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Introduction - Single file diffusion
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Let Ax(t) = xm(t) — xu(0).
Consider the correlation functions ([Ax(8)]2), (Ax(t)v(0)) and (v(t)v(0)). These are related:

t
b(0) = 1 S (ax(P) = /O (VO)V(t)dt' = (Ax(H)V(0)) .

The average is over thermal initial conditions ( and also over trajectories, for stochastic dynamics ).

If D =limi— 00 limy_s o0 D(1) is finite, then we say tagged particle motion is diffusive,

thus  ([Ax(1)]?) ~ 2Dt

D — 0 implies sub-diffusion and D — oo implies super-diffusion.
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Review of earlier work

JOURNAL OF MATHEMATICAL PHYSICS VOLUME 6, NUMBER 3 MARCH 1965

Dynamics of a Simple Many-Body System of Hard Rods

D. W. Jepsey
IBM Watson Research Center, Yorktown Heights, New York
(Received 17 July 1964)

General formulas are given for the exact ion of the librium properties of the one-
dimensional system of equal-mass hard rods both for a finite but large system and in the limit of
infinite size. Only properties which depend upon labeling one or more of the particles are nontrivial
in this system. Various results are obtained on Poincaré cycles, delocalization of a particle with time
and electrical conductivity when one particle is charged.

@ One dimensional gas with Hamiltonian dynamics — equal mass particles moving balistically
between elastic collisions.

@ Exact results for infinite system with a fixed density n of particles —

(X(t) = x(0))2) ~2Dt, ~ D=1,/kaT
VOVO) ~ /o (1 + 2) s

Averaging is over thermal initial conditions.
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Review of earlier work

JOURNAL OF MATHEMATICAL PHYSICS VOLUME 1, NUMBER 1 JANUARY-FEBRUARY, 1960

Poincaré Cycles, Ergodicity, and Irreversibility in Assemblies of
Coupled Harmonic Oscillators*

PETER MAZUR
Institute Lorents, Leiden, The Netherlands
AND

ELLiorr MONTROLL
Institute for Fiuid Dynamics and A pplied Mothematics, University of Marsiand, College Park, Marylond
(Received January 10, 1960)

The transport coefficients (diffusion constant, electrical conductivity, etc.) associated with irreversible
processes in an assembly of particles can be expressed as integrals over certain time relaxed correlation func-
tions between small numbers of variables of the assembly. The scattering of slow neutrons is also a measure
of time relaxed correlation functions.

Trreversibility is a consequence of the vanishing of the correlation coefficients as the relaxation time be-
«comes infinite. On the other hand these coefficients have Poincaré cycles so that any value which they take
on is repeated an infinite number of times. Tt is shown that, in the case of fluctuations of 0(N—+¥) from zero
(N being the number of degrees of freedom), the period of Poincaré cycles is of the order of the mean period
of normal mode vibrations while for fluctuations of a magnitude independent of & the period is of the order
of C¥ where C is a constant which is greater than 1.

The time relaxed correlation coefficients of a pair of particles separated by r lattice spacings decays as
™1, m being the number of dimensions of the nsemhly The statistics of the decay of the momentum of &
particle from a preassigned initial value to its equipartition value are discussed

@ Harmonic crystals — Exact results for infinite systems—

Finite diffusion constant
= keT p=m/a, c=a+/k/m
2pc
sin(wot)
VOVO) ~ G

Averaging is over thermal initial conditions.
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Review of earlier work

J. Appl. Prob. 2, 323-338 (1965)
Printed in Israel

DIFFUSION WITH “COLLISIONS” BETWEEN PARTICLES

T. E. HARRIS, The Rand Corporation
(University of Southern California from February 1966)

@ One dimensional gas with Brownian dynamics — particles freely diffusing but with no-crossing
condition. Similar to simple exclusion process.

@ Exact results for infinite system with a fixed density n = N/L of particles —

2 /Dt
x(t) = x(0)]2) ~ =4/ = .
(x(t) = xO)) ~ ~y /=~
Averaging is over thermal initial conditions and
also stochastic paths.

Thus the caging effect of single file diffusion leads to a subdiffusive motion of particles.
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Science 287, 5453 (2000).

Single-File Diffusion of Colloids

in One-Dimensional Channels
Q.-H. Wei,*t C. Bechinger,* P. Leiderer

Single-file diffusion, prevalent in many processes, refers to the restricted mo-
tion of interacting particles in narrow micropores with the mutual passage
excluded. A single-filing system was developed by confining colloidal spheres
in one-dimensional circular channels of micrometer scale. Optical video mi-
croscopy study shows evidence that the particle self-diffusion is non-Fickian for
long periods of time. In particular, the distribution of particle displacement is
a Gaussian function.

Fig. 2. (A) Typical tra-
jectories ~ for eight
neighboring _ particles
in the largest channel
in Fig. 1A The instan-
taneous particle coor-
dinates were extract-
ed from digitized pic-
tures with an image-
processing  algorithm
and saved in a com-
puter for later analy- 2w w0 r 9 R
sis. From those data, t o e e e
we obtained the parti- (s) t(s)

cle trajectories. The system was equilibrated for at least 4 hours before each measurement. To
obtain the long-time behavior, we recorded the coordinates of colloidal particles for ~8 hours, with
a time interval of ~8 s between two adjacent pictures. (B) Log-log plot of the measured particle
MSDs versus the observation time for five different particle interaction strengths I': 0.66, open
circles; 1.1, solid circles; 2.34, open squares; 4.03, solid triangles; and 7.42, open triangles. The data
points have been shifted upward by n 2 for clarity, and the solid lines are best fit with Eq, 1 with
the mobility £ as an adjustable parameter.
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k endi
PRL 94, 216001 (2005) PHYSICAL REVIEW LETTERS ek ending

3 JUNE 2005

From Random Walk to Single-File Diffusion

Binhua Lin,* Mati Meron, Bianxiao Cui," and Stuart A. Rice

The James Franck Institute, Depariment of Chemisiry and CARS, The University of Chicago, Chicago, Illinois 60637, USA

Haim Diamant

School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978, Israel

(Received 5 January 2005; published 2 June 2005)

We report an experimental study of diffusion in a quasi imensional (q1D) colloid

which behaves like a Tonks gas. The mean squared displacement as a function of time is described well
with an ansatz encompassing a time regime that is both shorter and longer than the mean time between
collisions. The ansatz asserts that the inverse mean squared displacement is the sum of the inverse mean
squared displacement for short time normal diffusion (random walk) and the inverse mean squared
displacement for asymptotic single-file diffusion (SFD). The dependence of the 1D mobility in the SFD on
the concentration of the colloids agrees quantitatively with that derived for a hard rod model, which
confirms for the first time the validity of the hard rod SFD theory. We also show that a recent SFD theory
by Kollmann [Phys. Rev. Lett. 90, 180602 (2003)] leads to the hard rod SFD theory for a Tonks gas.
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FIG. 2 (color online). Mean squared displacement as a func-
tion of ¢ at different concentrations. Note that (x(z)?) for large
spheres is scaled by the factor o,/. The data (symbols) are
shifted downward a factor of 3 from one another for clarity. The
error bars are smaller than the symbols used. For 1 = 1s the
movies were grabbed at 30 frames/s, and for £ > 1 s the images
were grabbed at 4 and 5 frames/s for small and large spheres,
respectively (only a subset of the data are plotted for clarity). The
solid lines are fits of the data to Eq. (8).
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Some open questions

@ The equal mass HP gas and the harmonic chain are both very special systems — both are
integrable models. What happens with more realistic models ? Do we still get diffusion in
systems with any generic Hamiltonian dynamics ?

@ Finite size effects. Eventually, in any finite system, the mean square displacement will stop
growing with time and will saturate to a finite value determined by the equilibrium distribution
((Ax)? ~ N). How does this approach to the saturation value take place ?

@ If the motion is diffusive, how do we determine the diffusion constant ? What is the prediction
from hydrodynamic theory ?

@ Relation to thermal conduction studies?? Note that both the equal mass HP gas and the
harmonic chain show diffusive tagged particle motion even though they are integrable
systems. Heat transport in these systems is ballistic and the thermal conductivity x ~ L.
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@ Non-integrable dynamics
Alternate mass HP gas — Marro and Masoliver: Phys. Rev. Lett. 54, 731 (1985)

(W(0)v(t)) ~ *tlé s<1.

This implies a negative divergent diffusion constant and is impossible!

Lennard Jones gas — Bishop, Derosa and Lalli: J. Stat. Phys. 25, 229 (1981)
Srinivas and Bagchi: J. Chem. Phys. 112, 7557 (2000).
Finite diffusion constant and

(V(O)v(t)) ~ :*3 5<1.

@ Finite size effects in equal mass HP gas.
Some general results have been stated in —
Lebowitz and Percus: Phys. Rev. 155, 122 (1967)
Lebowitz and Sykes: J. Stat. Phys. 6, 157 (1972)
Percus: J. Stat. Phys. 138, 40 (2010)

However, the results are mostly formal, and not very explicit.
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@ Stochastic dynamics — A number of recent work has studied finite size effects e.g:
Lizana and Ambjornsson, Phys. Rev. Lett 100, 200601 (2008)
Gupta, Majumdar, Godreche and Barma, Phys. Rev. E 76, 021112 (2007)
Barkai and Silbey, Phys. Rev. Lett. 102, 050602 (2009)
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@ Finite size effects in harmonic chain and equal mass HP gas — both integrable models.
@ Simulation results for FPU chain, alternate mass HP gas and Lennard-Jones gas.

@ Analytic results from hydrodynamic theory.
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Harmonic chain

The Hamiltonian of the system is

N m N+1 k )
H:ZEX’2+Z§(XI_X/_1) .
=1 =1

Normal mode frequencies: w2 = (2k/m) [1 — cos(st/(N + 1))] .
A simple analysis, using normal modes gives:

8kgT sin?(wst/2)
([ax(P) = —=—— —_—
m(N+1) 5212,3:"” w?
2kgT
vnv(0)) = —=—— cos(wst) .
V) 3
o — N=9
=ty ey ) )
S Long time form of MSD of central particle for
10 1 small systems, computed from above equations
100 200 30 30 50 & numerically.
L —t w Note: Short time (t < N) diffusive motion and
Foor ] oscillations at large times. Frequency and
et — /] amplitude of oscillations scale with system size.
30.2* T
0 1 2 3 2
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Harmonic Chain — Short time behaviour
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Harmonic chain — Main results

There are three distinct time regimes:
@ Whenwyt << 1, sin®(wnt/2) ~ w2t?/4, the MSD is then equal to kg Tt2/m .

@ Inthe second part, t >> 1 and t/N << 1, the sum can be replaced by an integral

(AX(OP) = 8kgT 5 sin?(wst/2) _ 2kg Tat/ooo dysinZ(y) —opt,

N m(N+1)s:1,3,..4 w? m™mec y?

with the diffusion constant D = kg T /(2pc).

@ Atter that there is an almost-periodic behaviour, with the peaks of ((Ax)?) being proportional
to N while the minimas almost touch zero. We see that plotting ((Ax)?)/N against t/N gives
a good scaling of the data. The near-recurrences (~ N'/3) are somewhat surprising since we
are averaging over an initial equilibrium ensemble.
(Analytic understanding from more careful analysis of sum)
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Equal mass hard particle gas

@ Gas of N = 2M + 1 point particles in a one-dimensional box of length L.

@ The Hamiltonian of the system thus consists of only kinetic energy. All the particles have the
same mass m.

@ Particles interact with each other through hard collisions conserving energy and momentum.
In any interparticle collision, the two colliding particles exchange velocities. When a terminal
particle collides with the adjacent wall, its velocity is reversed.

@ Initial state of the system is drawn from the canonical ensemble at temperature T. Therefore,
the initial positions of the particles are uniformly distributed in the box.
Particles are ordered 0 < X1 < Xo < --- < Xy_1 < Xy < L.
The initial velocities of the particles are choosen independently from the Gaussian distribution
with zero mean and a variance V2 = kg T/m.
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Equal mass hard particle gas — Mapping to non-interacting

problem

@ By exchanging the identities of the particles emerging from collisions, one can effectively treat
the system as non-interacting .

@ To find the VAF of the middle particle in the interacting-system from the dynamics of the
non-interacting system, we note that there are two possibilities in the non-interacting picture
@ the same particle is the middle particle at both times t = 0 and t, or

@ two different particles are at the middle position at times t = 0 and t respectively.

@ Denote the VAF corresponding to these two cases by (vy(0)vy(t))1 and {(vy(0)vu(t))2. The
complete VAF is given by (vy(0)v(t)) = (v (0) v (£))1 + (vm(0)vm(£))2-
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Equal mass hard particle gas — Mapping to non-interacting

problem

@ The correlation function (v (0)vy(t))1 can be found by —
(i) picking one of the non-interacting particles at random,
(ii) calculating the probability that it goes from (x, 0) to (y, t) and that it is in the middle at both
t=0andt,
(iii) multiplying by v(0)v(t) and integrating over x and y.

@ To compute (v (0)vy(t))2,—
(i) pick two particles at random at time t = 0,,
(ii) calculate the probability that they go from (x, 0) to (y, t) and (X, 0) to (¥, t), that there are
an equal number of particles on both sides of x and y at t = 0 and ¢ respectively,
(iii) multiply by v(0)¥(t) and integrate with respect to x, y, X, .

@ Using our approach we get analytic results for the VAF. We recover the results of Jepsen,
Lebowitz, Sykes and Percus. Our approach is much simpler than the earlier approaches. In
addition we get analytic results for the long time behaviour where finite size effects become
important.

[A. Roy, O. Narayan, A. Dhar, S. Sabhapandit, JSP (2012)]
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Equal mass HP gas

Simulation results —
’ also reproduced by exact analysis.

VOV <vOV)> <BX(VO)>  <ax’(t)>

L :\ A f P
0.1 1 10t 100 1000

Comparision between harmonic chain (HC) and hard particle gas (HPG):
@ Both integrable models
@ Both diffusive at intermediate time scales.
© VAF —sin(wpt)/t'/2in HC and ~ —1/13 in HPG.
© Finite size effects very different — MSD keeps oscillating in HC, saturates to equilibrium value
for HPG.

) Dec2013  19/34



Alternate mass HP gas

@ What about the case when alternate particles have different masses?
From momentum and energy conservation we have

v = (my — my4q) / 2my 4 Vies
(my 4+ myyq) (my+ myyq)
’ 2m, (m,+1 — m,)
Vigr = Vit -
(my 4 mygq) (my 4 myq)

@ In this case the mapping to non-interacting particles breaks down and we do not have any
exact results — Simulation results.
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Hard particle gas- simulation results

Alternate mass HPG (solid lines) compared with
equal mass HPG.

N =101 (blue) and N = 201 (red) particles,
density p = 1 and kg T = 1. Alternate particles
have masses 1.5 and 0.5.

e /\A‘Av >
Aoy W\V Note:

VAF for AM-HPG is close to ~ —1/t.

Oscillations at large times (sound waves).

Ikv(O)v(t)>] <v(O)v(t)> <Ax(t)v(0)>
o

il oV

5 giklis 22
0.1 1 10 t 100 1000

) Dec2013  21/34



Hard particle gas- behaviour of D(t).

04F .
A al(bint
5035- (b+int) L
> S~
g “:
J
Vo031 {
— Equal mass i
— Alternate mass |
0.25(
100

1

Plot of D(t) = (Ax(t)v(0)) for the alternate
mass gas for various system sizes. We see
a logarithmic decay of the diffusion
constant.

Dashed line shows saturation to the
expected Jepsen value 1/v/2r ~ 0.4 for
equal mass HPG.

A Roy, O. Narayan, A. Dhar and S. Sabhapandit, JSP (2012).

Contradicts results of mode-coupling theory (H van Beijeren) which predicts —
D(t) = D+ 0.39/t?/% with D = kg T /(2nc) = 0.2887.
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Hard particle gas - behaviour of D(t) [Latest simulations !]

e . Plot of D(t) = (Ax(t)v(0)) for the
D+0.39”° N=201] alternate mass gas for larger system
7 v sizes, longer times.

0.4F

Fit to Beijeren formula from
mode-coupling theory ? — Not

<AX(t)v(0)>
o
€

7 conclusive.
D=0.2887 1
I 7SS Slow decay to a finite asymptotic
02F 4 diffusion constant D = kg T/(2nc),
r 1 where c is the sound speed.
1 1‘0 160 10‘00

Note that diffusion constant is independent of mass ratio and depends only on the average
density. For unit density and temperature, D = 1/v27 = 0.3989... for equal mass case and this
changes to D = 1/(2+/3) = 0.2886... even if the masses are different by arbitrarily small amounts.
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Hard particle gas - Long time behaviour

orr MSD as a function of time for three system
0.6 sizes N = 201,401, 801.

Z o5l

A

2041 )

v osp '/" Equilibrium saturation value for alternate
02F mass and equal mass HPG are the same
oal/ but the approach to this is very different.

% 1 2 3
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Fermi-Pasta-Ulam chain: Short time behaviour

Hamiltonian given by

N N+1 k v
H=3Sa+> 5@ a-0% + ;(@-a-1)"]
1=1

A 1 ~t//
N; / .
7 0 We see that there is a fast convergence of
R E o D(t) to the expected diffusion constant
S o4 ]| p=keT/2nc)=0342
> e
e s i
g o02f D=0.342

£ . Sound speed ¢ can be calculated from
A 05; one-dimensinal hydrodynamics theory
2 Ok (H. Spohn, 2013).
=~ 0’
v E
x VAF ~ sin(wot)e~ At
z Compare with HC (~ sin(wpt)/t/3).
g

1 10 100
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Fermi-Pasta-Ulam chain: Long time behaviour

0.8 T

— N=33
— N=129
— N=512
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Oscillations with time period N/c and eventual saturation to equilibrium value
([Ax(H)]?) — 2(x?) ~ N (unlike harmonic case).
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Sound waves with noise and dissipation

We consider a hydrodynamic description of the one-dimensional gas in terms of soundwaves
which are acted on by momentum-conserving noise and dissipation. Sound modes equations:

mgy = —k(2aq1 — qip1 — Q—1) — ¥4 — Gie1 — Gr—1) + (28 — &1 — §1-1) -
For equilibration we require
2'kaT

p

Ealt) £ (1)) = 8L 5t~ 1) b4 -

Solving the linear equations we get the following correlations for the middle particle:

@uo) = el ST el sinGap)
s=1,3,...

w(v(0) = % S et [cos(ﬁpt)——sm(ﬁpt)
s=1,3,...

Diffusion constant:

Jlim (a(t)v(0)) = kT [ g Sinx _ ke

mer Jo x  2pc’
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Sound waves with noise and dissipation — comparision with FPU

data

Here we show a comparision of the predictions of the damped sound model with the simulation
results of the FPU chain for N = 65. The constants k and y are used as fitting parameters.

It is clear that this model seems to provide a good description of the FPU chain data.

The decay of the VAF is as ~ sin(wpt)e=<!.

100¢
10¢ %/{/

[
()
A
i
|
i
b

o o
> B
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[<VOVO>] <V(ONV(B> <AqBV0)>  <agl(t)>
o
i
/
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Velocity autocorrelation function

V(t)v(0) = % Z eont [cos(ﬁpt)— sm(ﬁpl‘)}
s=1,3,.

For N — oo, naive asymptotic (large t) analysis gives

—at

VOO ~ S

This agrees with the prediction of fluctuating hydrodynamics (Spohn, 2013).

Not clear why the form sin(wt)e—2!/t'/2 seen in the numerics is not obtained!
Do the oscillations vanish at large times ?
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Conclusions

@ Effect of non-integrable interactions on tagged particle diffusion was studied.

@ Tagged particle motion in Hamiltonian systems is probably diffusive in all cases.
Diffusion constant known exactly for equal mass hard particle model, harmonic chain.
Diffusion constant from linearized hydrodynamic equations is D = kg T /(2pc). The speed of
sound in terms of parameters of microscopic models is known [Spohn (2013)].

@ For the alternate mass case (both hard particle and Lennard-Jones gas), approach to
asymptotic behaviour seems to be slow. For the FPU case we get fast approach to the
expected asymptotic diffusion constant.

@ The velocity autocorrelation function can have a wide range of asymptotic behaviour including
power-law decay, oscillatory decay as well as exponential decay.

@ The approach to equilibration and finite-size effects are also very different in different models.
@ No long time equilibration in harmonic chain and near recurrences.
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Lennard-Jones gas

The Hamiltonian of the Lennard Jones gas is taken to be

N+1

;
H= fo, +Z[X/—X/ N2 (XI—X/—1)6] ‘

where x’s are the positions of the particles.

The particles are inside a box of length L and we fix particles at the boundaries by setting xo = 0
and xy.1 = L. The mean inter-particle spacing is thus a = L/(N + 1).

Main observations:

@ We observe that at high density, the behaviour is similar to that of the FPU chain.

@ At low densities, the behaviour resembles that of the hard particle gas.

@ This behaviour is easy to understand when we look at the L-J potential as a function of a and
evaluate the effective spring constant, under harmonic approximation, at various values of a.
For a = 1.0, the effective spring constant is 114. Because of this high effective spring
constant the L-J gas behaves like an anharmonic chain (FPU). For a = 3.0 the effective
spring constant is almost zero.
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Lennard-Jones gas - High density corrrelations

y /Nt//
0.0 2
0.00

0.02§ Short time correlation functions of the
F i i central particle on LJ chains of sizes 65

5 (red) and 129 (blue) with interparticle
0.5F separation 1.0

I<vOVO> <v(OVD> <AxOVO0)>  <Ax’(D)>

Dec 2013 32/34



Lennard-Jones gas - Low density correlations

‘0>

Short time correlation functions of the
central particle on LJ chains of sizes 65
(red) and 129 (blue) with interparticle
separation 3.0. The equal mass case is
represented by dotted lines while solid lines
represent the alternate mass case.

I<v(O)v()>l <v(O)v()> <Ax()V(0)> <Ax
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Lennard-Jones gas: Long time behaviour (high density case)

Mean square displacement of central

particle on a gas of particles with nearest

neighbor Lennard-Jones interaction

] potential for different sizes N. The

‘ ‘ parameters were chosenas L/(N+ 1) =1
[ and T = 1. The effective spring constant in

] the harmonic approximation is large in this

§ |
7 0.004F N
k= / case (k ~ 114).
3 0.0027/ |
\%
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