Two-bubble dynamics
 for the equivariant wave maps equation

Jacek Jendrej
University of Chicago

IAS, November 2nd, 2017

Critical wave maps

Wave maps from \mathbb{R}^{1+2} to a Riemannian manifold \mathcal{N} :

$$
\square \Psi \perp T_{\psi} \mathcal{N}
$$

Special case $\mathcal{N}=\mathbb{S}^{2} \subset \mathbb{R}^{3}$, k-equivariant solutions $(k \in \mathbb{Z})$:

$$
\Psi(t, r \cos \theta, r \sin \theta)=(\sin (u(t, r)) \cos k \theta, \sin (u(t, r)) \sin k \theta, \cos (u(t, r))) .
$$

Equation is reduced to a semi-linear one:

$$
\left\{\begin{array}{l}
\partial_{t}^{2} u(t, r)=\partial_{r}^{2} u(t, r)+\frac{1}{r} \partial_{r} u(t, r)-\frac{k^{2}}{2 r^{2}} \sin (2 u(t, r)) \\
\left(u\left(t_{0}, r\right), \partial_{t} u\left(t_{0}, r\right)\right)=\left(u_{0}(r), \dot{u}_{0}(r)\right)
\end{array}\right.
$$

Notation: $\boldsymbol{v}:=(v, \dot{v}),\|\dot{v}\|_{L^{2}}^{2}:=\int_{0}^{+\infty}\left(\dot{v}^{2}\right) r \mathrm{~d} r$,

$$
\begin{aligned}
&\|v\|_{\mathcal{H}}^{2}:=\int_{0}^{+\infty}\left(\left(\partial_{r} v\right)^{2}+\frac{1}{r^{2}} v^{2}\right) r \mathrm{~d} r, \mathcal{E}:=\mathcal{H} \times L^{2} . \\
& E(v):=\pi \int_{0}^{+\infty}\left(\dot{v}^{2}+\left(\partial_{r} v\right)^{2}+\frac{k^{2}}{r^{2}}(\sin (v))^{2}\right) r \mathrm{~d} r .
\end{aligned}
$$

Comments

- If $\lim _{r \rightarrow 0} u_{0}(r)=\lim _{r \rightarrow \infty} u_{0}(r)=0$, then

$$
E\left(\boldsymbol{u}_{0}\right)<\infty \quad \Leftrightarrow \quad \boldsymbol{u}_{0} \in \mathcal{E}
$$

- Local well-posedness in \mathcal{E} (conditional)
- Ginibre, Soffer, Velo (1992)
- Shatah, Struwe (1994)

$$
\forall \boldsymbol{u}_{0} \in \mathcal{E}, \exists!\boldsymbol{u} \in C\left(\left(T_{-}, T_{+}\right) ; \mathcal{E}\right), \quad T_{-}<t_{0}<T_{+}
$$

- The energy is conserved; the flow is reversible.
- Let $\lambda>0$. For $\boldsymbol{v}=(v, \dot{v}) \in \mathcal{E}$ we denote

$$
\boldsymbol{v}_{\lambda}(r):=\left(v\left(\frac{r}{\lambda}\right), \frac{1}{\lambda} \dot{v}\left(\frac{r}{\lambda}\right)\right) .
$$

We have $\left\|\boldsymbol{v}_{\lambda}\right\|_{\mathcal{E}}=\|\boldsymbol{v}\|_{\mathcal{E}}$ and $E\left(\boldsymbol{v}_{\lambda}\right)=E(\boldsymbol{v})$. Moreover, if $\boldsymbol{u}(t)$ is a solution of (WMAP) on the time interval [$0, T_{+}$), then $\boldsymbol{w}(t):=\boldsymbol{u}\left(\frac{t}{\lambda}\right)_{\lambda}$ is a solution on $\left[0, \lambda T_{+}\right)$.

Stationary states - k-equivariant harmonic maps

- Explicit radially symmetric solutions of

$$
\begin{aligned}
& \partial_{r}^{2} u(r)+\frac{1}{r} \partial_{r} u(r)-\frac{k^{2}}{2 r^{2}} \sin (2 u(r))=0: \\
& Q_{\lambda}(r):=2 \arctan \left(\frac{r^{k}}{\lambda^{k}}\right), \quad \boldsymbol{Q}_{\lambda}:=\left(Q_{\lambda}, 0\right) \in \mathcal{E} .
\end{aligned}
$$

- $E\left(\boldsymbol{Q}_{\lambda}\right)=4 k \pi$; orbital stability
- \boldsymbol{Q}_{λ} are, up to sign and translation by π, all the equivariant stationary states.
- Threshold elements for nonlinear behavior - Côte, Kenig, Lawrie and Schlag (2015), using ideas of Kenig and Merle (2008).

Theorem - Côte, Kenig, Lawrie, Schlag (2015)

Let \boldsymbol{u}_{0} be such that $E\left(\boldsymbol{u}_{0}\right)<4 k \pi$. Then the solution $\boldsymbol{u}(t)$ of (WMAP) with initial data $\boldsymbol{u}(0)=\boldsymbol{u}_{0}$ exists globally and scatters in both time directions.

- True also in the non-equivariant setting: Sterbenz and Tataru (2010).

Refined threshold

Theorem - Côte, Kenig, Lawrie, Schlag (2015)

Let \boldsymbol{u}_{0} be such that $E\left(\boldsymbol{u}_{0}\right)<8 k \pi$ and $\lim _{r \rightarrow 0} u_{0}(r)=\lim _{r \rightarrow \infty} u_{0}(r)$. Then the solution $\boldsymbol{u}(t)$ of (WMAP) with initial data $\boldsymbol{u}(0)=\boldsymbol{u}_{0}$ exists globally and scatters in both time directions.

- If $E\left(\boldsymbol{u}_{0}\right) \leq 8 k \pi$, then the assumption $\lim _{r \rightarrow 0} u_{0}(r)=\lim _{r \rightarrow \infty} u_{0}(r)$ is equivalent to the topological degree of u_{0} being equal to 0 .
- For any $\eta>0$ there exists \boldsymbol{u}_{0} such that $E\left(\boldsymbol{u}_{0}\right)<8 k \pi+\eta$ and the solution with initial data $\boldsymbol{u}(0)=\boldsymbol{u}_{0}$ blows up in finite time.
- We are interested in a classification of solutions having the threshold energy $E(\boldsymbol{u})=8 k \pi=2 E(\boldsymbol{Q})$.
- The threshold theorem is a weakened version of what would be a soliton resolution theorem.

It turns out that there exist non-scattering solutions of threshold energy.

Theorem 1 - J. (2016)

Let $k \geq 3$. There exists a solution $\boldsymbol{u}:\left(-\infty, T_{0}\right] \rightarrow \mathcal{E}$ of (WMAP),

$$
\lim _{t \rightarrow-\infty}\left\|\boldsymbol{u}(t)-\left(-\boldsymbol{Q}+\boldsymbol{Q}_{\left.\kappa| | t\right|^{-\frac{2}{k-2}}}\right)\right\|_{\mathcal{E}}=0, \quad \kappa \text { constant }>0 .
$$

- An analogous result holds for the critical radial Yang-Mills equation (exponential concentration rate); the same would be the case for (WMAP) with $k=2$.
- Related works - concentration of one bubble:
- Krieger, Schlag and Tataru (2008) (and extensions)
- Raphä̈l and Rodnianski (2012).
- Strong interaction of bubbles: the second bubble could not concentrate without being "pushed" by the first one,
- Martel and Raphaël (2015)
- Nguyen Tien Vinh (2017).

There is only one possible dynamical behavior of a non-scattering solution.
Theorem 2 - J. and Lawrie (2017)
Fix any equivariance class $k \geq 2$. Let $\boldsymbol{u}(t):\left(T_{-}, T_{+}\right) \rightarrow \mathcal{E}$ be a solution of (WMAP) such that

$$
E(\boldsymbol{u})=2 E(\boldsymbol{Q})=8 \pi k
$$

Then $T_{-}=-\infty, T_{+}=+\infty$ and one of the following alternatives holds:

- $\boldsymbol{u}(t)$ scatters in both time directions,
- $\boldsymbol{u}(t)$ scatters in one time direction; in the other time direction, there exist $\iota \in\{-1,1\}$ and continuous functions $\mu(t), \lambda(t)>0$ such that

$$
\begin{gathered}
\left\|\boldsymbol{u}(t)-\iota\left(-\boldsymbol{Q}_{\mu(t)}+\boldsymbol{Q}_{\lambda(t)}\right)\right\|_{\mathcal{E}} \rightarrow 0 \\
\mu(t) \rightarrow \mu_{0} \in(0,+\infty), \quad \lambda(t) \rightarrow 0 \text { (at a specific rate). }
\end{gathered}
$$

Comments

- We obtain $\lambda(t) \sim|t|^{-\frac{2}{k-2}}$ for $k \geq 3$ and $\exp (-C t) \leq \lambda(t) \leq \exp (-t / C)$ for $k=2$
- In particular, the two-bubble solutions from Theorem 1 scatter in forward time, which provides an example of an orbit connecting different types of dynamical behavior for positive and negative times
- Non-existence of solutions which form a pure two-bubble in both time directions is reminiscent of the work of Martel and Merle for gKdV and seems to be a typical feature of models which are not completely integrable
- We conjecture that there exists a unique (up to rescaling and sign change) non-scattering solution of threshold energy
- Probably the only (almost) complete dynamical classification in a setting allowing more than one bubble, except for completely integrable models.

Modulation method - Part 1

- We want to understand the evolution of solutions close to a two-bubble, that is $\inf _{\mu, \lambda>0}\left(\left\|\boldsymbol{u}(t)-\left(-\boldsymbol{Q}_{\mu}+\boldsymbol{Q}_{\lambda}\right)\right\|_{\mathcal{E}}+\lambda / \mu\right) \leq \eta \ll 1$.
- We decompose $\boldsymbol{u}(t)=-\boldsymbol{Q}_{\mu(t)}+\boldsymbol{Q}_{\lambda(t)}+\boldsymbol{g}(t)$; for the moment, we do not specify how $\mu(t)$ and $\lambda(t)$ are chosen. We write $\boldsymbol{g}(t)=(g(t), \dot{g}(t))$.
- Some notation:

$$
\begin{aligned}
\Lambda v & :=-\frac{\partial}{\partial \lambda}\left(v\left(\frac{\dot{\lambda}}{\lambda}\right)\right)=r \partial_{r} v \\
\Lambda_{0} \dot{v} & :=-\frac{\partial}{\partial \lambda}\left(\frac{1}{\lambda} \dot{v}(\dot{\bar{\lambda}})\right)=\dot{v}+r \partial_{r} \dot{v} \\
L_{\lambda} & :=-\partial_{r}^{2}-\frac{1}{r} \partial_{r}+k^{2} \frac{\cos 2 Q_{\lambda}}{r^{2}}, \\
\langle v, w\rangle & :=\int_{0}^{\infty} v(r) w(r) r \mathrm{~d} r .
\end{aligned}
$$

- $-L_{\lambda}$ is the linearization of $\partial_{r}^{2} u+\frac{1}{r} \partial_{r} u-\frac{k^{2}}{2 r^{2}} \sin (2 u)$ around $u=Q_{\lambda}$ and it follows that $L_{\lambda}\left(\Lambda Q_{\lambda}\right)=0$.

Modulation method - Part 2

- Evolution of the error term; let $f(u):=\frac{k^{2}}{2} \sin (2 u)$. Using $\partial_{r}^{2} Q_{\mu}+\frac{1}{r} \partial_{r} Q_{\mu}=\frac{1}{r^{2}} f\left(Q_{\mu}\right)$ and $\partial_{r}^{2} Q_{\lambda}+\frac{1}{r} \partial_{r} Q_{\lambda}=\frac{1}{r^{2}} f\left(Q_{\lambda}\right)$ we have

$$
\begin{aligned}
\partial_{t} \dot{g} & =\partial_{t}^{2} u=\partial_{r}^{2} u+\frac{1}{r} \partial_{r} u-\frac{1}{r^{2}} f(u) \\
& =\partial_{r}^{2} g+\frac{1}{r} \partial_{r} g-\frac{1}{r^{2}}\left(f\left(Q_{\lambda}-Q_{\mu}+g\right)-f\left(Q_{\lambda}\right)+f\left(Q_{\mu}\right)\right) \\
& \simeq-L_{\lambda} g-\frac{1}{r^{2}}\left(f\left(-Q_{\mu}+Q_{\lambda}\right)-f\left(Q_{\lambda}\right)+f\left(Q_{\mu}\right)\right)+\ldots
\end{aligned}
$$

- Since $L_{\lambda}\left(\wedge Q_{\lambda}\right)=0$, it is natural to compute $\frac{\mathrm{d}}{\mathrm{d} t}\left\langle\frac{1}{\lambda} \Lambda Q_{\lambda}, \dot{g}\right\rangle$. We obtain

$$
\frac{\mathrm{d}}{\mathrm{~d} t}\left\langle\frac{1}{\lambda(t)} \Lambda Q_{\lambda(t)}, \dot{g}(t)\right\rangle=-\left(8 k^{2}+o(1)\right) \frac{\lambda(t)^{k-1}}{\mu(t)^{k}}+O\left(\frac{\|\boldsymbol{g}(t)\|_{\mathcal{E}}^{2}}{\lambda(t)}\right)
$$

- By the conservation of energy, we only get $\|\boldsymbol{g}(t)\|_{\mathcal{E}}^{2} \lesssim \frac{\lambda(t)^{k}}{\mu(t)^{k}}$, so the equation above is useless.

Part 3 - Raphaël-Szeftel virial correction

- We define an auxiliary function

$$
b(t):=-\left\langle\frac{1}{\lambda(t)} \Lambda Q_{\lambda(t)}, \dot{g}(t)\right\rangle-\left\langle\dot{g}(t), " \frac{1}{\lambda(t)} \Lambda_{0} " g(t)\right\rangle
$$

- Using specific structure of the quadratic terms in the equation for $\partial_{t} \dot{g}(t)$, we obtain a cancellation of the main terms and obtain

$$
\begin{equation*}
b^{\prime}(t) \geq\left(8 k^{2}-c\right) \frac{\lambda(t)^{k-1}}{\mu(t)^{k}}, \quad c \text { small. } \tag{1}
\end{equation*}
$$

- If we choose the orthogonality condition $\left\langle\Lambda Q_{\lambda(t)}, g(t)\right\rangle=0$, then standard computations yield $\lambda^{\prime}(t) \sim b(t)$.
- Together with (1), this allows to obtain a lower bound on $\lambda(t)$, starting from an initial time t_{0} such that $\frac{\mathrm{d}}{\mathrm{d} t}\left(\lambda\left(t_{0}\right) / \mu\left(t_{0}\right)\right) \geq 0$ (in fact we need $b\left(t_{0}\right) \geq-c\left\|\boldsymbol{g}\left(t_{0}\right)\right\|_{\mathcal{E}}, c$ small $)$.
- Bounds on $\mu(t)$ and upper bounds on $\lambda(t)$ are much easier to obtain.

Proof of Theorem 1 - "backward time" construction

Theorem 1 (weakened version)
Let $k \geq 3$. There exists a solution $\boldsymbol{u}:\left(-\infty, T_{0}\right] \rightarrow \mathcal{E}$ of (WMAP) and continuous functions $\mu(t), \lambda(t)>0$ such that

$$
\lim _{t \rightarrow-\infty}\left\|\boldsymbol{u}(t)-\left(-\boldsymbol{Q}_{\mu(t)}+\boldsymbol{Q}_{\lambda(t)}\right)\right\|_{\mathcal{E}}=0, \quad \kappa \text { constant }>0
$$

with $\mu(t) \sim 1$ and $\lambda(t) \sim|t|^{-\frac{2}{k-2}}$.

Proof of Theorem 1 - "backward time" construction

- Key idea: construct a sequence of solutions $\boldsymbol{u}_{n}(t)$ converging to a non-scattering solution.
- Let $\lambda_{\text {app }}(t):=|t|^{-\frac{2}{k-2}}$. Take $T_{n} \rightarrow-\infty$, and let $\boldsymbol{u}_{n}(t)$ be the solution of (WMAP) for the initial data $\boldsymbol{u}_{n}\left(T_{n}\right)=-\boldsymbol{Q}+\boldsymbol{Q}_{\lambda_{\text {app }}\left(T_{n}\right)}$.
- Then $\boldsymbol{u}_{n}(t) \simeq-\boldsymbol{Q}_{\mu_{n}(t)}+\boldsymbol{Q}_{\lambda_{n}(t)}$ for $t \in\left[T_{n}, T_{0}\right]$, and we have lower and upper bounds on $\mu_{n}(t)$ and $\lambda_{n}(t)$, with T_{0} independent of n.
- After extraction of a subsequence, $\mu_{n}(t) \rightarrow \mu(t), \lambda_{n}(t) \rightarrow \lambda(t)$ for all $t \leq T_{0}$ and $\boldsymbol{u}_{n}\left(T_{0}\right) \rightharpoonup \boldsymbol{u}_{0}$ weakly in \mathcal{E}.
- Let $\boldsymbol{u}(t)$ be the solution of (WMAP) for the initial data $\boldsymbol{u}\left(T_{0}\right)=\boldsymbol{u}_{0}$. Using weak continuity properties of the flow, we obtain that $\boldsymbol{u}(t)$ exists for $t \in\left(-\infty, T_{0}\right]$ and

$$
\lim _{t \rightarrow-\infty}\left\|\boldsymbol{u}(t)-\left(-\boldsymbol{Q}_{\mu(t)}+\boldsymbol{Q}_{\lambda(t)}\right)\right\|_{\mathcal{E}}=0
$$

- Time reversibility of the flow is crucial. This scheme of proof goes back to the works of Merle (1990) and Martel (2005).

Proof of Theorem 2

Theorem 2

Fix any equivariance class $k \geq 2$. Let $\boldsymbol{u}(t):\left(T_{-}, T_{+}\right) \rightarrow \mathcal{E}$ be a solution of (WMAP) such that

$$
E(\boldsymbol{u})=2 E(\boldsymbol{Q})=8 \pi k .
$$

Then $T_{-}=-\infty, T_{+}=+\infty$ and one the following alternatives holds:

- $\boldsymbol{u}(t)$ scatters in both time directions,
- $\boldsymbol{u}(t)$ scatters in one time direction; in the other time direction, there exist $\iota \in\{-1,1\}$ and continuous functions $\mu(t), \lambda(t)>0$ such that

$$
\begin{gathered}
\left\|\boldsymbol{u}(t)-\iota\left(-\boldsymbol{Q}_{\mu(t)}+\boldsymbol{Q}_{\lambda(t)}\right)\right\|_{\mathcal{E}} \rightarrow 0 \\
\mu(t) \rightarrow \mu_{0} \in(0,+\infty), \quad \lambda(t) \rightarrow 0 \text { (at a specific rate). }
\end{gathered}
$$

Proof of Theorem 2 - Part 1

- Let $\boldsymbol{u}:\left[T_{0}, T_{+}\right) \rightarrow \mathcal{E}$ be a non-scattering solution such that $E(\boldsymbol{u})=2 E(\boldsymbol{Q})$. By works of Struwe, Côte, and Jia and Kenig, we know that for some sequence $T_{n} \rightarrow T_{+}$we have

$$
\lim _{n \rightarrow \infty} \inf _{\mu, \lambda}\left\|\boldsymbol{u}\left(T_{n}\right)-\iota\left(-\boldsymbol{Q}_{\mu}+\boldsymbol{Q}_{\lambda}\right)\right\|_{\mathcal{E}}=0
$$

- The main difficulty now is to exclude the possibility that a solution approaches a two-bubbles configuration an infinite number of times. We need a "one-pass lemma" (terminology of Nakanishi and Schlag).
- Convexity argument based on the localized virial identity:

$$
\begin{aligned}
\int_{\tau_{1}}^{\tau_{2}}\left\|\partial_{t} u(t)\right\|_{L^{2}}^{2} \mathrm{~d} t & \leq\left|\left\langle\partial_{t} u, \chi_{R} r \partial_{r} u\right\rangle\left(\tau_{1}\right)\right|+\left|\left\langle\partial_{t} u, \chi_{R} r \partial_{r} u\right\rangle\left(\tau_{2}\right)\right| \\
& +\int_{\tau_{1}}^{\tau_{2}} \Omega_{R}(\boldsymbol{u}(t)) \mathrm{d} t
\end{aligned}
$$

- The last term comes from localizing the virial identity and has to be absorbed by the left hand side.

Proof of Theorem 2 - Part 2

$$
\begin{aligned}
\int_{\tau_{1}}^{\tau_{2}}\left\|\partial_{t} u(t)\right\|_{L^{2}}^{2} \mathrm{~d} t & \leq\left|\left\langle\partial_{t} u, \chi_{R} r \partial_{r} u\right\rangle\left(\tau_{1}\right)\right|+\left|\left\langle\partial_{t} u, \chi_{R} r \partial_{r} u\right\rangle\left(\tau_{2}\right)\right| \\
& +\int_{\tau_{1}}^{\tau_{2}} \Omega_{R}(\boldsymbol{u}(t)) \mathrm{d} t
\end{aligned}
$$

- Suppose that the one pass lemma fails. We take τ_{1} and τ_{2} such that $\boldsymbol{u}\left(\tau_{1}\right)$ and $\boldsymbol{u}\left(\tau_{2}\right)$ are close to two-bubble configurations. The time interval in between is divided into regions where $\boldsymbol{u}(t)$ is close to a two-bubble ("bad" intervals) and regions where it is not ("good" intervals).
- On the union of the good intervals, the solution has a compactness property, which allows us to deal with the error term $\Omega_{R}(\boldsymbol{u}(t))$.
- On each bad interval, we use the modulation method and estimates on the growth of the modulation parameters.

Thank you!

