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Instead of an Introduction:

What should we call "duality"?

Consider the class Cvx (Rn) of all lower-semi-continuous convex
functions f : Rn → R∪ {+∞}. The Legendre transform is the
map

Lϕ(x) = sup
y∈Rn

[
〈x , y〉 − ϕ(y)

]
:= ϕ∗(x)

(there are many “Legendre transforms”: We may select 0 of the
space, a scalar product and a shift for a function).
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Theorem (Artstein–Milman)
1. Assume T : Cvx (Rn)→ Cvx (Rn) satisfies:

(a) T · T ϕ = ϕ (for any ϕ ∈ Cvx (Rn));
(b) ϕ ≤ ψ implies T ϕ ≥ Tψ.

Then T is a Legendre transform.
Note, elementary properties (a) and (b) essentially uniquely
define the Legendre transform – originally a construction.
(Side remark: It means that Cvx (Rn) has a unique duality
structure.)
To be precise, we explain "essential uniqueness": Fix 〈x , y〉;
∃c0 ∈ R, v0 ∈ Rn, symmetric linear B ∈ GLn s.t.

(T ϕ)(x) = (Lϕ)(Bx + v0) + 〈x , v0〉+ c0.

How far can this point of view be extended?
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Consider the fundamental constructions of Convex Geometry:

I Kn is the class of closed convex sets [:=bodies] in Rn.
I Kn

0 := Kn
0(R

n) = {K ∈ Kn such that 0 ∈ K} and fixed
scalar product 〈·,·〉.
Polarity K ∈ Kn

0 → K ◦:

K ◦ =
{
x ∈ Rn ∣∣ 〈x , y〉 ≤ 1 ∀y ∈ K

}
∈ K0 (R

n) .

Supporting function K ∈ Kn → hK (x)

hK (x) = sup
y∈K

(x , y) ∈ H0(R
n).

For K ∈ K0 (Rn) the gauge function M (or Minkowski functional)
is the 1-homogeneous convex function ‖x‖K , “generalized” norm,
s.t.

K = {x ∈ Rn : ‖x‖K ≤ 1} ,

i.e. M(11∞
K ) = ‖x‖K .

I Denote H0 = {‖x‖K : K ∈ K0 (Rn)}
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Polarity map

(i) The map K 7→ K ◦ is (essentially) a unique map ϕ : K0 → K0
which

1. involution
2. reverse the order of embedding:

A ⊂ B ⇒ ϕ(A) ⊃ ϕ(B).

(Artstein-Milman for this class following earlier result by
Böröczky-Schneider for a different but similar class.)

(This is an “analytic” characterization.)

9 / 44



The support and gauge maps

(ii) Also a map ψ : K0 → H0 (1-1 and onto) which preserves the
order (i.e. A ⊂ B ⇒ ψA(x) ≤ ψB(x)) is (essentially, up to
selecting a scalar product) the above supporting map
S(1∞

K ) ≡ S(K ) := hK (x).

(iii) The gauge map is (essentially) the unique order reversing map
M(11∞

K ) = ‖x‖K .
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Another characterization

Now we give an "algebraic" characterization of Polarity.

K and L are in incidence relation iff K 6⊆ L and L 6⊆ K .

Theorem (Artstein-Milman)

Let T : K0 (Rn)→ K0 (Rn) be a bijection which preserves
incidence relation (in both directions). Then ∃B ∈ GLn such that
T is either

TK = BK

or
TK = (BK )◦
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To see the usefulness of these characterizations, let us extend these
very geometric constructions to the setting of functions, where
geometric interpretation of these constructions is impossible.

Let us embed K(Rn) = {K ⊆ Rn | closed convex} into Cvx (Rn)
by “convex characteristic” functions:

K −→ 1∞
K =

{
0 x ∈ K ,

+∞ x 6∈ K .

I Cvx0 (Rn) = {f ∈ Cvx (Rn) such that f ≥ 0 and f (0) = 0}
(geometric convex functions)

Obviously, after such an embedding and using inequalities for
functions, M : K0(Rn)→ H0 is an order preserving map (1-1 and
onto) and S : K0(Rn)→ H0 is an order reversing map.
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The following theorem extends the notion of Support function to
the Cvx (Rn) and Polarity to the Cvx0 (Rn) setting:

Theorem (Artstein–Milman)
1. There is a unique order reversing extension of the support

map S to Cvx (Rn) which is the Legendre transform.
2. There is a unique order reversing extension of the polarity

map {1∞
K → 1∞

K ◦ | K ∈ K0} to Cvx0 (Rn) \0 defined by

Af = sup 〈x , y〉 − 1
f (y) := f ◦(x),

and A(0) := 1∞
{0}. (By extension we mean that A1∞

K = 1∞
K ◦ .)

[This type of map was used by M. in 1969 and also introduced by
Rockafellar in 1970.]
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Continuation of Theorem

3. Consider the order preserving map (involution)

J = LA = AL

which connects two dualities (supporting map – Legendre
transform L, and geometric duality A) and acts ray-wise (i.e.
(J f )|r = J (f |r ) for any ray r).
J : Cvx0 → Cvx0 is order preserving and it is the gauge map:
J is the only order preserving extension of the Minkowski
map M onto Cvx0(Rn), i.e.

J (1∞
K ) ≡ M(1∞

K ) = ‖x‖K .

So, on the class of convex functions we have the notion of support
function (L transform), Minkowski functional (J -map) and
polarity (A-transform)!
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By the way, note that there are ONLY two dualities on Cvx0 (Rn)
— L and A:

Theorem (Artstein–Milman)

Let n ≥ 2. The maps L and A are (essentially) the only order
reversing involutions on Cvx0(Rn). Precisely: if T : Cvx0 → Cvx0
is
1. involution T · T = Id.
2. order reversing: ∀f , g ∈ Cvx0 we have f ≤ g ⇒ Tf ≥ Tg ,

then ∃C > 0 and B ∈ GLn, symmetric, s.t. either

∀f ∈ Cvx0, Tf = L(f (Bx))

or ∀f ∈ Cvx0, Tf = CA(f (Bx)).

(When n = 1 there are 8 such different dualities)
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Properties of L and A

I So, on the class of geometric convex functions there are
exactly two dualities: one representing the support map and
another geometric notion of polarity.

Let us deviate for a few minutes from the main goal of this talk to
compare these two dualities L and A

I Some properties of A and L dualities:
1. AL = LA := J (A,L and J are involutions)

2. A1∞
K = 1∞

K ◦ , L1∞
K = ‖x‖K ◦ .
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Properties of L and A

For any generalized norm ‖·‖ ,

3. (A‖x‖)(y) = ‖y‖∗; (L‖x‖)(y) = 1∞
K ◦

where K ◦ is the unit ball of ‖y‖∗.
4. For p > 1, A(‖x‖p) = 1

p·qp−1 · (‖x‖∗)p, where 1
p + 1

q = 1,
L(‖x‖p) = 1

q·pq/p (‖x‖∗)q (for p = 2, the action of A
coincides with the action of L).

5. For a convex function f (t) on R+,f (0) = 0 , and any norm
‖ · ‖,

A(f (‖ · ‖)) = (Af )(‖ · ‖∗),
L(f (‖ · ‖)) = (Lf )(‖ · ‖∗).

17 / 44



Geometric interpretation of A-duality, I
epi (Af ) is the reflection of (epi f )◦:
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More algebraic properties for L v/s A

Recall the inf-convolution operation

(f�g)(x) = inf
y+z=x

(f (y) + g(z)).

Note
epi(f�g) = epi f + epi g

and
L(f�g) = Lf + Lg .

Similarly, using A-transform, we may introduce another summation
� by

A(f � g) = Af +Ag .
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Geometric interpretation of the Legendre transform
Let e be the unit vector in R+. Then

epi(Lf ) =
(
((epi f )◦ + e)◦ − e

)◦
+ e

or also
epi(Lf ) =

(
((epi f − e)◦ + e)◦ − e

)◦
.
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Let me add that also the notion of mixed volumes (Minkowski)
and the Minkowski Polarization theorem for the family of Convex
sets may be extended for the class of log-concave functions (and
also for larger classes of functions).

One should introduce an analog of Minkowski summation for this
class (done with L. Rotem) which leads to the notion of mixed
integrals. And many deep geometric inequalities (such as
Brunn–Minkowski, isoperimetric, Urysohn, Alexandrov,
Alexandrov–Fenchel) may be extended to this and other classes.

21 / 44



Analysis.
(And again, some fundamental and non-trivial constructions are
consequences of some very elementary, basic properties.)
Introduction
Let the classical Fourier transform F on Rn be

Ff =
∫

e−2πi〈x ,y〉f (y)dy .

Let S be the Schwartz class of “rapidly” decreasing (infinitely
smooth) functions on Rn.
Theorem (Artstein, Faifman, Milman)
Assume we are given a bijective transform F : S → S, s.t.
∀f , g ∈ S we have

F (f · g) = F f ∗ Fg .

Then ∃ diffeomorphism ω : Rn → Rn s.t. either ∀f ∈ S,
F f = F(f ◦ω) or ∀f ∈ S, F f = F(f ◦ω). Real linearity and
continuity of F is the automatic consequence.
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Previous versions contained more conditions and were proved
jointly with S. Alesker. Joining these results with the previous
theorem we may state that if F : S → S s.t. ∀f , g ∈ S,

F (f · g) = F f ∗ Fg ,

F (f ∗ g) = F f · Fg ,

then ∃ linear A ∈ GLn, | det(A)| = 1, s.t. either

∀f ∈ S, F f = F(f ◦ A)

or
∀f ∈ S, F f = F(f ◦ A).
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There was one "weak" point in all the previous results on
recovering some constructions in an essentially unique way by very
elementary properties.

Actually, this was the study of identity, the rigidity of identity.

Indeed, because the Fourier transform F is already known to us,
we just apply it to a priori unknown transform T (which has the
property T (f · g) = Tf ∗ Tg) and then

(FT )(f · g) = (FTf ) · (FTg) .

So we need to show that the map preserving product is, essentially,
identity!!

We want a different example. And here a new series of results of
purely analytic nature starts.

24 / 44



The chain rule operator equation and derivation construction

Chain rule for f , g ∈ C1(R) : D(f ◦ g) = (Df ) ◦ g ·Dg .
Let T : C1(R)→ C(R) be an operator satisfying the functional
equation

T (f ◦ g)(x) = (Tf )(g(x)) · (Tg)(x); f , g ∈ C1(R), x ∈ R.
(1)

Which operators T satisfy (1)?
Examples:

a) p > 0, (Tf )(x) = |f ′(x)|p and
(Tf )(x) = sgn f ′(x) |f ′(x)|p both satisfy (1).

b) Let H ∈ C(R), H > 0. Define (Tf )(x) = H(f (x))/H(x).
Then T satisfies (1).

c) Consider T : C1(R)→ C(R), (Tf )(x) ={
f ′(x) f ∈ C1(R) bijective

0 else

}
. Then T satisfies (1).
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Solutions of the chain rule operator equation

Multiplying two solutions of the chain rule yields again a solution.
T : Ck(R)→ C(R) is Ck -non-degenerate if T |Ck

b (R) 6= 0 where
Ck

b (R) are the (half-) bounded functions in Ck(R). Here k ∈N0.

Theorem [Artstein-König-Milman]

Assume T : Ck(R)→ C(R) satisfies the chain rule

T (f ◦ g) = (Tf ) ◦ g · Tg ; f , g ∈ Ck(R)

for k ∈N0 and that T is Ck -non-degenerate. Then there is p ≥ 0
and H ∈ C>0(R) such that for any f ∈ Ck(R)

(Tf )(x) = H(f (x))
H(x) |f ′(x)|p{sgn f ′(x)},

and this also holds for k = ∞, i.e. f ∈ C∞(R).
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Remarks

1. By this formula T automatically extends to C1(R). So the
natural DomT is C1.

2. Let us add the following normalization condition:

T (−2 · Id) = −2 .

Then the unique solution of the chain rule operator equation is the
derivative T (f ) = f ′.

(Now we don’t see it as a study of the identity map.)

3. The result is also valued for operators acting on the family of
polynomes P(Rn), however, ONLY if we add some (although
weak) pointwise continuity assumption (actually, at one point 0).
Under such assumptions the statement is true also for the class of
entire functions. Note, we don’t have any continuity assumptions
in the theorem.

27 / 44



However, on so small a family as Polynomials, the statement
without such an assumption is not true (example: T (P) = degrP,
and many others. An interesting question is to describe all
T : P → P s.t. T (P ◦Q) = TP · TQ).

The chain rule is a very natural (and very elementary) way to
define a non-trivial construction – derivation.
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Steps in the Proof

a) Show "localization": There is F : Rk+2 → R such that
Tf (x) = F (x , f (x), ..., f (k)(x)) for all f ∈ Ck(R) and x ∈ R.

b) Analyze the structure of the representing function F :
F (x , α0, ..., αk) =

H(α0)
H(x) K (α1), K multiplicative,

F independent of α2, ..., αk if k ≥ 2.

c) Show the measurability and then the continuity of the
coefficient functions occurring in F .
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Stability of the Chain Rule

T : C1(R)→ C(R) is locally non-degenerate if ∀ open interval
J ⊂ R, ∀x ∈ J , ∃g ∈ C1(R), y ∈ R, s.t. g(y) = x , Im(g) ⊂ J
and Tg(y) 6= 0.

Theorem (König-Milman)

Fix T : C1(R)→ C(R) and B : R3 → R such that ∀f , g ∈ C1

and ∀x ∈ R

T (f ◦ g)(x) = Tf ◦ g(x) · Tg(x) + B(x , f ◦ g(x), g(x)).

Assume that T is locally non-degenerate and Tf depends
non-trivially on f ′.

Then B = 0 (and T satisfies the chain rule).
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Even more rigidity

Consider the "chain rule inequality"

T (f ◦ g) ≤ (Tf ) ◦ g · Tg (∗)

for T : C1 (R)→ C(R), Dom(T ) = C1(R).

Assume that T satisfies the following:

I non-degeneration: ∀ open interval I ⊂ R, ∀x ∈ I,
∃g ∈ C1(R) s.t. g(x) = x , Im(g) ⊂ I and Tg(x) > 1.

I T is pointwise continuous: ∀f , fn ∈ C1(R) s.t fn → f ,
f ′n → f ′ uniformly on compact subsets we have
(Tfn) (x)→ (Tf ) (x) pointwise for all x ∈ R.
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Theorem (König-Milman)

For T as above assume also ∃x ∈ R s.t T (−Id)(x) < 0. Then
∃H ∈ C(R), H > 0, ∃p > 0 and A ≥ 1 s.t

Tf =

{
H◦f
H |f ′|

p for f ′ ≥ 0
−AH◦f

H |f ′|
p for f ′ < 0.

Note:

I For A = 1, T satisfies the chain rule equation: we have
equality in (∗).

I For both f and g non-decreasing we automatically have
equality in (∗).

I Actually, the same is true if for some C > 0

T (f ◦ g) ≤ C · (Tf ) ◦ g · Tg

and even much more generally (the answer is slightly
modified).
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Theorem (König-Milman)

Assume that T : C1(R)→ C(R) is pointwise continuous and
non-degenerate. Suppose further that there is a function
S : R3 → R such that the perturbed chain operator inequality

|T (f ◦ g)(x)− (Tf )(g(x)) · (Tg)(x)| ≤ S(x , (f ◦ g)(x), g(x))

holds for all f , g ∈ C1(R) and all x ∈ R. Then there are p > 0
and a positive continuous function H : R→ R>0 such that for all
f ∈ C1(R) and all x ∈ R

Tf (x) = H(f (x))
H(x) sgn f ′(x)|f ′(x)|p.

This implies that we may choose S = 0, i.e. that we have equality

T (f ◦ g)(x) = (Tf )(g(x)) · (Tg)(x), f , g ∈ C1(R), x ∈ R.
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The following classically sound functional statement is used:

We say that K : R→ R is submultiplicative if

K (αβ) ≤ K (α)K (β) , ∀α, β ∈ R.

Theorem (König-Milman)

Let K be submultiplicative, measurable and continuous at 0 and at
1. Assume K (−1) < 0 < K (1). Then ∃p > 0 s.t.

K (α) =

{
αp for α ≥ 0
−A |α|p for α < 0

(and K (−1) = −A ≤ −1).

[every assumption in the theorem is needed]

As a corollary, K must be multiplicative on R+.
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Second order chain rule formulas
(We will see a new phenomenon here)

For f , g ∈ C2(R) one has

D2(f ◦ g) = D2f ◦ g · g ′2 + f ′ ◦ g ·D2g . (∗)
We study the solutions of a generalized operator functional
equation:
Let k ≥ 2 and T : Ck(R)→ C(R), A1,A2 : Ck−1(R)→ C(R)
be such that

T (f ◦ g) = Tf ◦ g · A1g + A2f ◦ g · Tg ; f , g ∈ Ck(R). (2)

A is isotropic if it commutes with all shift operators.

(T ,A) is Ck -non-degenerate if for all open sets J ⊂ R and x ∈ J
there are y1, y2 ∈ R and g1, g2 ∈ Ck(R) such that Im(gi ) ⊂ J ,
g1(y1) = x = g2(y2) and zi = (Tgi (yi ),Agi (yi )) ∈ R2 are linearly
independent for i = 1, 2.
Note: For A1 = A2 = 1

2T , (2) is just the chain rule operator
equation (1). Non-degeneration excludes this.
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There are very few operators A1;A2 which lead to (2) with
non-trivial solutions. Let us list all of them by DomT :

(0) DomT = C : A1f = A2f ≡ 11 and "tuning" is not needed,
and Tf = H ◦ f −H for some H(x) ∈ C(R).

(1) DomT = C1 : let p > 0, q > 0, ∃ three families
1a. A1g = A2g = |g ′|p{sgn g ′}
1b. A1g = |g ′|q{sgn g ′}; A2g = |g ′|p [sgn g ′]
1c. A1g = A2g = |g ′|p cos(d(x) ln |g ′|){sgn g ′} for some

d(x) ∈ C(R).
(2) DomT = C2: p ≥ 1

A2g = |g ′|p{sgn g ′}; A1g = g ′ · A2g .
(3) DomT = C3: p ≥ 2

A2g = |g ′|p{sgn g ′}; A1g = g ′2A2g .

That is all. No other combination of A1 and A2 may lead to any
(non-trivial) solutions. We know the formulas for solutions in any
of these cases. Of course, solutions in the cases (0) DomT = C
and (1) DomT = C ′ are also solutions in the remaining cases. Let
me describe the additional solutions for the cases (2) and (3).
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Case DomT = C2. ∃ p ≥ 1, c(x) 6≡ 0 and H(x) ∈ C(R) s.t.

Tf =
(
cf ′′ + [H ◦ f · f ′ −H ] · f ′

)
· |f ′|p−1{sgn f ′}

(So, for H = 0; p = 1, the answer is Tf = cf ′′.)
To describe the case DomT = C3, we need to introduce the
Schwarzian derivative S of a C3(R)-function f :

Sf =

(
f ′′
f ′

)′
− 1

2

(
f ′′
f ′

)2
=

f ′′′
f ′ −

3
2

(
f ′′
f ′

)2
.

Note f ′2Sf = f ′′′f ′ − 3
2 f
′′2 is also defined if f ′ = 0. S satisfies the

composition rule

S(f ◦ g) = Sf ◦ g · g ′2 + Sg .

The kernel of S consists of the fractional linear transformations
f (x) = ax+b

cx+d .
Hence for such f , S is invariant: S(f ◦ g) = Sg . Although the
Schwarzian derivative is mainly important in complex analysis, e.g.
for conformal mappings, univalent functions and complex
dynamics, we only study real versions of S.

37 / 44



Now, for DomT = C3(R) (in addition to the previous solutions)
we have (for c(x) and H(x) ⊂ C(R), p ≥ 2)

Tf = (c · Sf +H(f )f ′2 −H)|f ′|p{sgn f ′}

(So both f ′′ and f ′′′ are coming through S.)

Note that there is no solution of (2) depending on the fourth or
higher derivative of f (!)
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So the natural domains of solutions of (2) are Ck(R) for
k ∈ {0, 1, 2, 3}.

Two initial conditions may determine the form of T , e.g.

T (x2) = 2, T (x3) = 6x yields

Tf = f ′′, A1f = f ′2, A2f = f ′

and T (x2) = −6, T (x3) = −36x2 implies the solution

Tf = f ′2Sf , A1f = f ′4, A2f = f ′2.

(4) The solutions for A1, A2 depend only on f ′. Therefore the
natural domain for A1 and A2 is C1(R).
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Extra information

The solutions in the case C1

1a. (Tg)(x) =
(c ln |g ′(x)|+H(g(x))−H(x))|g ′(x)|p{sgn g ′(x)};

1b. (Tg)(x) =
H(g(x))|g ′(x)|q[sgn g ′(x)]−H(x)|g ′(x)|p{sgn g ′(x)};

1c. (Tg)(x) = c |g ′(x)|p sin(d ln |g ′(x)|){sgn g ′(x)}.
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Approach through Leibniz rule

Theorem (König-Milman)

Suppose T : C1(R)→ C(R) satisfies the Leibniz product formula

T (f · g) = Tf · g + f · Tg ; f , g ∈ C1(R).

Then there are continuous functions c(x), d(x) such that

Tf (x) = c(x)f ′(x) + d(x)f (x) ln |f (x)|, f ∈ C1(R), x ∈ R.

(If T also maps C2(R) into C1(R), then Tf = cf ′.)

We see that there exist (only!) two domains on which Leibniz’s
rule acts:
1. C(R) with the only solution being the entropy function

(Goldmann-Šemrl);
2. C1(R) with 2 solutions, f ′ and f · ln |f |, and their linear

combination.
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Theorem (König-Milman)

Let V ,T1,T2 : C1(R)→ C(R) be operators such that

V (f · g) = (T1f ) · g + f · (T2g) (3)

is satisfied for all f , g ∈ C1(R). Then there are continuous
functions a, b, c1,c2 ∈ C(R) such that with

(Tf )(x) := b(x)f ′(x) + a(x)f (x) ln |f (x)|

we have

(Vf )(x) = (Tf )(x) + (c1(x) + c2(x))f (x)

(T1f )(x) = (Tf )(x) + c1(x)f (x)

(T2f )(x) = (Tf )(x) + c2(x)f (x).

The formula for (Tf )(x) represents the general solution of (4) in
the case when V = T1 = T2 = T .
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It is again surprising how rigid are simple relations which define
(almost uniquely) basic operations/constructions in geometry and
analysis. One more example:

Theorem (König-Milman)

Let k ∈N,T : Ck(R)→ C(R) be an operator and
B : R×Rk ×Rk → R be a function such that

T (f · g)(x) = Tf (x) · g(x) + f (x) · Tg(x)+
B(x , f (x), . . . , f (k−1(x), g(x), . . . g (k−1)(x))

holds for all f , g ∈ Ck(R) and x ∈ R. Let T annihilate all
polynomials of order ≤ k − 1. Then Tf = d · f (k) for
d ∈ C(R), and B has the form

B(x , f (x), . . . , g (k−1)(x)) = d(x)
k−1

∑
j=1

(
k
j

)
f (j)(x)g (k−j)(x).
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And the Laplacian case

Theorem (König-Milman)

Let n ∈N. Let T : C2(Rn,R)→ C(Rn,R) be an operator and B
be a function B : Rn ×R×Rn ×R×Rn → R s.t.

T (f · g)(x) = Tf (x)g(x)+ f (x)Tg(x)+B(x , f (x), f ′(x), g(x), g ′(x))

holds for all f , g ∈ C2(Rn,R) and all x ∈ Rn. Let T annihilate all
affine functions and be orthogonally invariant, i.e.
T (f ◦ ϕ) = (Tf ) ◦ ϕ for all ϕ ∈ O(n). Then T is a multiple of the
Laplacian: there is d ∈ C(R≥0,R) such that

Tf (x) = d(||x ||)∆f (x),

B(x , f (x), f ′(x), g(x), g ′(x)) = d(||x ||)〈f ′(x), g ′(x)〉.

holds for all f , g ∈ C2(Rn,R),x ∈ Rn, and ||x || is Euclidean norm.
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