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Introduction - Single file diffusion

L

X XXX1 M N2

Let ∆x(t) = xM (t)− xM (0).
Consider the correlation functions 〈[∆x(t)]2〉, 〈∆x(t)v(0)〉 and 〈v(t)v(0)〉. These are related:

D(t) =
1
2

d
dt
〈[∆x(t)]2〉 =

∫ t

0
〈v(0)v(t ′)〉dt ′ = 〈∆x(t)v(0)〉 .

The average is over thermal initial conditions ( and also over trajectories, for stochastic dynamics ).

If D = limt→∞ limN→∞ D(t) is finite, then we say tagged particle motion is diffusive,

thus 〈[∆x(t)]2〉 ∼ 2Dt

D → 0 implies sub-diffusion and D →∞ implies super-diffusion.
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Review of earlier work

One dimensional gas with Hamiltonian dynamics – equal mass particles moving balistically
between elastic collisions.

Exact results for infinite system with a fixed density n of particles —

〈[x(t)− x(0)]2〉 ∼ 2Dt , D = 1
n

√
kBT
2πm ,

〈v(t)v(0)〉 ∼
√

m
2πkBT (−1 + 5

2π ) 1
n3t3 .

Averaging is over thermal initial conditions.
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Review of earlier work

Harmonic crystals — Exact results for infinite systems—

Finite diffusion constant

D =
kBT
2ρc

ρ = m/a, c = a
√

k/m

〈v(t)v(0)〉 ∼
sin(ω0t)

(2πω0t)1/2
.

Averaging is over thermal initial conditions.
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Review of earlier work

One dimensional gas with Brownian dynamics – particles freely diffusing but with no-crossing
condition. Similar to simple exclusion process.

Exact results for infinite system with a fixed density n = N/L of particles —

〈[x(t)− x(0)]2〉 ∼
2
n

√
Dt
π
.

Averaging is over thermal initial conditions and
also stochastic paths.

Thus the caging effect of single file diffusion leads to a subdiffusive motion of particles.
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Experiments

Science 287, 5453 (2000).
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Experiments
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Some open questions

The equal mass HP gas and the harmonic chain are both very special systems — both are
integrable models. What happens with more realistic models ? Do we still get diffusion in
systems with any generic Hamiltonian dynamics ?

Finite size effects. Eventually, in any finite system, the mean square displacement will stop
growing with time and will saturate to a finite value determined by the equilibrium distribution
((∆x)2 ∼ N). How does this approach to the saturation value take place ?

If the motion is diffusive, how do we determine the diffusion constant ? What is the prediction
from hydrodynamic theory ?

Relation to thermal conduction studies?? Note that both the equal mass HP gas and the
harmonic chain show diffusive tagged particle motion even though they are integrable
systems. Heat transport in these systems is ballistic and the thermal conductivity κ ∼ L.
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Earlier work

Non-integrable dynamics
Alternate mass HP gas – Marro and Masoliver: Phys. Rev. Lett. 54, 731 (1985)

〈v(0)v(t)〉 ∼ −
1
tδ

δ < 1 .

This implies a negative divergent diffusion constant and is impossible!

Lennard Jones gas – Bishop, Derosa and Lalli: J. Stat. Phys. 25, 229 (1981)
Srinivas and Bagchi: J. Chem. Phys. 112, 7557 (2000).
Finite diffusion constant and

〈v(0)v(t)〉 ∼
1
t3

δ < 1 .

Finite size effects in equal mass HP gas.
Some general results have been stated in —
Lebowitz and Percus: Phys. Rev. 155, 122 (1967)
Lebowitz and Sykes: J. Stat. Phys. 6, 157 (1972)
Percus: J. Stat. Phys. 138, 40 (2010)

However, the results are mostly formal, and not very explicit.
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Earlier work

Stochastic dynamics — A number of recent work has studied finite size effects e.g:
Lizana and Ambjornsson, Phys. Rev. Lett 100, 200601 (2008)
Gupta, Majumdar, Godreche and Barma, Phys. Rev. E 76, 021112 (2007)
Barkai and Silbey, Phys. Rev. Lett. 102, 050602 (2009)
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Present work

Finite size effects in harmonic chain and equal mass HP gas — both integrable models.

Simulation results for FPU chain, alternate mass HP gas and Lennard-Jones gas.

Analytic results from hydrodynamic theory.
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Harmonic chain

The Hamiltonian of the system is

H =
N∑

l=1

m
2

ẋ2
l +

N+1∑
l=1

k
2

(xl − xl−1)2 .

Normal mode frequencies: ω2
s = (2k/m) [1− cos(sπ/(N + 1))] .

A simple analysis, using normal modes gives:

〈[∆x(t)]2〉 =
8kBT

m(N + 1)

∑
s=1,3,...

sin2(ωs t/2)

ω2
s

,

〈v(t)v(0)〉 =
2kBT

m(N + 1)

∑
s=1,3,...

cos(ωs t) .
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small systems, computed from above equations
numerically.
Note: Short time (t . N) diffusive motion and
oscillations at large times. Frequency and
amplitude of oscillations scale with system size.
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Harmonic Chain — Short time behaviour
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Harmonic chain — Main results

There are three distinct time regimes:
1 When ωN t << 1, sin2(ωnt/2) ≈ ω2

n t2/4, the MSD is then equal to kBTt2/m .

2 In the second part, t >> 1 and t/N << 1, the sum can be replaced by an integral

〈[∆x(t)]2〉 =
8kBT

m(N + 1)

∑
s=1,3,...

sin2(ωs t/2)

ω2
s

=
2kB T a t
π m c

∫ ∞
0

dy
sin2(y)

y2
= 2D t ,

with the diffusion constant D = kBT/(2ρc).

3 After that there is an almost-periodic behaviour, with the peaks of 〈(∆x)2〉 being proportional
to N while the minimas almost touch zero. We see that plotting 〈(∆x)2〉/N against t/N gives
a good scaling of the data. The near-recurrences (∼ N1/3) are somewhat surprising since we
are averaging over an initial equilibrium ensemble.
(Analytic understanding from more careful analysis of sum)
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Equal mass hard particle gas

Gas of N = 2M + 1 point particles in a one-dimensional box of length L.

The Hamiltonian of the system thus consists of only kinetic energy. All the particles have the
same mass m.

Particles interact with each other through hard collisions conserving energy and momentum.
In any interparticle collision, the two colliding particles exchange velocities. When a terminal
particle collides with the adjacent wall, its velocity is reversed.

Initial state of the system is drawn from the canonical ensemble at temperature T . Therefore,
the initial positions of the particles are uniformly distributed in the box.
Particles are ordered 0 < x1 < x2 < · · · < xN−1 < xN < L.
The initial velocities of the particles are choosen independently from the Gaussian distribution
with zero mean and a variance v2 = kBT/m.
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Equal mass hard particle gas – Mapping to non-interacting
problem

By exchanging the identities of the particles emerging from collisions, one can effectively treat
the system as non-interacting .

To find the VAF of the middle particle in the interacting-system from the dynamics of the
non-interacting system, we note that there are two possibilities in the non-interacting picture

1 the same particle is the middle particle at both times t = 0 and t , or

2 two different particles are at the middle position at times t = 0 and t respectively.

9

L

t

1 2 3 4 5 6 7 8

Denote the VAF corresponding to these two cases by 〈vM (0)vM (t)〉1 and 〈vM (0)vM (t)〉2. The
complete VAF is given by 〈vM (0)vM (t)〉 = 〈vM (0)vM (t)〉1 + 〈vM (0)vM (t)〉2.
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Equal mass hard particle gas – Mapping to non-interacting
problem

The correlation function 〈vM (0)vM (t)〉1 can be found by —
(i) picking one of the non-interacting particles at random,
(ii) calculating the probability that it goes from (x , 0) to (y , t) and that it is in the middle at both
t = 0 and t ,
(iii) multiplying by v(0)v(t) and integrating over x and y .

To compute 〈vM (0)vM (t)〉2,—
(i) pick two particles at random at time t = 0,,
(ii) calculate the probability that they go from (x , 0) to (y , t) and (x̃ , 0) to (ỹ , t), that there are
an equal number of particles on both sides of x and ỹ at t = 0 and t respectively,
(iii) multiply by v(0)ṽ(t) and integrate with respect to x , y , x̃ , ỹ .

Using our approach we get analytic results for the VAF. We recover the results of Jepsen,
Lebowitz, Sykes and Percus. Our approach is much simpler than the earlier approaches. In
addition we get analytic results for the long time behaviour where finite size effects become
important.
[A. Roy, O. Narayan, A. Dhar, S. Sabhapandit, JSP (2012)]
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Equal mass HP gas
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Simulation results —
also reproduced by exact analysis.

Comparision between harmonic chain (HC) and hard particle gas (HPG):
1 Both integrable models
2 Both diffusive at intermediate time scales.
3 VAF — sin(ω0t)/t1/2 in HC and ∼ −1/t3 in HPG.
4 Finite size effects very different — MSD keeps oscillating in HC, saturates to equilibrium value

for HPG.

() Dec 2013 19 / 34



Alternate mass HP gas

What about the case when alternate particles have different masses?
From momentum and energy conservation we have

v ′l =
(ml −ml+1)

(ml + ml+1)
vl +

2ml+1

(ml + ml+1)
vl+1

v ′l+1 =
2ml

(ml + ml+1)
vl +

(ml+1 −ml )

(ml + ml+1)
vl+1 .

In this case the mapping to non-interacting particles breaks down and we do not have any
exact results — Simulation results.
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Hard particle gas- simulation results
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Alternate mass HPG (solid lines) compared with
equal mass HPG.
N = 101 (blue) and N = 201 (red) particles,
density ρ = 1 and kBT = 1. Alternate particles
have masses 1.5 and 0.5.

Note:

VAF for AM-HPG is close to ∼ −1/t .

Oscillations at large times (sound waves).
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Hard particle gas- behaviour of D(t).
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Plot of D(t) = 〈∆x(t)v(0)〉 for the alternate
mass gas for various system sizes. We see
a logarithmic decay of the diffusion
constant.
Dashed line shows saturation to the
expected Jepsen value 1/

√
2π ≈ 0.4 for

equal mass HPG.

A Roy, O. Narayan, A. Dhar and S. Sabhapandit, JSP (2012).

Contradicts results of mode-coupling theory (H van Beijeren) which predicts —
D(t) = D + 0.39/t2/5 with D = kBT/(2nc) = 0.2887.
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Hard particle gas - behaviour of D(t) [Latest simulations !]
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Plot of D(t) = 〈∆x(t)v(0)〉 for the
alternate mass gas for larger system
sizes, longer times.

Fit to Beijeren formula from
mode-coupling theory ? – Not
conclusive.

Slow decay to a finite asymptotic
diffusion constant D = kBT/(2nc),
where c is the sound speed.

Note that diffusion constant is independent of mass ratio and depends only on the average
density. For unit density and temperature, D = 1/

√
2π = 0.3989... for equal mass case and this

changes to D = 1/(2
√

3) = 0.2886... even if the masses are different by arbitrarily small amounts.

() Dec 2013 23 / 34



Hard particle gas - Long time behaviour
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MSD as a function of time for three system
sizes N = 201, 401, 801.

Equilibrium saturation value for alternate
mass and equal mass HPG are the same
but the approach to this is very different.
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Fermi-Pasta-Ulam chain: Short time behaviour

Hamiltonian given by

H =
N∑

l=1

m
2

q̇2
l +

N+1∑
l=1

[
k
2

(ql − ql−1)2 +
ν

4
(ql − ql−1)4]

0.1
1

10
100

<∆
q2 (t)

>

0.2

0.4

<∆
q(

t)v
(0

)>

0

0.5

<v
(0

)v
(t)

>

1 10 100
t

10-4
10-2
100

|<
v(

0)
v(

t)>
|

~t2
~t

D=0.342

We see that there is a fast convergence of
D(t) to the expected diffusion constant
D = kBT/(2nc) = 0.342

Sound speed c can be calculated from
one-dimensinal hydrodynamics theory
(H. Spohn, 2013).

VAF ∼ sin(ω0t)e−At .
Compare with HC (∼ sin(ω0t)/t1/2).
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Fermi-Pasta-Ulam chain: Long time behaviour
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Oscillations with time period N/c and eventual saturation to equilibrium value
〈[∆x(t)]2〉 → 2〈x2〉 ∼ N (unlike harmonic case).
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Sound waves with noise and dissipation

We consider a hydrodynamic description of the one-dimensional gas in terms of soundwaves
which are acted on by momentum-conserving noise and dissipation. Sound modes equations:

mq̈l = −k(2ql − ql+1 − ql−1)− γ(2q̇l − q̇l+1 − q̇l−1) + (2ξl − ξl+1 − ξl−1) .

For equilibration we require

〈ξ̃p(t) ξ̃q′ (t ′)〉 =
2γkBT
ω2

p
δ(t − t ′) δq,q′ .

Solving the linear equations we get the following correlations for the middle particle:

〈q(t)v(0)〉 =
2kBT

m(N + 1)

∑
s=1,3,...

1
βp

e−αp t sin(βp t) ,

〈v(t)v(0)〉 =
2kBT

m(N + 1)

∑
s=1,3,...

e−αp t
[

cos(βp t)−
αp

βp
sin(βp t)

]
.

Diffusion constant:

lim
t→∞
〈q(t)v(0)〉 =

kBT
mcπ

∫ ∞
0

dx
sin x

x
=

kBT
2ρc

.
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Sound waves with noise and dissipation – comparision with FPU
data

Here we show a comparision of the predictions of the damped sound model with the simulation
results of the FPU chain for N = 65. The constants k and γ are used as fitting parameters.

It is clear that this model seems to provide a good description of the FPU chain data.

The decay of the VAF is as ∼ sin(ω0t)e−αt .
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Velocity autocorrelation function

〈v(t)v(0)〉 =
2kBT

m(N + 1)

∑
s=1,3,...

e−αp t
[

cos(βp t)−
αp

βp
sin(βp t)

]
.

For N →∞, naive asymptotic (large t) analysis gives

〈v(t)v(0)〉 ∼
e−at

t1/2
.

This agrees with the prediction of fluctuating hydrodynamics (Spohn, 2013).

Not clear why the form sin(ωt)e−at/t1/2 seen in the numerics is not obtained!
Do the oscillations vanish at large times ?

() Dec 2013 29 / 34



Conclusions

Effect of non-integrable interactions on tagged particle diffusion was studied.

Tagged particle motion in Hamiltonian systems is probably diffusive in all cases.
Diffusion constant known exactly for equal mass hard particle model, harmonic chain.
Diffusion constant from linearized hydrodynamic equations is D = kBT/(2ρc). The speed of
sound in terms of parameters of microscopic models is known [Spohn (2013)].

For the alternate mass case (both hard particle and Lennard-Jones gas), approach to
asymptotic behaviour seems to be slow. For the FPU case we get fast approach to the
expected asymptotic diffusion constant.

The velocity autocorrelation function can have a wide range of asymptotic behaviour including
power-law decay, oscillatory decay as well as exponential decay.

The approach to equilibration and finite-size effects are also very different in different models.

No long time equilibration in harmonic chain and near recurrences.
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Lennard-Jones gas

The Hamiltonian of the Lennard Jones gas is taken to be

H =
N∑

l=1

m
2

ẋ2
l +

N+1∑
l=1

[
1

(xl − xl−1)12
−

1
(xl − xl−1)6

]
.

where x ’s are the positions of the particles.
The particles are inside a box of length L and we fix particles at the boundaries by setting x0 = 0
and xN+1 = L. The mean inter-particle spacing is thus a = L/(N + 1).
Main observations:

We observe that at high density, the behaviour is similar to that of the FPU chain.

At low densities, the behaviour resembles that of the hard particle gas.

This behaviour is easy to understand when we look at the L-J potential as a function of a and
evaluate the effective spring constant, under harmonic approximation, at various values of a.
For a = 1.0, the effective spring constant is 114. Because of this high effective spring
constant the L-J gas behaves like an anharmonic chain (FPU). For a = 3.0 the effective
spring constant is almost zero.
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Lennard-Jones gas - High density corrrelations
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Short time correlation functions of the
central particle on LJ chains of sizes 65
(red) and 129 (blue) with interparticle
separation 1.0
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Lennard-Jones gas - Low density correlations
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Lennard-Jones gas: Long time behaviour (high density case)
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