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A few years ago, Christian Pfrang, Govind Menon and PD [PDM12], initiated a
statistical study of the performance of various standard algorithms to compute the
eigenvalues of random real symmetric matrices H. In each case, an initial matrix H0

is diagonalized either by
a sequence of isospectral iterates Hm

H0 → H1 → H2 → · · · → Hm → · · ·

or by
an isospectral flow

t 7→ H(t) with H(t = 0) = H0.

In the discrete case, as m→∞,
Hm converges to a diagonal matrix.

Given ε > 0, it follows that for some (first) time m, the stopping time (or
halting time), the off-diagonal entries of Hm are O(ε) , and hence the diagonal entries
of Hm give the eigenvalues of H0 to O(ε). The situation is similar for continuous
algorithms t 7→ H(t) as t→∞.
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The main finding in [PDM12] was that, surprisingly,

the fluctuations in the stopping times were universal (1)

independent of the ensemble considered for the matrices H. More precisely,
I for N × N real symmetric matrices H,
I chosen from an ensemble E , and
I for a given algorithm A, and
I a desired accuracy ε,

let

T(H) = Tε,N,A,E(H) (2)

be the stopping time for the algorithm A applied to the N × N matrix H chosen from
the ensemble E , to achieve an accuracy ε.
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Let T̃(H) = T̃ε,N,A,E(H) be the normalized stopping time

T̃ε,N,A,E(H) =
Tε,N,A,E(H)− 〈Tε,N,A,E〉

σε,N,A,E
(3)

where 〈Tε,N,A,E〉 is the sample average and σ2
ε,N,A,E = 〈(Tε,N,A,E − 〈Tε,N,A,E〉)2〉 is

the sample variance, taken over a large number (5,000-15,000) of samples of
matrices H chosen from E . Then for a given algorithm A, and ε and N in a suitable
scaling region,

the histogram for T̃ε,N,A,E(H) is independent of E . (4)

In general, the histogram will depend on A, but for a given A and ε and N in the
scaling region, the histogram is independent of E .
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Here are two examples, the first is for the QR algorithm, which is one of the most
successful of all numerical algorithms, and lies at the heart of most eigenvalue
software packages, and the second is for the Toda algorithm.
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Figure: Universality for T̃ε,N,A,E when (a)A is the QR eigenvalue algorithm and when (b)A
is the Toda algorithm. Panel (a) displays the overlay of two histograms for T̃ε,N,A,E in the case
of QR, one for each of the two ensembles E = BE, consisting of iid mean-zero Bernoulli
random variables and E = GOE, consisting of iid mean-zero normal random variables. Here
ε = 10−10 and N = 100. Panel (b) displays the overlay of two histograms for T̃ε,N,A,E in the
case of the Toda algorithm, and again E = BE or GOE. And here ε = 10−8 and N = 100.
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The stopping times, or halting times, for a given algorithm can be chosen in various
ways, depending on which aspects of the given algorithm one wants to investigate. In
the above figures, the stopping times takes into account the phenomenon known as
deflation. In this paper, we will consider a different stopping time (see T(1)(H)
below) which measures the time for the computation of the largest eigenvalue of a
given matrix H.

Subsequent to [PDM12], Govind Menon, Sheehan Olver, Tom Trogdon and PD
[DMOT14], raised the question of whether the universality results in the study
[PDM12] were limited to eigenvalue algorithms, or whether they were present more
generally in numerical computation. And indeed the authors in [DMOT14] found
similar universality results for a wide variety of numerical algorithms, including

I more general eigenvalue algorithms such as the Jacobi eigenvalue algorithm,
and also algorithms for Hermitian ensembles,

I the conjugate gradient and GMRES algorithms to solve linear N × N systems
Hx = b,

I an iterative algorithm to solve the Dirichlet problem ∆u = 0 on a random
star-shaped region Ω ⊂ R2 with random boundary data f on ∂Ω, and

I a genetic algorithm to compute the equilibrium measure for orthogonal
polynomials on the line.
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An example from [DMOT14] is the solution of the linear system Hx = b using the
conjugate gradient algorithm where H is chosen randomly from an ensemble E of
positive definite matrices, and b has iid components. The algorithm is iterative,
b→ x0 → x1 → · · · → xm → · · · and halts, for a given ε, when

‖Hxm − b‖ ≤ ε. (5)

The smallest value m for which (5) holds is the stopping time h = hε,N,E(H, b) for
the algorithm.
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Figure: Universality in the halting time for the conjugate gradient algorithm. This plot shows

three histograms of h̃ε,N,CG(H, b) =
hε,N,CG(H, b)− 〈hε,N,CG〉

σε,N,CG
corresponding to different

ensembles. Here ε = 10−14, N = 500, b has iid entries, uniform on [−1, 1], and H = ZZ∗

where Z is N × (N + b
√

Nc) with standard normal (real and complex) or ±1 Bernoulli entries.
See [DMOT14] for more details on these computations.

The above Figure, taken from [DMOT14], displays universality in the halting time
for the conjugate gradient algorithm for various ensembles for H and b.
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Note that all the algorithms considered above, except for the genetic algorithm, have
the character of deterministic dynamical systems with random initial data. On the
other hand, for the genetic algorithm, not only is the initial data random, but the
algorithm itself is stochastic.

In [DMOT14] the authors also considered recent laboratory experiments of Bakhtin
and Correll [BC12] in which participants were required to make a sequence of
decisions comparing geometrical properties of figures projected on a screen. Bakhtin
and Correll recorded the decision times τ and the plots of the histograms for the
normalized times τ̃ for each participant, strongly suggest universality in the decision
process. Furthermore, using a Curie–Weiss spin model, Bakhtin and Correll derive
an explicit formula

f̃BC(x) =

√
2
π

exp
(
−1

2
e−2x − x

)
(6)

for the histogram for the decision process.
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It is an interesting fact, observed recently by Sagun, LeCun and Trogdon [STL15],
that the fluctuations of search times on Google for randomly chosen English and
Turkish words, in particular, also appear to follow the law fBC, see Figure 3.
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Figure: Histograms of the normalized Google search times obtained for English and Turkish
words obtained in [STL15]. The solid curve is the normalized distribution fBC of Bakhtin and
Correll for the decision times in [BC12].

The above calculations and experiments suggest strongly that calculation in the
presence of random data in a wide variety of situations obeys two-component
universality, that is, once the mean and variance are known, the remaining statistics
are universal.
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So far, however, all the evidence has been numerical and experimental. As a first step
towards understanding and proving universality rigorously for all the above
algorithms, PD & Trogdon [DT16] have recently proved universality (rigorously) for
the Toda algorithm . My goal in this talk is to describe what is involved in the proof.

The outline of the talk is as follows:

1. The Toda algorithm

2. Statement of results

3. Description of ensembles E
4. Numerical comparisons

5. Estimates from random matrix theory

6. Sketch of the proof of Theorem 2

7. Final comment

Percy Deift and Thomas Trogdon. Universality for the Toda algorithm to compute the eigenvalues of a
random matrix. arXiv Prepr. arXiv1604.07384, apr 2016
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The Toda algorithm

The Toda flow on N × N real symmetric or Hermitian matrices X is given by

Ẋ = [X,B(X)] , B(X) = X− − (X−)∗, X(0) = H = H∗, (7)

where X− is the strictly lower-triangular part of X and [A,B] is the standard matrix
commutator (if Y is real Y∗ = YT ). It is well known that this flow is (global and)
isopectral

spec X(t) = spec X(0) = spec H

and as t→∞, X(t) converges to a diagonal matrix

X∞ = diag(λN , . . . , λ1).

Necessarily, the λi’s are the eigenvalues of X(0) = H. Moreover, for generic H , the
eigenvalues emerge ordered on the diagonal

λN > λN−1 > · · · > λ1. (8)
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The Toda algorithm

The classical Toda algorithm involves running (7) with X(0) = H, with stopping
time T such that ∑

1≤i<j≤N

|Xij(T)|2 < ε2. (9)

Then, as noted above, diag(X(T)) gives the eigenvalues of H to O(ε). The statistical
analysis of T is a very challenging problem and raises issues in random matrix theory
which are still far from being resolved (see Final Comments). Here we will consider
(see [DT16]) the stopping time T(1) for which

E(T(1)) < ε2 (10)

where

E(t) =

N∑
n=2

|X1n(t)|2. (11)

By perturbation theory

|X11(T(1))− λj| < ε

for some eigenvalue λj of H.
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The Toda algorithm

Generically (compare with (8)), λj = λN , the largest eigenvalue of H, and so with
high probability as N →∞, T(1) controls the computation of the largest eigenvalue
of H, a problem of interest in its own right. Even though the analysis of T(1) is
simpler than the analysis of T , it depends, as we will see, in a crucial way on recent
results from random matrix theory that are at the forefront of current knowledge. As
before, in order to emphasize the dependence of T(1) on the parameters of the
problem we write

T(1) = T(1)(H) = T(1)
ε,N,A,E(H).
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The Toda algorithm
The history of the Toda algorithm is as follows. The Toda Lattice was introduced by
M. Toda in 1967 [Tod67] and describes the motion of N classical particles xi,
i = 1, . . . ,N, on the line under the Hamiltonian

HToda(x, y) =
1
2

N∑
i=1

y2
i +

1
2

N∑
i=1

exi−xi+1 .

In 1974, Flaschka [Fla74] (see also [Man75]) showed that Hamilton’s equations

ẋ =
∂HToda

∂y
, ẏ = −∂HToda

∂x
,

can be written in Lax pair form (7) where X is tridiagonal

Xii = −yi/2, 1 ≤ i ≤ N,

Xi,i+1 = Xi+1,i =
1
2

e
1
2 (xi−xi+1), 1 ≤ i ≤ N − 1,

and B(X) is now the tridiagonal skew-symmetric matrix B(X) = X− − (X−)T as in
(7). As noted above, the flow t 7→ X(t) is isospectral. But more is true: The flow is
completely integrable in the sense of Liouville with the eigenvalues of X(0) = H
providing N Poisson commuting integrals for the flow. In 1975, Moser showed that
the off-diagonal elements Xi,i+1(t) = Xi+1,i(t) converge to zero as t→∞ [Mos75].
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The Toda algorithm

Inspired by this result, and also related work of Symes [Sym82] on the QR algorithm,
the authors in [DNT83] suggested that the Toda Lattice be viewed as an eigenvalue
algorithm, the Toda algorithm. The Lax equations (7) is the natural extension of the
tridiagonal Toda lattice to general real symmetric matrices. It turns out that in this
generality (7) is also Hamiltonian [Kos79, Adl78] and, in fact, integrable [DLNT86].
In current parlance, by the Toda algorithm one means the action of (7) on full real
symmetric matrices, or by extension, on complex Hermitian matrices.
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Statement of results

Our main result concerns the statistics of T(1) for invariant ensembles (IE) and
Wigner ensembles (WE). We will describe these ensembles in detail later on. The
gap λN − λN−1 between the two largest eigenvalues of a random matrix H chosen
from an ensemble E plays a central role in describing the statistics of T(1). The
following definition quantifies the distribution Fgap

β of the inverse of λN − λN−1 on
the appropriate scale. In standard random matrix notation, β = 1 refers to real
symmetric matrices and β = 2 refers to complex Hermitian matrices.

Definition 1
The distribution function Fgap

β (t) for β = 1, 2 is given by

Fgap
β (t) = lim

N→∞
P

(
1

c2/3
V 2−2/3N2/3(λN − λN−1)

≤ t

)
, t ≥ 0.

Here cV is an explicit constant which depends only on the ensemble E . In the case
β = 2, Fgap

β is related to the Lax pair for the Painlevé II equation (see Perret and
Schehr [PS14], see also Witte, Bornemann and Forrester [WBF13]).
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Statement of results

Our main results are the following:

Theorem 2 (Universality for the Toda algorithm)
Let 0 < σ < 1 be fixed and let (ε,N) be in the scaling region log ε−1

log N ≥
5
3 + σ

2 . Then
if H is distributed according to any real (β = 1) or complex (β = 2) invariant or
Wigner ensemble

lim
N→∞

P

(
T(1)

c2/3
V 2−2/3N2/3(log ε−1 − 2/3 log N)

≤ t

)
= Fgap

β (t). (12)

P. Deift Universality for the Toda algorithm



Statement of results

The relation of this theorem to universality for the normalized stopping time is the
following. Let ξ = ξβ be the random variable with distribution Fgap

β (t), β = 1 or 2.
For β = 2 IEs one can (using results from [BEY14]) prove that

E[T(1)] = c2/3
V 2−2/3N2/3(log ε−1 − 2/3 log N)E[ξ](1 + o(1)), (13)√

Var(T(1)) = c2/3
V 2−2/3N2/3(log ε−1 − 2/3 log N)

√
Var(ξ)(1 + o(1)). (14)

For such ensembles, we can restate Theorem 2 as

lim
N→∞

P

(
T(1) − E[T(1)]√

Var(T(1))
≤ t

)
= Fgap

β (
√

Var(ξ)t + E[ξ]).

Of course, by the Law of Large Numbers, for a sufficiently large number of samples

〈T(1)〉 → E[T(1)], σ2
T(1) → Var(T(1)).

The proof of the analogs of (13) and (14) for non-IEs and β = 1 requires information
from random matrix theory that has yet to be established. On the other hand,
numerical evidence strongly suggests that these analogs are indeed correct.

P Bourgade, L Erdős, and H-T Yau. Edge Universality of Beta Ensembles. Commun. Math. Phys.,
332(1):261–353, nov 2014
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Statement of results

To see that the algorithm computes the top eigenvalue to an accuracy beyond its
fluctuations, we have the following proposition.

Proposition 0.1 (Computing the largest eigenvalue)
Let (ε,N) be in the scaling region. Then if H is distributed according to any real or
complex invariant or Wigner ensemble

ε−1|λN − X11(T(1))|

converges to zero in probability as N →∞. Furthermore, both

ε−1|bV − X11(T(1))|, ε−1|λj − X11(T(1))|

converge to∞ in probability for any j = j(N) < N as N →∞.

Here bV is the top edge of the equilibrium measure for the ensemble in question.

P. Deift Universality for the Toda algorithm



Description of ensembles

Theorem 2 and Proposition 0.1 concern the following ensembles. Let H be an N × N
Hermitian (or just real symmetric) matrix with eigenvalues λ1 ≤ λ2 ≤ · · · ≤ λN and
let β1, β2, . . . , βN denote the absolute values of the first components of the
corresponding normalized eigenvectors. The following definitions are taken from
[BY13, Dei00].
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Description of ensembles

Definition 3 (Generalized Wigner Ensemble (WE))
A generalized Wigner matrix (ensemble) is a real symmetric (β = 1) or Hermitian
(β = 2) matrix H = (Hij)

N
i,j=1 such that Hij are independent random variables for

i ≤ j given by a probability measure νij with

EHij = 0, σ2
ij := EH2

ij.

Next, assume there is a fixed constant v (independent of N, i, j) such that

P(|Hij| > xσij) ≤ v−1 exp(−xv), x > 0.

Finally, assume there exists C1,C2 > 0 such that for all i, j

N∑
i=1

σ2
ij = 1,

C1

N
≤ σ2

ij ≤
C2

N
,

and for β = 2 the matrix

Σij =

[
E(Re Hij)

2 E(Re Hij)(Im Hij)
E(Re Hij)(Im Hij) E(Im Hij)

2

]
has its smallest eigenvalue λmin satisfy λmin ≥ C1N−1.
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Description of ensembles

Definition 4 (Invariant Ensemble (IE))
Let V : R→ R satisfy V ∈ C4(R), infx∈R V ′′(x) > 0 and
V(x) > (2 + δ) log(1 + |x|) for sufficiently large x and some fixed δ > 0. Then we
define an invariant ensemble3 to be the set of all N × N symmetric (β = 1) or
Hermitian (β = 2) matrices H = (Hij)

N
i,j=1 with probability density

1
ZN

e−N β2 trV(H)dH

Here dH =
∏

i≤j dHij if β = 1 and dH =
∏N

i=1 dHii
∏

i<j d Re Hijd Im Hij if β = 2.

3This is not the most general class of V but these assumptions simplify the analysis.
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Numerical comparisons

We demonstrate Theorem 2 numerically using the following WEs defined by letting
Xij for i ≤ j be iid with distributions:

GUE Mean zero standard complex normal.

BUE X + iY where X and Y are each the sum of independent mean zero Bernoulli
random variables, i.e. binomial random variables.

GOE Mean zero standard (real) normal.

BOE Mean zero Bernoulli random variable

Define

τ (1) =
T(1)

c2/3
V 2−2/3N2/3(log ε−1 − 2/3 log N + γ)

,

where γ is a constant chosen to increase the convergence rate of this random variable
as N →∞. Note that as N →∞ the limiting distribution of τ (1) is independent of γ.
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Numerical comparisons
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Figure: The simulated rescaled histogram for τ (1) for both BUE and GUE. Here ε = 10−14

and N = 500 with 250,000 samples. The solid curve is the rescaled density
f gap
2 (t) = d/dtFgap

2 (t). The density f gap
2 (t) = 1

σt2
Asoft

(
1
σt

)
, where Asoft(s) is shown in

[WBF13, Figure 1]: In order to match the scale in [WBF13] our choice of distributions (BUE
and GUE) we must take σ = 2−7/6. This is a numerical demonstration of Theorem 2.
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Numerical comparisons
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Figure: The simulated rescaled histogram for τ (1) for both BOE and GOE demonstrating
Theorem 2. Here ε = 10−14 and N = 500 with 250,000 samples. The solid curve is an
approximation to the density f gap

1 (t) = d/dtFgap
1 (t). We compute f gap

1 (t) by smoothing the

histogram for c−2/3
V 2−2/3N−2/3(λN − λN−1) when N = 800 with 500,000 samples.
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Estimates from random matrix theory

The proofs of Theorem 2 and Proposition 0.1 rely on the following facts from
random matrix theory.

Define the averaged empirical spectral measure

µN(z) = E 1
N

N∑
i=1

δ(λi − z),

where the expectation is taken with respect to the given ensemble.

Theorem 5 (Equilibrium measure, [BEY14])
For any WE or IE the measure µN converges weakly to a measure µ, called the
equilibrium measure, which has support on a single interval [aV , bV ] and has a
density ρ that satisfies ρ(x) ≤ Cµ

√
bV − xχ(−∞,bV ](x) and

ρ(x) = 23/4cV
π

√
bV − x(1 +O(bV − x)) as x→ bV .
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Estimates from random matrix theory

With the chosen normalization for WEs,
∑N

i=1 σ
2
ij = 1, [av, bV ] = [−2, 2] and cV = 1

[BEY14]. One can vary the support as desired by shifting and scaling,
H → aH + bI: the constant cV then changes accordingly. When the entries of H are
distributed according to a WE or an IE with high probability (see Theorem 8) the top
three eigenvalues are distinct and βj 6= 0 for j = N,N − 1,N − 2. Next, let dµ
denote the limiting spectral density or equilibrium measure for the ensemble as
N →∞. Then define γn to be the smallest value of t such that

n
N

=

∫ t

−∞
dµ.

Thus {γn} represent the quantiles of the equilibrium measure.
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Estimates from random matrix theory

There are four fundamental parameters involved in our calculations, σ, p, s and c,
which are utilized in the proof in the following order. First we fix 0 < σ < 1 once
and for all, then we fix 0 < p < 1/3, then we choose 0 < s < min{σ/44, p/8} and
then finally 0 < c ≤ 10/σ will be a constant that will allow us to estimate the size of
various sums.

Definition 6 (Scaling region)

Fix 0 < σ < 1. The scaling region for ε is given by
log ε−1

log N
≥ 5/3 + σ/2.

For convenience in what follows we use the notation ε = N−α/2, so

(ε,N) are in the scaling region if and only if α− 10/3 ≥ σ > 0

and α = αN is allowed to vary with N.
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Estimates from random matrix theory

Condition 0.1
For 0 < p < 1/3,

I λN−1 − λN−2 ≥ p(λN − λN−1).

Let GN,p denote the set of matrices that satisfy this condition.

Condition 0.2
For any fixed 0 < s < min{σ/44, p/8}

1. βn ≤ N−1/2+s/2 for all n

2. N−1/2−s/2 ≤ βn for n = N,N − 1,

3. N−2/3−s ≤ λN − λn−1 ≤ N−2/3+s, for n = N,N − 1, and

4. |λn − γn| ≤ N−2/3+s(min{n,N − n + 1})−1/3 for all n.

Let RN,s denote the set of matrices that satisfy these conditions.
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Estimates from random matrix theory

The following theorem has it roots in the pursuit of proving universality in random
matrix theory. See [TW94] for the seminal result when V(x) = x2 and β = 2.
Further extensions include the works of Soshnikov [Sos99] and Tao and Vu [TV10]
for Wigner ensembles and [DG07] for invariant ensembles.

Theorem 7
For both IEs and WEs

N1/2(|βN |, |βN−1|, |βN−2|)

converges jointly in distribution to (|X1|, |X2|, |X3|) where {X1,X2,X3} are iid real
(β = 1) or complex (β = 2) standard normal random variables. Additionally, for IEs
and WEs

2−2/3N2/3(bV − λN , bV − λN−1, bV − λN−2)

converges jointly in distribution to random variables (Λ1,β ,Λ2,β ,Λ3,β) which are the
smallest three eigenvalues of the so-called stochastic Airy operator. Furthermore,
(Λ1,β ,Λ2,β ,Λ3,β) are distinct with probability one.

The proof relies on results from Bourgade et al. [BY13, BEY14] and Ramírez, Rider
and Virag [RRV11].
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Estimates from random matrix theory

The remaining theorems in this section are compiled from results that have been
obtained recently in the literature by Erdős et al. [EY12, Erd12] and Bourgade and
Yau [BY13].

Theorem 8
For WEs or IEs Condition 0.2 holds with high probability as N →∞, that is, for any
s > 0

P(RN,s) = 1 + o(1),

as N →∞.

Theorem 9
For both WEs and IEs

lim
p↓0

lim sup
N→∞

P(Gc
N,p) = 0.
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Sketch of the proof of Theorem 2

Let H = H∗ have eigenvalues λN ≥ λN−1 ≥ · · · ≥ λ1 with associated normalized
eigenvectors uj = [u1j, . . . , uNj]

T , ‖uj‖2 =
∑

i |uij|2 = 1. Following Moser, a
straightforward calculation shows that if X(t) solves the Toda equations (7) with
X(0) = H then λj(t) = λj(0) (i.e. the flow is isospectral) and

u1j(t) =
u1j(0)eλjt(∑

i

|uij(0)|2e2λit

) , (15)

where uj(t) = [u1j(t), . . . , uNj(t)]T are the normalized eigenvectors for H(t).

The key point is that

E(t) =

N∑
i=2

|X1i(t)|2

and X11(t) can expressed in terms of {λk, u1j(t)} alone.
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Sketch of the proof of Theorem 2

We have

X11(t) =
∑

i

λi|u1i(t)|2, (16)

and

E(t) =
∑

i

(λi − X11(t))2|u1i(t)|2. (17)

It follows that the dynamics of the algorithm, and hence the statistics of the stopping
time T(1) (when E(T(1)) < ε2) , is completely determined by the explicit solution
formula (15). This formula reflects the complete integrability of the Toda lattice.
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Sketch of the proof of Theorem 2
Let

δn = 2(λN − λn), 1 ≤ n ≤ N − 1, (18)

νn =
β2

n

β2
N

=

∣∣∣∣ u1n(0)

u1N(0)

∣∣∣∣2 . (19)

Then a simple calculation shows that

E(t) = E0(t) + E1(t)

where

E0(t) =
1
4

N−1∑
n=1

δ2
nνne−δnt

(
1 +

N−1∑
n=1

νne−δnt

)2 ,

E1(t) =

(
N−1∑
n=1

λ2
nνne−δnt

)(
N−1∑
n=1

νne−δnt

)
−

(
N−1∑
n=1

λnνne−δnt

)2

(
1 +

N−1∑
n=1

νne−δnt

)2 .
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Sketch of the proof of Theorem 2

Note that, by the Cauchy–Schwarz inequality, both E0(t) and E1(t) are positive. This
gives an essential simplification in the proof as E(t) is small if and only if E0(t) and
E1(t) are small.

I First technical lemma: Given Condition 0.2, the stopping time T(1) satisfies

(α− 4/3− 5s) log N/δN−1 ≤ T(1) ≤ (α− 4/3 + 7s) log N/δN−1,

for sufficiently large N.
I Second technical lemma: Consider the interval

Iα = [(α− 4/3− 5s) log N/δN−1, (α− 4/3 + 7s) log N/δN−1] = [t0, t1].

The given Condition 0.2 and t ∈ Iα

−E′0(t) ≥ CN−12s−α−2/3,

for sufficiently large N and some C > 0, i.e E0(t) is strictly monotone
decreasing in Iα.
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Sketch of the proof of Theorem 2

t
t0 t1

✏

E(t)

E0(t)

T (1)⇡ T ⇤

Figure: A schematic for the relationship between the functions E0(t), E(t) and the times T(1)

and T∗. Here t0 = (α− 4/3− 5s) log N/δN−1 and t1 = (α− 4/3 + 7s) log N/δN−1. Note
that E0 is monotone on [t0, t1].

In this figure, T∗ is given by

T∗ =
α log N + 2 log δN−1 + log νN−1 − 2 log 2

δN−1
. (20)
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Sketch of the proof of Theorem 2

In terms δn and νn, E0 has the form

E0(t) =
1
4
δ2

N−1νN−1e−δN−1t

1 +

N−2∑
n=1

δ2
n

δ2
N−1

νn

νN−1
e−(δn−δN−1)t

(
1 +

N−1∑
n=1

νne−δnt

)2 .

I Third technical lemma: Given Conditions 0.1 and 0.2, we have

T∗ ∈ Iα

and

|E0(T∗)− N−α| ≤ CN−α−2p+4s (21)

and

max
η∈Iα
|E1(η)| ≤ N−2α+8/3. (22)
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Sketch of the proof of Theorem 2
We have

E0(T(1))− E0(T∗) = E′0(η)(T(1) − T∗), (23)

for some η ∈ Iα. Also

E0(T(1)) = E(T(1))− E1(T(1)) = N−α − E1(T(1)) (24)

and so, using the second technical lemma, we obtain (22) from (21) and (24) from
(23), under Conditions 0.1 and 0.2 with σ and p fixed and s < min{σ/44, p/8}. Thus

|T(1) − T∗| ≤ |N
−α − E0(T∗)− E1(T(1))|

min
η∈Iα
|E′0(η)|

≤ |N
−α − E0(T∗)|+ maxη∈Iα |E1(η)|

min
η∈Iα
|E′0(η)|

.

(25)

This yields

|T(1) − T∗| ≤ CNα+12s+2/3(N−α−2p+4s + N−2α+8/3), (26)

and our fourth technical lemma.
I Fourth technical lemma: For σ and p < 1/3 fixed and s < min{σ/44, p/8}

N−2/3|T(1) − T∗| ≤ CN−2p+16s → 0 (27)

as N →∞ provided s < p/8.
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Sketch of the proof of Theorem 2

We now add in the probability.
I Probability Lemma One: For α ≥ 10/3 + σ, and σ > 0

|T(1) − T∗|
N2/3 → 0

in probability as N →∞.

Proof.
For η > 0,

P
(
|T(1) − T∗|

N2/3 > η

)
= P

(
|T(1) − T∗|

N2/3 > η,GN,p ∩ RN,s

)
+ P

(
|T(1) − T∗|

N2/3 > η,Gc
N,p ∪ Rc

N,s

)
.

For s < min{σ/44, p/8}, on the set GN,p ∩ RN,s, |T
(1)−T∗|
N2/3 < η for sufficiently large

N by the fourth technical lemma.
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Sketch of the proof of Theorem 2

On the other hand, using Theorem 8,

lim sup
N

P
(
|T(1) − T∗|

N2/3 > η,Gc
N,p ∪ Rc

N,s

)
≤ lim sup

N
P
(
Gc

N,p
)

+ lim sup
N

P
(
Rc

N,s
)

= lim sup
N

P(Gc
N,p).

Thus

lim sup
N

P
(
|T(1) − T∗|

N2/3 > η

)
≤ lim sup

N
P(Gc

N,p),

but the LHS is independent of p. Letting p ↓ 0, Probability Lemma One now follows
by Theorem 9.

�

P. Deift Universality for the Toda algorithm



Sketch of the proof of Theorem 2
We now compare T∗ which solves

N−αe−δN−1T∗
=

1
4
δ2

N−1νN−1,

to T̂ which is given by

T̂ =
(α− 4/3) log N

δN−1
=

(α− 4/3) log N
2(λN − λN−1)

, (28)

i.e.

N−αeδN−1T̂ = N−4/3. (29)

But from Condition 0.2, δ2
N−1 ∼ 22N−4/3−2s. And νN−1 = β2

N−1/β
2
N , which on the

appropriate scale is O(1) by results from Bourgade, Erdős and Yau [BEY14]. So we
expect

T∗ ∼ T̂.

More precisely, we have
I Probability Lemma Two: For α ≥ 10/3 + σ

T∗ − T̂
N2/3 log N

→ 0 (30)

in probability as N →∞.
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Sketch of the proof of Theorem 2

Comparing T(1) → T∗ → T̂ , this finally yields our Theorem 2,

lim
N→∞

P

(
T(1)

c2/3
V 2−2/3N2/3(log ε−1 − 2/3 log N)

≤ t

)

= lim
N→∞

P

(
T∗

c2/3
V 2−2/3N2/3(log ε−1 − 2/3 log N)

≤ t

)

= lim
N→∞

P

(
T̂

c2/3
V 2−2/3N2/3(log ε−1 − 2/3 log N)

≤ t

)

= lim
N→∞

P

(
1

c2/3
V 2−5/3N2/3δN−1

≤ t

)

= lim
N→∞

P

(
1

c2/3
V 2−2/3N2/3(λN − λN−1)

≤ t

)
= Fgap

β (t).

�

Similar arguments yield the proof of Proposition 0.1.
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Final comment

Our final comment is an invitation to the random matrix community. Numerical
algorithms provide a natural arena for a new, wide and challenging set of questions in
random matrix theory. For example, the proof of universality for the classical Toda
algorithm with stopping time T requires detailed knowledge of the joint distribution
of all the eigenvalues and all the components of all the eigenvectors. In another
direction, the proof of universality for the QR algorithm requires detailed statistical
information about eigenvalues λj in the bulk around λj ≈ 0. And so on...

P. Deift Universality for the Toda algorithm



M Adler.
On a trace functional for formal pseudo-differential operators and the symplectic structure
of the Korteweg-devries type equations.
Invent. Math., 50(3):219–248, oct 1978.

Y Bakhtin and J Correll.
A neural computation model for decision-making times.
J. Math. Psychol., 56(5):333–340, 2012.

P Bourgade, L Erdős, and H-T Yau.
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