
$$

simultaneously prime ? How often?

Motivation: Polynomial progressions in Primes

Given a system of k polynomials in r variables with integer coefficients

$$
P_{1}(\vec{m}), \ldots, P_{k}(\vec{m})
$$

Can we have

$$
x+P_{1}(\vec{m}), \ldots, x+P_{k}(\vec{m})
$$

simultaneously prime ? How often?

Conjecture (Hardy-Littlewood, Schinzel, Bateman-Horn)

$\left\{x+P_{i}(\vec{m})\right\}_{i=1}^{k} \subset \mathbb{P}$ infinitely often \Longleftrightarrow no local obstructions

Motivation: Polynomial progressions in Primes

Given a system of k polynomials in r variables with integer coefficients

$$
P_{1}(\vec{m}), \ldots, P_{k}(\vec{m})
$$

Can we have

$$
x+P_{1}(\vec{m}), \ldots, x+P_{k}(\vec{m})
$$

simultaneously prime ? How often?

Conjecture (Hardy-Littlewood, Schinzel, Bateman-Horn)

$\left\{x+P_{i}(\vec{m})\right\}_{i=1}^{k} \subset \mathbb{P}$ infinitely often \Longleftrightarrow no local obstructions

- No local obstruction $=$ trivial divisibility condition

Motivation: Polynomial progressions in Primes

Given a system of k polynomials in r variables with integer coefficients

$$
P_{1}(\vec{m}), \ldots, P_{k}(\vec{m})
$$

Can we have

$$
x+P_{1}(\vec{m}), \ldots, x+P_{k}(\vec{m})
$$

simultaneously prime ? How often?

Conjecture (Hardy-Littlewood, Schinzel, Bateman-Horn)

$\left\{x+P_{i}(\vec{m})\right\}_{i=1}^{k} \subset \mathbb{P}$ infinitely often \Longleftrightarrow no local obstructions

- No local obstruction = trivial divisibility condition
- Also conjecture asymptotics

In a series of papers by Green-Tao, Green-Tao-Z we prove:

Theorem (Green-Tao-Z 2012)

Conjecture true when $\operatorname{deg}\left(P_{i}\right) \leq 1$, and $\operatorname{deg}\left(P_{i}-P_{j}\right)$ is exactly 1 .

In a series of papers by Green-Tao, Green-Tao-Z we prove:

Theorem (Green-Tao-Z 2012)

Conjecture true when $\operatorname{deg}\left(P_{i}\right) \leq 1$, and $\operatorname{deg}\left(P_{i}-P_{j}\right)$ is exactly 1 .
$\left\{x+P_{i}(\vec{m})\right\}_{i=1}^{k} \subset \mathbb{P}$ infinitely often \Longleftrightarrow no local obstructions

In a series of papers by Green-Tao, Green-Tao-Z we prove:
Theorem (Green-Tao-Z 2012)
Conjecture true when $\operatorname{deg}\left(P_{i}\right) \leq 1$, and $\operatorname{deg}\left(P_{i}-P_{j}\right)$ is exactly 1 .

$$
\left\{x+P_{i}(\vec{m})\right\}_{i=1}^{k} \subset \mathbb{P} \text { infinitely often } \Longleftrightarrow \text { no local obstructions }
$$ also asymptotics !

In a series of papers by Green-Tao, Green-Tao-Z we prove:

Theorem (Green-Tao-Z 2012)

Conjecture true when $\operatorname{deg}\left(P_{i}\right) \leq 1$, and $\operatorname{deg}\left(P_{i}-P_{j}\right)$ is exactly 1 .

$$
\left\{x+P_{i}(\vec{m})\right\}_{i=1}^{k} \subset \mathbb{P} \text { infinitely often } \Longleftrightarrow \text { no local obstructions }
$$

also asymptotics !

Example: number of 4-term arithmetic progressions of primes:

$$
\#\{x, m \leq N: x, x+m, x+2 m, x+3 m \in \mathbb{P}\} \sim \frac{9}{2} \prod_{p \geq 5}\left(1-\frac{3 p-1}{(p-1)^{3}}\right) \frac{N^{2}}{(\log N)^{4}}
$$

What can we say when P_{i} are not linear?

What can we say when P_{i} are not linear ?

Theorem (Tao-Z)

Conjecture true when $\operatorname{deg}\left(P_{i}\right) \leq d$, and $\operatorname{deg}\left(P_{i}-P_{j}\right)$ is exactly d.

What can we say when P_{i} are not linear ?

Theorem (Tao-Z)

Conjecture true when $\operatorname{deg}\left(P_{i}\right) \leq d$, and $\operatorname{deg}\left(P_{i}-P_{j}\right)$ is exactly d.
$\left\{x+P_{i}(\vec{m})\right\}_{i=1}^{k} \subset \mathbb{P}$ infinitely often \Longleftrightarrow no local obstructions

What can we say when P_{i} are not linear ?

Theorem (Tao-Z)

Conjecture true when $\operatorname{deg}\left(P_{i}\right) \leq d$, and $\operatorname{deg}\left(P_{i}-P_{j}\right)$ is exactly d. $\left\{x+P_{i}(\vec{m})\right\}_{i=1}^{k} \subset \mathbb{P}$ infinitely often \Longleftrightarrow no local obstructions also asymptotics !

What can we say when P_{i} are not linear ?

Theorem (Tao-Z)

Conjecture true when $\operatorname{deg}\left(P_{i}\right) \leq d$, and $\operatorname{deg}\left(P_{i}-P_{j}\right)$ is exactly d. $\left\{x+P_{i}(\vec{m})\right\}_{i=1}^{k} \subset \mathbb{P}$ infinitely often \Longleftrightarrow no local obstructions also asymptotics !

For example:

$$
x, x+n^{2}, x+2 n^{2}+n+4
$$

$$
x, x+n m, x+n k, x+n m+n k
$$

Why are polynomial progressions difficult? Key is a scale problem.

Working example

$$
x, x+n m, x+n k, x+n m+n k \quad n, m, k \leq \sqrt{N}, x \leq N
$$

Why are polynomial progressions difficult? Key is a scale problem.

Working example

$x, x+n m, x+n k, x+n m+n k \quad n, m, k \leq \sqrt{N}, x \leq N$
Compare to
$x, x+u, x+v, x+u+v$
$x, u, v \leq N$

Why are polynomial progressions difficult? Key is a scale problem.

Working example

$x, x+n m, x+n k, x+n m+n k \quad n, m, k \leq \sqrt{N}, x \leq N$
Compare to
$x, x+u, x+v, x+u+v$ $x, u, v \leq N$

- The latter can be easily analyzed via discrete Fourier analysis: if $f: \mathbb{Z} / N \mathbb{Z} \rightarrow[-1,1]$, then $\hat{f}(r)=\mathbb{E}_{x \leq N} f(x) e(r x / N)$

Why are polynomial progressions difficult? Key is a scale problem.

Working example

$x, x+n m, x+n k, x+n m+n k \quad n, m, k \leq \sqrt{N}, x \leq N$
Compare to
$x, x+u, x+v, x+u+v$ $x, u, v \leq N$

- The latter can be easily analyzed via discrete Fourier analysis: if $f: \mathbb{Z} / N \mathbb{Z} \rightarrow[-1,1]$, then $\hat{f}(r)=\mathbb{E}_{x \leq N} f(x) e(r x / N)$

$$
\mathbb{E}_{x, u, v \leq N} f(x) f(x+u) f(x+v) f(x+u+v)=\mathbb{E}_{r \leq N}|\hat{f}(r)|^{4} \leq\|\hat{f}\|_{\infty}^{2}
$$

Why are polynomial progressions difficult? Key is a scale problem.

Working example

$x, x+n m, x+n k, x+n m+n k \quad n, m, k \leq \sqrt{N}, x \leq N$
Compare to
$x, x+u, x+v, x+u+v \quad x, u, v \leq N$

- The latter can be easily analyzed via discrete Fourier analysis: if $f: \mathbb{Z} / N \mathbb{Z} \rightarrow[-1,1]$, then $\hat{f}(r)=\mathbb{E}_{x \leq N} f(x) e(r x / N)$

$$
\mathbb{E}_{x, u, v \leq N} f(x) f(x+u) f(x+v) f(x+u+v)=\mathbb{E}_{r \leq N}|\hat{f}(r)|^{4} \leq\|\hat{f}\|_{\infty}^{2}
$$

If 1_{A} has small (non trivial) Fourier coefficients then

$$
\#\left\{(x, x+u, x+v, x+u+v) \in A^{4}\right\}
$$

is like in a random set of size $|A|$.

Why are polynomial progressions difficult? Key is a scale problem.

Working example

$x, x+n m, x+n k, x+n m+n k \quad n, m, k \leq \sqrt{N}, x \leq N$
Compare to
$x, x+u, x+v, x+u+v \quad x, u, v \leq N$

- The latter can be easily analyzed via discrete Fourier analysis: if $f: \mathbb{Z} / N \mathbb{Z} \rightarrow[-1,1]$, then $\hat{f}(r)=\mathbb{E}_{x \leq N} f(x) e(r x / N)$

$$
\mathbb{E}_{x, u, v \leq N} f(x) f(x+u) f(x+v) f(x+u+v)=\mathbb{E}_{r \leq N}|\hat{f}(r)|^{4} \leq\|\hat{f}\|_{\infty}^{2}
$$

If 1_{A} has small (non trivial) Fourier coefficients then

$$
\#\left\{(x, x+u, x+v, x+u+v) \in A^{4}\right\}
$$

is like in a random set of size $|A|$.

- The former (at least naively) can not !

Working example: $(x, x+n m, x+n k, x+n m+n k)$

Consider a variant: $H=\sqrt{N}$
$x, x+m, x+k, x+m+k ; \quad m, k \leq H, x \leq N$

Working example: $(x, x+n m, x+n k, x+n m+n k)$

Consider a variant: $H=\sqrt{N}$
$x, x+m, x+k, x+m+k ; \quad m, k \leq H, x \leq N$
Even easier baby case: $x, x+m ; \quad m \leq H, x \leq N$:

Working example: $(x, x+n m, x+n k, x+n m+n k)$

Consider a variant: $H=\sqrt{N}$
$x, x+m, x+k, x+m+k ; \quad m, k \leq H, x \leq N$
Even easier baby case: $x, x+m ; \quad m \leq H, x \leq N$:

$$
\mathbb{E}_{x \leq N, m \leq H} f(x) f(x+m) \sim \mathbb{E}_{x \leq N}\left(\mathbb{E}_{m \leq H} f(x+m)\right)^{2}
$$

Working example: $(x, x+n m, x+n k, x+n m+n k)$

Consider a variant: $H=\sqrt{N}$
$x, x+m, x+k, x+m+k ; \quad m, k \leq H, x \leq N$
Even easier baby case: $x, x+m ; \quad m \leq H, x \leq N$:

$$
\mathbb{E}_{x \leq N, m \leq H} f(x) f(x+m) \sim \mathbb{E}_{x \leq N}\left(\mathbb{E}_{m \leq H} f(x+m)\right)^{2}
$$

Problem: Arithmetic functions are difficult at short scales !

Working example: $(x, x+n m, x+n k, x+n m+n k)$

Consider a variant: $H=\sqrt{N}$
$x, x+m, x+k, x+m+k ; \quad m, k \leq H, x \leq N$
Even easier baby case: $x, x+m ; \quad m \leq H, x \leq N$:

$$
\mathbb{E}_{x \leq N, m \leq H} f(x) f(x+m) \sim \mathbb{E}_{x \leq N}\left(\mathbb{E}_{m \leq H} f(x+m)\right)^{2}
$$

Problem: Arithmetic functions are difficult at short scales !

Classical: $\mathbb{E}_{x \leq N} \mu(x)=o(1)$.

Working example: $(x, x+n m, x+n k, x+n m+n k)$

Consider a variant: $H=\sqrt{N}$
$x, x+m, x+k, x+m+k ; \quad m, k \leq H, x \leq N$
Even easier baby case: $x, x+m ; \quad m \leq H, x \leq N$:

$$
\mathbb{E}_{x \leq N, m \leq H} f(x) f(x+m) \sim \mathbb{E}_{x \leq N}\left(\mathbb{E}_{m \leq H} f(x+m)\right)^{2}
$$

Problem: Arithmetic functions are difficult at short scales!

Classical: $\mathbb{E}_{x \leq N} \mu(x)=o(1)$.

Theorem (Matomäki - Radziwill (2015))

$$
\mathbb{E}_{x \leq N}\left(\mathbb{E}_{m \leq H} \mu(x+m)\right)^{2}=o(1)
$$

when $H \rightarrow \infty$ as slow as we wish.

Working example: $(x, x+n m, x+n k, x+n m+n k)$

$$
x, x+m, x+k, x+m+k ; \quad m, k \leq H, x \leq N
$$

Working example: $(x, x+n m, x+n k, x+n m+n k)$

$x, x+m, x+k, x+m+k ; \quad m, k \leq H, x \leq N$

Via Fourier analysis, we have "local" control:

Working example: $(x, x+n m, x+n k, x+n m+n k)$

$x, x+m, x+k, x+m+k ; \quad m, k \leq H, x \leq N$

Via Fourier analysis, we have "local" control: make local shift $x+y, x+y+m, x+y+k, x+y+m+k ; \quad y, m, k \leq H, x \leq N$

Working example: $(x, x+n m, x+n k, x+n m+n k)$

$x, x+m, x+k, x+m+k ; \quad m, k \leq H, x \leq N$

Via Fourier analysis, we have "local" control: make local shift $x+y, x+y+m, x+y+k, x+y+m+k ; \quad y, m, k \leq H, x \leq N$

Fix x : have control with "local" Fourier coefficients - at scale H :

Working example: $(x, x+n m, x+n k, x+n m+n k)$

$x, x+m, x+k, x+m+k ; \quad m, k \leq H, x \leq N$

Via Fourier analysis, we have "local" control: make local shift $x+y, x+y+m, x+y+k, x+y+m+k ; \quad y, m, k \leq H, x \leq N$

Fix x : have control with "local" Fourier coefficients - at scale H :

$$
f_{x, H}(y)=f(x+y)
$$

Working example: $(x, x+n m, x+n k, x+n m+n k)$

$x, x+m, x+k, x+m+k ; \quad m, k \leq H, x \leq N$

Via Fourier analysis, we have "local" control: make local shift $x+y, x+y+m, x+y+k, x+y+m+k ; \quad y, m, k \leq H, x \leq N$

Fix x : have control with "local" Fourier coefficients - at scale H :

$$
f_{x, H}(y)=f(x+y)
$$

then think of $f_{x, H}$ as a function on $\mathbb{Z} / H \mathbb{Z}$

$$
\mathbb{E}_{y, u, v \leq H} f_{x}(y) f_{x}(y+u) f_{x}(y+v) f_{x}(y+u+v) \leq \sup _{r \leq H}\left|\hat{f}_{x, H}(r)\right|^{2}
$$

Problem: need to understand shorts scale Fourier coefficients of arithmetic functions!

Example

The Möbius function

$$
\mu(n)= \begin{cases}(-1)^{k} & n=p_{1} \ldots p_{k} \quad \text { where } p_{i} \text { are distinct primes } \\ 0 & \text { otherwise } \\ 1 & n=1\end{cases}
$$

Example

The Möbius function

$$
\mu(n)= \begin{cases}(-1)^{k} & n=p_{1} \ldots p_{k} \quad \text { where } p_{i} \text { are distinct primes } \\ 0 & \text { otherwise } \\ 1 & n=1\end{cases}
$$

Conjecture: short scale Fourier behavior of Möbius function

$$
\frac{1}{N H} \sum_{x \leq N} \sup _{\alpha}\left|\sum_{n \in[x, x+H]} \mu(n) e(n \alpha)\right|=o(1)
$$

where $H \rightarrow \infty$ as $N \rightarrow \infty$.

Example

The Möbius function

$$
\mu(n)=\left\{\begin{array}{ll}
(-1)^{k} & n=p_{1} \ldots p_{k} \\
0 & \text { otherwise } \\
1 & n=1
\end{array} \text { where } p_{i}\right. \text { are distinct primes }
$$

Conjecture: short scale Fourier behavior of Möbius function

$$
\frac{1}{N H} \sum_{x \leq N} \sup _{\alpha}\left|\sum_{n \in[x, x+H]} \mu(n) e(n \alpha)\right|=o(1)
$$

where $H \rightarrow \infty$ as $N \rightarrow \infty$. Not known even for $H=\sqrt{N}$!

Example

The Möbius function

$$
\mu(n)= \begin{cases}(-1)^{k} & n=p_{1} \ldots p_{k} \quad \text { where } p_{i} \text { are distinct primes } \\ 0 & \text { otherwise } \\ 1 & n=1\end{cases}
$$

Conjecture: short scale Fourier behavior of Möbius function

$$
\frac{1}{N H} \sum_{x \leq N} \sup _{\alpha}\left|\sum_{n \in[x, x+H]} \mu(n) e(n \alpha)\right|=o(1) .
$$

where $H \rightarrow \infty$ as $N \rightarrow \infty$. Not known even for $H=\sqrt{N}$! would imply

$$
\frac{1}{N H^{2}} \sum_{x \leq N, m, k \leq H} \mu(x) \mu(x+m) \mu(x+k) \mu(x+m+k)=o(1)
$$

Working example

$x, x+n m, x+n k, x+n m+n k ; \quad n, m, k \leq \sqrt{N}, x \leq N$

- $K=\left\{n_{1} m\right\}_{m \in \sqrt{N}}$ and $H=\left\{n_{2} m\right\}_{m \in \sqrt{N}}$

Working example

$x, x+n m, x+n k, x+n m+n k ; \quad n, m, k \leq \sqrt{N}, x \leq N$

- $K=\left\{n_{1} m\right\}_{m \in \sqrt{N}}$ and $H=\left\{n_{2} m\right\}_{m \in \sqrt{N}}$
- For many choices of n_{1}, n_{2} K, H are "independent subgroups":

Working example

$x, x+n m, x+n k, x+n m+n k ; \quad n, m, k \leq \sqrt{N}, x \leq N$

- $K=\left\{n_{1} m\right\}_{m \in \sqrt{N}}$ and $H=\left\{n_{2} m\right\}_{m \in \sqrt{N}}$
- For many choices of n_{1}, n_{2} K, H are "independent subgroups":
- $K+H \gg|K||H|=N$

Working example

$x, x+n m, x+n k, x+n m+n k ; \quad n, m, k \leq \sqrt{N}, x \leq N$

- $K=\left\{n_{1} m\right\}_{m \in \sqrt{N}}$ and $H=\left\{n_{2} m\right\}_{m \in \sqrt{N}}$
- For many choices of n_{1}, n_{2} K, H are "independent subgroups":
- $K+H \gg|K||H|=N$
- bounded multiplicity

Working example

$x, x+n m, x+n k, x+n m+n k ; \quad n, m, k \leq \sqrt{N}, x \leq N$

- $K=\left\{n_{1} m\right\}_{m \in \sqrt{N}}$ and

$$
H=\left\{n_{2} m\right\}_{m \in \sqrt{N}}
$$

- For many choices of n_{1}, n_{2} K, H are "independent subgroups":
- $K+H \gg|K||H|=N$
- bounded multiplicity

- Look at cubes along K, H :

Working example

$x, x+n m, x+n k, x+n m+n k ; \quad n, m, k \leq \sqrt{N}, x \leq N$

- $K=\left\{n_{1} m\right\}_{m \in \sqrt{N}}$ and $H=\left\{n_{2} m\right\}_{m \in \sqrt{N}}$
- For many choices of n_{1}, n_{2} K, H are "independent subgroups":
- $K+H \gg|K||H|=N$
- bounded multiplicity

- Look at cubes along K, H :

Key question

Can we concatenate "cubic" information along K and H to "cubic" information along $K+H$?

Concatenating cubic structure

Let $H, K<G$ be subgroups of an abelian group. Given info on

- a-dim cubic averages along H
- b-dim cubic averages along K

What can we say about cubic averages along $K+H$?

Concatenating cubic structure

Let $H, K<G$ be subgroups of an abelian group. Given info on

- a-dim cubic averages along H
- b-dim cubic averages along K

What can we say about cubic averages along $K+H$?
Notion: $\Delta_{h} f(x)=f(x+h) \overline{f(x)}$

$$
\Delta_{h} \Delta_{k} f(x)=f(x) \overline{f(x+h) f(x+k)} f(x+h+k)
$$

Say that f is a H-polynomial of degree $<m$

$$
\Delta_{h_{1}} \ldots \Delta_{h_{m}} f \equiv 1 \quad \forall h_{1}, \ldots, h_{m} \in H
$$

Concatenating cubic structure

Let $H, K<G$ be subgroups of an abelian group. Given info on

- a-dim cubic averages along H
- b-dim cubic averages along K

What can we say about cubic averages along $K+H$?
Notion: $\Delta_{h} f(x)=f(x+h) \overline{f(x)}$

$$
\Delta_{h} \Delta_{k} f(x)=f(x) \overline{f(x+h) f(x+k)} f(x+h+k)
$$

Say that f is a H-polynomial of degree $<m$

$$
\Delta_{h_{1}} \ldots \Delta_{h_{m}} f \equiv 1 \quad \forall h_{1}, \ldots, h_{m} \in H
$$

Example: $G=\mathbb{Z}^{2}, H=\{0\} \times \mathbb{Z}, K=\mathbb{Z} \times\{0\}, f(x, y)=e(x y \alpha)$

Concatenating cubic structure

Let $H, K<G$ be subgroups of an abelian group. Given info on

- a-dim cubic averages along H
- b-dim cubic averages along K

What can we say about cubic averages along $K+H$?
Notion: $\Delta_{h} f(x)=f(x+h) \overline{f(x)}$

$$
\Delta_{h} \Delta_{k} f(x)=f(x) \overline{f(x+h) f(x+k)} f(x+h+k)
$$

Say that f is a H-polynomial of degree $<m$

$$
\Delta_{h_{1}} \ldots \Delta_{h_{m}} f \equiv 1 \quad \forall h_{1}, \ldots, h_{m} \in H
$$

Example: $G=\mathbb{Z}^{2}, H=\{0\} \times \mathbb{Z}, K=\mathbb{Z} \times\{0\}, f(x, y)=e(x y \alpha)$

- f is of degree <2 in H and in K

Concatenating cubic structure

Let $H, K<G$ be subgroups of an abelian group. Given info on

- a-dim cubic averages along H
- b-dim cubic averages along K

What can we say about cubic averages along $K+H$?
Notion: $\Delta_{h} f(x)=f(x+h) \overline{f(x)}$

$$
\Delta_{h} \Delta_{k} f(x)=f(x) \overline{f(x+h) f(x+k)} f(x+h+k)
$$

Say that f is a H-polynomial of degree $<m$

$$
\Delta_{h_{1}} \ldots \Delta_{h_{m}} f \equiv 1 \quad \forall h_{1}, \ldots, h_{m} \in H
$$

Example: $G=\mathbb{Z}^{2}, H=\{0\} \times \mathbb{Z}, K=\mathbb{Z} \times\{0\}, f(x, y)=e(x y \alpha)$

- f is of degree <2 in H and in K
- but not in G ; it is of degree <3 in G.

Concatenating polynomials and almost polynomials

Let $H, K<G$ be subgroup of a finite abelian group.

Concatenating polynomials and almost polynomials

Let $H, K<G$ be subgroup of a finite abelian group.
Simple fact:

- f is a H polynomial of degree $<a$
- f is a K polynomial of degree $<b$
then f is a $H+K$-polynomial of degree $<a+b-1$.

Concatenating polynomials and almost polynomials

Let $H, K<G$ be subgroup of a finite abelian group.
Simple fact:

- f is a H polynomial of degree $<a$
- f is a K polynomial of degree $<b$ then f is a $H+K$-polynomial of degree $<a+b-1$.

Harder: "99\% world":

- $\Delta_{h_{1}} \ldots \Delta_{h_{a}} f=1$ on $1-\delta$ proportion of H-cubes.
- $\Delta_{k_{1}} \ldots \Delta_{k_{b}} f=1$ on $1-\delta$ proportion of K-cubes.

Concatenating polynomials and almost polynomials

Let $H, K<G$ be subgroup of a finite abelian group.
Simple fact:

- f is a H polynomial of degree $<a$
- f is a K polynomial of degree $<b$
then f is a $H+K$-polynomial of degree $<a+b-1$.
Harder: "99\% world":
- $\Delta_{h_{1}} \ldots \Delta_{h_{a}} f=1$ on $1-\delta$ proportion of H-cubes.
- $\Delta_{k_{1}} \ldots \Delta_{k_{b}} f=1$ on $1-\delta$ proportion of K-cubes.

Arguments of Alon-Kaufman-Krivelevich-Lytsin-Ron:
f is close to a $H+K$ polynomial of degree $<a+b-1$.

Concatenating polynomials and almost polynomials

Let $H, K<G$ be subgroup of a finite abelian group.
Simple fact:

- f is a H polynomial of degree $<a$
- f is a K polynomial of degree $<b$
then f is a $H+K$-polynomial of degree $<a+b-1$.
Harder: "99\% world":
- $\Delta_{h_{1}} \ldots \Delta_{h_{a}} f=1$ on $1-\delta$ proportion of H-cubes.
- $\Delta_{k_{1}} \ldots \Delta_{k_{b}} f=1$ on $1-\delta$ proportion of K-cubes.

Arguments of Alon-Kaufman-Krivelevich-Lytsin-Ron:
f is close to a $H+K$ polynomial of degree $<a+b-1$.
What if we only have information on a small proportion of cubes ?

Concatenating Gowers norms

The " 1% world": suppose

- $\Delta_{h_{1}} \ldots \Delta_{h_{a}} f=1$ on δ proportion of H-cubes.
- $\Delta_{k_{1}} \ldots \Delta_{k_{b}} f=1$ on δ proportion of K-cubes.

Concatenating Gowers norms

The " 1% world": suppose

- $\Delta_{h_{1}} \ldots \Delta_{h_{a}} f=1$ on δ proportion of H-cubes.
- $\Delta_{k_{1}} \ldots \Delta_{k_{b}} f=1$ on δ proportion of K-cubes.

The $U_{H^{-}}^{\text {-Gowers norm: }}$

$$
\|f\|_{U_{H}^{a}}^{2^{a}}=\mathbb{E}_{x \in G, h_{i} \in H} \Delta_{h_{1}} \ldots \Delta_{h_{a}} f(x)
$$

Concatenating Gowers norms

The " 1% world": suppose

- $\Delta_{h_{1}} \ldots \Delta_{h_{a}} f=1$ on δ proportion of H-cubes.
- $\Delta_{k_{1}} \ldots \Delta_{k_{b}} f=1$ on δ proportion of K-cubes.

The $U_{H^{-}}^{\text {-Gowers norm: }}$

$$
\|f\|_{U_{H}^{a}}^{2^{a}}=\mathbb{E}_{x \in G, h_{i} \in H} \Delta_{h_{1}} \ldots \Delta_{h_{a}} f(x)
$$

Difficulties:

- No uniqueness: if f is a sum of a few H-polynomials (this is not a polynomial !) then $\|f\|_{U_{H}^{Z}}^{2 a} \gg 1$.

Concatenating Gowers norms

The " 1% world": suppose

- $\Delta_{h_{1}} \ldots \Delta_{h_{a}} f=1$ on δ proportion of H-cubes.
- $\Delta_{k_{1}} \ldots \Delta_{k_{b}} f=1$ on δ proportion of K-cubes.

The $U_{H^{-}}^{\text {-Gowers norm: }}$

$$
\|f\|_{U_{H}^{a}}^{2^{a}}=\mathbb{E}_{x \in G, h_{i} \in H} \Delta_{h_{1}} \ldots \Delta_{h_{a}} f(x)
$$

Difficulties:

- No uniqueness: if f is a sum of a few H-polynomials (this is not a polynomial !) then $\|f\|_{U_{H}^{2}}^{2 a} \gg 1$.
- $\|f\|_{U_{H}^{a}}^{2 a} \gg 1$ does not necessarily imply that f correlates with an H-polynomial even when $H=G$ (e.g. when $G=\mathbb{Z} / N \mathbb{Z}$ by inverse theorem for Gowers norms f correlates with an $a-1$ step nilsequence).

Concatenating Gowers norms

The " 1% world": suppose

- $\Delta_{h_{1}} \ldots \Delta_{h_{a}} f=1$ on δ proportion of H-cubes.
- $\Delta_{k_{1}} \ldots \Delta_{k_{b}} f=1$ on δ proportion of K-cubes.

The $U_{H^{-}}^{\text {-Gowers norm: }}$

$$
\|f\|_{U_{H}^{a}}^{2^{a}}=\mathbb{E}_{x \in G, h_{i} \in H} \Delta_{h_{1}} \ldots \Delta_{h_{a}} f(x)
$$

Difficulties:

- No uniqueness: if f is a sum of a few H-polynomials (this is not a polynomial !) then $\|f\|_{U_{H}^{Z}}^{2 a} \gg 1$.
- $\|f\|_{U_{H}^{a}}^{2^{2}} \gg 1$ does not necessarily imply that f correlates with an H-polynomial even when $H=G$ (e.g. when $G=\mathbb{Z} / N \mathbb{Z}$ by inverse theorem for Gowers norms f correlates with an $a-1$ step nilsequence).

Want $\|f\|_{U_{H}^{a}}>\delta$, and $\|f\|_{U_{K}^{b}}>\delta$ then $\|f\|_{U_{H+K}^{a+b-1}} \gg_{\delta} 1$

Concatenating Gowers norms

The " 1% world": suppose

- $\Delta_{h_{1}} \ldots \Delta_{h_{a}} f=1$ on δ proportion of H-cubes.
- $\Delta_{k_{1}} \ldots \Delta_{k_{b}} f=1$ on δ proportion of K-cubes.

The $U_{H^{-}}^{\text {-Gowers norm: }}$

$$
\|f\|_{U_{H}^{a}}^{2^{a}}=\mathbb{E}_{x \in G, h_{i} \in H} \Delta_{h_{1}} \ldots \Delta_{h_{a}} f(x)
$$

Difficulties:

- No uniqueness: if f is a sum of a few H-polynomials (this is not a polynomial !) then $\|f\|_{U_{H}^{Z}}^{2 a} \gg 1$.
- $\|f\|_{U_{H}^{a}}^{2^{2}} \gg 1$ does not necessarily imply that f correlates with an H-polynomial even when $H=G$ (e.g. when $G=\mathbb{Z} / N \mathbb{Z}$ by inverse theorem for Gowers norms f correlates with an $a-1$ step nilsequence).

Want $\|f\|_{U_{H}^{a}}>\delta$, and $\|f\|_{U_{K}^{b}}>\delta$ then $\|f\|_{U_{H+K}^{a+b-1}} \gg_{\delta} 1$

Ergodic analogue

Let G be a countable abelian group, and let $\left(X, \mathscr{B}, \mu,\left(T_{g}\right)_{g \in G}\right)$ be a measure preserving system.

Ergodic analogue

Let G be a countable abelian group, and let $\left(X, \mathscr{B}, \mu,\left(T_{g}\right)_{g \in G}\right)$ be a measure preserving system.
Given $H<G$, can "differentiate": for $h \in H, f: X \rightarrow \mathbb{D}$,

$$
\Delta_{h} f(x)=f\left(T_{h} x\right) \overline{f(x)}
$$

Ergodic analogue

Let G be a countable abelian group, and let $\left(X, \mathscr{B}, \mu,\left(T_{g}\right)_{g \in G}\right)$ be a measure preserving system.
Given $H<G$, can "differentiate": for $h \in H, f: X \rightarrow \mathbb{D}$,

$$
\Delta_{h} f(x)=f\left(T_{h} x\right) \overline{f(x)}
$$

An H-polynomial: $\Delta_{h_{a}} \ldots \Delta_{h_{1}} f(x) \equiv 1$ for all $h_{i} \in H$.

Ergodic analogue

Let G be a countable abelian group, and let $\left(X, \mathscr{B}, \mu,\left(T_{g}\right)_{g \in G}\right)$ be a measure preserving system.
Given $H<G$, can "differentiate": for $h \in H, f: X \rightarrow \mathbb{D}$,

$$
\Delta_{h} f(x)=f\left(T_{h} x\right) \overline{f(x)}
$$

An H-polynomial: $\Delta_{h_{a}} \ldots \Delta_{h_{1}} f(x) \equiv 1$ for all $h_{i} \in H$.

$$
\|f\|_{U_{H}^{a}(X)}^{2^{a}}=\lim _{N \rightarrow \infty} \mathbb{E}_{h_{i} \in \phi_{N}(H)} \int \Delta_{h_{1}} \ldots \Delta_{h_{a}} f(x) d \mu
$$

Ergodic analogue

Let G be a countable abelian group, and let $\left(X, \mathscr{B}, \mu,\left(T_{g}\right)_{g \in G}\right)$ be a measure preserving system.
Given $H<G$, can "differentiate": for $h \in H, f: X \rightarrow \mathbb{D}$,

$$
\Delta_{h} f(x)=f\left(T_{h} x\right) \overline{f(x)}
$$

An H-polynomial: $\Delta_{h_{a}} \ldots \Delta_{h_{1}} f(x) \equiv 1$ for all $h_{i} \in H$.

$$
\|f\|_{U_{H}^{a}(X)}^{2^{a}}=\lim _{N \rightarrow \infty} \mathbb{E}_{h_{i} \in \phi_{N}(H)} \int \Delta_{h_{1}} \ldots \Delta_{h_{a}} f(x) d \mu
$$

There is a morphism $\pi: X \rightarrow Z_{H}^{a}(X)$

$$
\|f\|_{U_{H}^{a}(X)}^{2^{a}}=0 \Longleftrightarrow E\left(f \mid Z_{H}^{a}(X)\right)=0 .
$$

Ergodic analogue

Let G be a countable abelian group, and let $\left(X, \mathscr{B}, \mu,\left(T_{g}\right)_{g \in G}\right)$ be a measure preserving system.
Given $H<G$, can "differentiate": for $h \in H, f: X \rightarrow \mathbb{D}$,

$$
\Delta_{h} f(x)=f\left(T_{h} x\right) \overline{f(x)}
$$

An H-polynomial: $\Delta_{h_{a}} \ldots \Delta_{h_{1}} f(x) \equiv 1$ for all $h_{i} \in H$.

$$
\|f\|_{U_{H}^{a}(X)}^{2^{a}}=\lim _{N \rightarrow \infty} \mathbb{E}_{h_{i} \in \phi_{N}(H)} \int \Delta_{h_{1}} \ldots \Delta_{h_{a}} f(x) d \mu
$$

There is a morphism $\pi: X \rightarrow Z_{H}^{a}(X)$

$$
\|f\|_{U_{H}^{a}(X)}^{2^{a}}=0 \Longleftrightarrow E\left(f \mid Z_{H}^{a}(X)\right)=0 .
$$

Question

Given $K, H<G$ Can we relate $Z_{H}^{a}(X), Z_{K}^{b}(X)$ and $Z_{H+K}^{a+b-1}(X)$?

Theorem (Tao-Z); ergodic concatentation

$$
Z_{H}^{a}(X) \wedge Z_{K}^{b}(X) \subset Z_{H+K}^{a+b-1}(X)
$$

Namely: if f is measurable with respect to $Z_{H}^{a}(X)$, and $Z_{K}^{b}(X)$ then it is also measurable with respect to $Z_{H+K}^{a+b-1}(X)$.

Theorem (Tao-Z); ergodic concatentation

$$
Z_{H}^{a}(X) \wedge Z_{K}^{b}(X) \subset Z_{H+K}^{a+b-1}(X)
$$

Namely: if f is measurable with respect to $Z_{H}^{a}(X)$, and $Z_{K}^{b}(X)$ then it is also measurable with respect to $Z_{H+K}^{a+b-1}(X)$.

Recall: $\|f\|_{U_{H}^{a}(X)}^{2^{a}}=0 \Longleftrightarrow E\left(f \mid Z_{H}^{a}(X)\right)=0$.

Theorem (Tao-Z); ergodic concatentation

$$
Z_{H}^{a}(X) \wedge Z_{K}^{b}(X) \subset Z_{H+K}^{a+b-1}(X)
$$

Namely: if f is measurable with respect to $Z_{H}^{a}(X)$, and $Z_{K}^{b}(X)$ then it is also measurable with respect to $Z_{H+K}^{a+b-1}(X)$.

Recall: $\|f\|_{U_{H}^{a}(X)}^{2 a}=0 \Longleftrightarrow E\left(f \mid Z_{H}^{a}(X)\right)=0$.
Caution: this doesn't quite mean that

$$
\|f\|_{U_{H}^{a}(X)}>0,\|f\|_{U_{K}^{b}(X)}>0 \Longrightarrow\|f\|_{U_{H+K}^{a+b-1}(X)}>0
$$

Theorem (Tao-Z); ergodic concatentation

$$
Z_{H}^{a}(X) \wedge Z_{K}^{b}(X) \subset Z_{H+K}^{a+b-1}(X)
$$

Namely: if f is measurable with respect to $Z_{H}^{a}(X)$, and $Z_{K}^{b}(X)$ then it is also measurable with respect to $Z_{H+K}^{a+b-1}(X)$.

Recall: $\|f\|_{U_{H}^{a}(X)}^{2 a}=0 \Longleftrightarrow E\left(f \mid Z_{H}^{a}(X)\right)=0$.
Caution: this doesn't quite mean that

$$
\|f\|_{U_{H}^{a}(X)}>0,\|f\|_{U_{K}^{b}(X)}>0 \Longrightarrow\|f\|_{U_{H+K}^{a+b-1}(X)}>0
$$

Given a collection subgroups of H_{i}, with $\|f\|_{U_{H_{i}}^{\alpha_{i}}(X)}>0$ for many i then for many pairs i, j.

$$
\|f\|_{U_{H_{i}+H_{j}}^{a_{j}+a_{j}-1}(X)}>0
$$

Back to finite world

Recall: G finite abelian group (say $\mathbb{Z} / N \mathbb{Z}$), H, K are "subgroups".
Want $\|f\|_{U_{H}^{a}}>\delta$, and $\|f\|_{U_{K}^{b}}>\delta$ then

$$
\|f\|_{U_{H+K}^{a+b-1}} \gg \delta 1
$$

Back to finite world

Recall: G finite abelian group (say $\mathbb{Z} / N \mathbb{Z}$), H, K are "subgroups".
Want $\|f\|_{U_{H}^{z}}>\delta$, and $\|f\|_{U_{K}^{b}}>\delta$ then

$$
\|f\|_{U_{H+K}^{a+b-1}} \gg \delta 1
$$

Theorem (Tao-Z): combinatorial concatenation
If $\|f\|_{U_{H_{i}}^{a_{i}}}>\delta$ for many i, then

$$
\|f\|_{U_{H_{i}+H_{j}}^{a_{i}+a_{j}-1}}^{\substack{ \\y_{\delta}}} \quad \text { for many } i, j .
$$

Corollary

Let $H_{n}=\{n m\}_{m \leq \sqrt{N}}$. Suppose $\|f\|_{U_{\mathbb{Z} / N \mathbb{Z}}^{3}}=o(1)$, then ${ }_{(2+2-1=3)}$

$$
\mathbb{E}_{x \leq N, n, m, k \leq \sqrt{N}} \Delta_{n m} \Delta_{n k} f=o(1)
$$

Corollary

Let $H_{n}=\{n m\}_{m \leq \sqrt{N}}$. Suppose $\|f\|_{U_{\mathbb{Z} / N \mathbb{Z}}^{3}}=o(1)$, then ${ }_{(2+2-1=3)}$

$$
\mathbb{E}_{x \leq N, n, m, k \leq \sqrt{N}} \Delta_{n m} \Delta_{n k} f=o(1)
$$

Example: $\|\mu\|_{U_{\mathbb{Z} / N Z}^{3}}=o(1)$ implies

$$
\mathbb{E}_{x \leq N, n, m, k \leq \sqrt{N}} \mu(x) \mu(x+n m) \mu(x+n k) \mu(x+n m+n k)=o(1) .
$$

Corollary

Let $H_{n}=\{n m\}_{m \leq \sqrt{N}}$. Suppose $\|f\|_{U_{\mathbb{Z} / N Z}^{3}}=o(1)$, then ${ }_{(2+2-1=3)}$

$$
\mathbb{E}_{x \leq N, n, m, k \leq \sqrt{N}} \Delta_{n m} \Delta_{n k} f=o(1)
$$

Example: $\|\mu\|_{U_{\mathbb{Z} / N Z}^{3}}=o(1)$ implies

$$
\mathbb{E}_{x \leq N, n, m, k \leq \sqrt{N}} \mu(x) \mu(x+n m) \mu(x+n k) \mu(x+n m+n k)=o(1) .
$$

Application to the primes:

- Need to transfer to functions f bounded by a psuedorandom function (not entirely straight forward) + need to use all the machinery developed for linear forms.

Corollary

Let $H_{n}=\{n m\}_{m \leq \sqrt{N}}$. Suppose $\|f\|_{U_{\mathbb{Z} / N Z}^{3}}=o(1)$, then ${ }_{(2+2-1=3)}$

$$
\mathbb{E}_{x \leq N, n, m, k \leq \sqrt{N}} \Delta_{n m} \Delta_{n k} f=o(1)
$$

Example: $\|\mu\|_{U_{\mathbb{Z} / N Z}^{3}}=o(1)$ implies

$$
\mathbb{E}_{x \leq N, n, m, k \leq \sqrt{N}} \mu(x) \mu(x+n m) \mu(x+n k) \mu(x+n m+n k)=o(1) .
$$

Application to the primes:

- Need to transfer to functions f bounded by a psuedorandom function (not entirely straight forward) + need to use all the machinery developed for linear forms.
- Using inverse theorem for (global) Gowers norms can replace U^{3} norm with U^{2} norm. Do not know how to do this directly using Fourier analysis !

Corollary

Let $H_{n}=\{n m\}_{m \leq \sqrt{N}}$. Suppose $\|f\|_{U_{\mathbb{Z} / N Z}^{3}}=o(1)$, then ${ }_{(2+2-1=3)}$

$$
\mathbb{E}_{x \leq N, n, m, k \leq \sqrt{N}} \Delta_{n m} \Delta_{n k} f=o(1)
$$

Example: $\|\mu\|_{U_{\mathbb{Z} / N Z}^{3}}=o(1)$ implies

$$
\mathbb{E}_{x \leq N, n, m, k \leq \sqrt{N}} \mu(x) \mu(x+n m) \mu(x+n k) \mu(x+n m+n k)=o(1)
$$

Application to the primes:

- Need to transfer to functions f bounded by a psuedorandom function (not entirely straight forward) + need to use all the machinery developed for linear forms.
- Using inverse theorem for (global) Gowers norms can replace U^{3} norm with U^{2} norm. Do not know how to do this directly using Fourier analysis !
- Can use concatenation technique to get polynomial progressions in primes with gap as small as $(\log N)^{O(1)}$.

Dual functions

Good news: do not need classification of U_{H}^{a}, U_{K}^{b} norms !

Dual functions

Good news: do not need classification of U_{H}^{a}, U_{K}^{b} norms !
Work with Dual functions:

$$
D_{H} f(x)=\mathbb{E}_{h_{1}, h_{2} \in H} \overline{f\left(x+h_{1}\right) f\left(x+h_{2}\right)} f\left(x+h_{1}+h_{2}\right)
$$

so that

$$
\|f\|_{U_{H}^{2}}^{4}=\left\langle f, D_{H} f\right\rangle
$$

Dual functions

Good news: do not need classification of U_{H}^{a}, U_{K}^{b} norms !
Work with Dual functions:

$$
D_{H} f(x)=\mathbb{E}_{h_{1}, h_{2} \in H} \overline{f\left(x+h_{1}\right) f\left(x+h_{2}\right)} f\left(x+h_{1}+h_{2}\right)
$$

so that

$$
\|f\|_{U_{H}^{2}}^{4}=\left\langle f, D_{H} f\right\rangle
$$

Advantages:

- f correlates with $D_{H} f$.
- $D_{H} f$ "lies" in the "classifying space" of the U_{H}^{2} norms.

Dual functions

Good news: do not need classification of U_{H}^{a}, U_{K}^{b} norms !
Work with Dual functions:

$$
D_{H} f(x)=\mathbb{E}_{h_{1}, h_{2} \in H} \overline{f\left(x+h_{1}\right) f\left(x+h_{2}\right)} f\left(x+h_{1}+h_{2}\right)
$$

so that

$$
\|f\|_{U_{H}^{2}}^{4}=\left\langle f, D_{H} f\right\rangle
$$

Advantages:

- f correlates with $D_{H} f$.
- $D_{H} f$ "lies" in the "classifying space" of the U_{H}^{2} norms.

Show that intersection of space "generated" by $D_{K} f$'s and space "generated" by $D_{H} f$'s lies in the space "generated" by $D_{H+K} f$'s.

