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Critical wave maps
Wave maps from R1+2 to a Riemannian manifold N :

�Ψ ⊥ TΨN .

Special case N = S2 ⊂ R3, k-equivariant solutions (k ∈ Z):

Ψ(t, r cos θ, r sin θ) =
(
sin(u(t, r)) cos kθ, sin(u(t, r)) sin kθ, cos(u(t, r))

)
.

Equation is reduced to a semi-linear one:{
∂2
t u(t, r) = ∂2

r u(t, r) +
1
r
∂ru(t, r)− k2

2r2 sin(2u(t, r)),

(u(t0, r), ∂tu(t0, r)) = (u0(r), u̇0(r)).

(WMAP)

Notation: v := (v , v̇), ‖v̇‖2L2 :=
∫ +∞
0

(
v̇2)r dr ,

‖v‖2H :=
∫ +∞
0

(
(∂rv)2 + 1

r2
v2)r dr , E := H× L2.

E (v) := π

∫ +∞

0

(
v̇2 + (∂rv)2 +

k2

r2 (sin(v))2
)
r dr .
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Comments
If limr→0 u0(r) = limr→∞ u0(r) = 0, then

E (u0) <∞ ⇔ u0 ∈ E .

Local well-posedness in E (conditional)
I Ginibre, Soffer, Velo (1992)
I Shatah, Struwe (1994)

∀u0 ∈ E , ∃!u ∈ C ((T−,T+); E), T− < t0 < T+.

The energy is conserved; the flow is reversible.
Let λ > 0. For v = (v , v̇) ∈ E we denote

vλ(r) :=
(
v
( r
λ

)
,
1
λ
v̇
( r
λ

))
.

We have ‖vλ‖E = ‖v‖E and E (vλ) = E (v). Moreover, if u(t) is a
solution of (WMAP) on the time interval [0,T+), then
w(t) := u( t

λ)λ is a solution on [0, λT+).
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Stationary states – k-equivariant harmonic maps
Explicit radially symmetric solutions of
∂2
r u(r) + 1

r ∂ru(r)− k2

2r2 sin(2u(r)) = 0:

Qλ(r) := 2 arctan
( rk
λk

)
, Qλ := (Qλ, 0) ∈ E .

E (Qλ) = 4kπ; orbital stability
Qλ are, up to sign and translation by π, all the equivariant stationary
states.
Threshold elements for nonlinear behavior – Côte, Kenig, Lawrie and
Schlag (2015), using ideas of Kenig and Merle (2008).

Theorem – Côte, Kenig, Lawrie, Schlag (2015)
Let u0 be such that E (u0) < 4kπ. Then the solution u(t) of (WMAP)
with initial data u(0) = u0 exists globally and scatters in both time
directions.

True also in the non-equivariant setting: Sterbenz and Tataru (2010).
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Refined threshold

Theorem – Côte, Kenig, Lawrie, Schlag (2015)
Let u0 be such that E (u0) < 8kπ and limr→0 u0(r) = limr→∞ u0(r). Then
the solution u(t) of (WMAP) with initial data u(0) = u0 exists globally
and scatters in both time directions.

If E (u0) ≤ 8kπ, then the assumption limr→0 u0(r) = limr→∞ u0(r) is
equivalent to the topological degree of u0 being equal to 0.
For any η > 0 there exists u0 such that E (u0) < 8kπ + η and the
solution with initial data u(0) = u0 blows up in finite time.
We are interested in a classification of solutions having the threshold
energy E (u) = 8kπ = 2E (Q).
The threshold theorem is a weakened version of what would be a
soliton resolution theorem.
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It turns out that there exist non-scattering solutions of threshold energy.

Theorem 1 – J. (2016)
Let k ≥ 3. There exists a solution u : (−∞,T0]→ E of (WMAP),

lim
t→−∞

∥∥u(t)−
(
−Q + Q

κ|t|−
2

k−2

)∥∥
E = 0, κ constant > 0.

An analogous result holds for the critical radial Yang-Mills equation
(exponential concentration rate); the same would be the case for
(WMAP) with k = 2.
Related works – concentration of one bubble:

I Krieger, Schlag and Tataru (2008) (and extensions)
I Raphaël and Rodnianski (2012).

Strong interaction of bubbles: the second bubble could not
concentrate without being “pushed” by the first one,

I Martel and Raphaël (2015)
I Nguyen Tien Vinh (2017).
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There is only one possible dynamical behavior of a non-scattering solution.

Theorem 2 – J. and Lawrie (2017)
Fix any equivariance class k ≥ 2. Let u(t) : (T−,T+)→ E be a solution
of (WMAP) such that

E (u) = 2E (Q) = 8πk .

Then T− = −∞, T+ = +∞ and one of the following alternatives holds:
u(t) scatters in both time directions,
u(t) scatters in one time direction; in the other time direction, there
exist ι ∈ {−1, 1} and continuous functions µ(t), λ(t) > 0 such that

‖u(t)− ι(−Qµ(t) + Qλ(t))‖E → 0,

µ(t)→ µ0 ∈ (0,+∞), λ(t)→ 0 (at a specific rate).
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Comments

We obtain λ(t) ∼ |t|−
2

k−2 for k ≥ 3 and
exp(−Ct) ≤ λ(t) ≤ exp(−t/C ) for k = 2
In particular, the two-bubble solutions from Theorem 1 scatter in
forward time, which provides an example of an orbit connecting
different types of dynamical behavior for positive and negative times
Non-existence of solutions which form a pure two-bubble in both time
directions is reminiscent of the work of Martel and Merle for gKdV
and seems to be a typical feature of models which are not completely
integrable
We conjecture that there exists a unique (up to rescaling and sign
change) non-scattering solution of threshold energy
Probably the only (almost) complete dynamical classification in
a setting allowing more than one bubble, except for completely
integrable models.
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Modulation method – Part 1
We want to understand the evolution of solutions close to a
two-bubble, that is infµ,λ>0

(
‖u(t)− (−Qµ + Qλ)‖E +λ/µ

)
≤ η � 1.

We decompose u(t) = −Qµ(t) + Qλ(t) + g(t); for the moment, we
do not specify how µ(t) and λ(t) are chosen. We write
g(t) = (g(t), ġ(t)).
Some notation:

Λv := − ∂

∂λ

(
v
( ·
λ

))
= r∂rv ,

Λ0v̇ := − ∂

∂λ

( 1
λ
v̇
( ·
λ

))
= v̇ + r∂r v̇ ,

Lλ := −∂2
r −

1
r
∂r + k2 cos 2Qλ

r2 ,

〈v ,w〉 :=

∫ ∞
0

v(r)w(r) r dr .

−Lλ is the linearization of ∂2
r u + 1

r ∂ru −
k2

2r2 sin(2u) around u = Qλ
and it follows that Lλ(ΛQλ) = 0.
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Modulation method – Part 2

Evolution of the error term; let f (u) := k2

2 sin(2u). Using
∂2
r Qµ + 1

r ∂rQµ = 1
r2
f (Qµ) and ∂2

r Qλ + 1
r ∂rQλ = 1

r2
f (Qλ) we have

∂t ġ = ∂2
t u = ∂2

r u +
1
r
∂ru −

1
r2 f (u)

= ∂2
r g +

1
r
∂rg −

1
r2 (f (Qλ − Qµ + g)− f (Qλ) + f (Qµ))

' −Lλg −
1
r2 (f (−Qµ + Qλ)− f (Qλ) + f (Qµ)) + . . .

Since Lλ(ΛQλ) = 0, it is natural to compute d
dt 〈

1
λΛQλ, ġ〉. We obtain

d
dt

〈 1
λ(t)

ΛQλ(t), ġ(t)
〉

= −
(
8k2 + o(1)

)λ(t)k−1

µ(t)k
+ O

(‖g(t)‖2E
λ(t)

)
.

By the conservation of energy, we only get ‖g(t)‖2E .
λ(t)k

µ(t)k
,

so the equation above is useless.
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Part 3 – Raphaël-Szeftel virial correction
We define an auxiliary function

b(t) := −
〈 1
λ(t)

ΛQλ(t), ġ(t)
〉
−
〈
ġ(t), “

1
λ(t)

Λ0“g(t)
〉
.

Using specific structure of the quadratic terms in the equation for
∂t ġ(t), we obtain a cancellation of the main terms and obtain

b′(t) ≥ (8k2 − c)
λ(t)k−1

µ(t)k
, c small. (1)

If we choose the orthogonality condition 〈ΛQλ(t), g(t)〉 = 0, then
standard computations yield λ′(t) ∼ b(t).
Together with (1), this allows to obtain a lower bound on λ(t),
starting from an initial time t0 such that d

dt (λ(t0)/µ(t0)) ≥ 0 (in fact
we need b(t0) ≥ −c‖g(t0)‖E , c small).
Bounds on µ(t) and upper bounds on λ(t) are much easier to obtain.
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Proof of Theorem 1 – “backward time” construction

Theorem 1 (weakened version)
Let k ≥ 3. There exists a solution u : (−∞,T0]→ E of (WMAP) and
continuous functions µ(t), λ(t) > 0 such that

lim
t→−∞

∥∥u(t)−
(
−Qµ(t) + Qλ(t)

)∥∥
E = 0, κ constant > 0,

with µ(t) ∼ 1 and λ(t) ∼ |t|−
2

k−2 .
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Proof of Theorem 1 – “backward time” construction
Key idea: construct a sequence of solutions un(t) converging to a
non-scattering solution.

Let λapp(t) := |t|−
2

k−2 . Take Tn → −∞, and let un(t) be the
solution of (WMAP) for the initial data un(Tn) = −Q + Qλapp(Tn).
Then un(t) ' −Qµn(t) + Qλn(t) for t ∈ [Tn,T0], and we have lower
and upper bounds on µn(t) and λn(t), with T0 independent of n.
After extraction of a subsequence, µn(t)→ µ(t), λn(t)→ λ(t) for all
t ≤ T0 and un(T0)⇀u0 weakly in E .
Let u(t) be the solution of (WMAP) for the initial data u(T0) = u0.
Using weak continuity properties of the flow, we obtain that u(t)
exists for t ∈ (−∞,T0] and

lim
t→−∞

‖u(t)− (−Qµ(t) + Qλ(t))‖E = 0.

Time reversibility of the flow is crucial. This scheme of proof goes
back to the works of Merle (1990) and Martel (2005).
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Proof of Theorem 2

Theorem 2
Fix any equivariance class k ≥ 2. Let u(t) : (T−,T+)→ E be a solution
of (WMAP) such that

E (u) = 2E (Q) = 8πk .

Then T− = −∞, T+ = +∞ and one the following alternatives holds:
u(t) scatters in both time directions,
u(t) scatters in one time direction; in the other time direction, there
exist ι ∈ {−1, 1} and continuous functions µ(t), λ(t) > 0 such that

‖u(t)− ι(−Qµ(t) + Qλ(t))‖E → 0,

µ(t)→ µ0 ∈ (0,+∞), λ(t)→ 0 (at a specific rate).

Jacek Jendrej Two-bubble dynamics 11/02/2017 14 / 17



Proof of Theorem 2 – Part 1
Let u : [T0,T+)→ E be a non-scattering solution such that
E (u) = 2E (Q). By works of Struwe, Côte, and Jia and Kenig, we
know that for some sequence Tn → T+ we have

lim
n→∞

inf
µ,λ
‖u(Tn)− ι(−Qµ + Qλ)‖E = 0.

The main difficulty now is to exclude the possibility that a solution
approaches a two-bubbles configuration an infinite number of times.
We need a “one-pass lemma” (terminology of Nakanishi and Schlag).
Convexity argument based on the localized virial identity:∫ τ2

τ1

‖∂tu(t)‖2L2 dt ≤ |〈∂tu, χR r∂ru〉(τ1)|+ |〈∂tu, χR r∂ru〉(τ2)|

+

∫ τ2

τ1

ΩR(u(t)) dt

The last term comes from localizing the virial identity and has to be
absorbed by the left hand side.
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Proof of Theorem 2 – Part 2

∫ τ2

τ1

‖∂tu(t)‖2L2 dt ≤ |〈∂tu, χR r∂ru〉(τ1)|+ |〈∂tu, χR r∂ru〉(τ2)|

+

∫ τ2

τ1

ΩR(u(t)) dt

Suppose that the one pass lemma fails. We take τ1 and τ2 such that
u(τ1) and u(τ2) are close to two-bubble configurations. The time
interval in between is divided into regions where u(t) is close to a
two-bubble (“bad” intervals) and regions where it is not (“good”
intervals).
On the union of the good intervals, the solution has a compactness
property, which allows us to deal with the error term ΩR(u(t)).
On each bad interval, we use the modulation method and estimates on
the growth of the modulation parameters.
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Thank you!
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