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The Calabi-Yau problem for minimal surfaces(all surfaces are orientable)

@ Calabi-Yau (1966-2000): Can a complete embedded minimal surface be
contained in a ball (halfspace)?
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The Calabi-Yau problem for minimal surfaces(all surfaces are orientable)

@ Calabi-Yau (1966-2000): Can a complete embedded minimal surface be
contained in a ball (halfspace)?

@ Nadirashvili (Inventiones 1996): 3M C B(1) compl immersed minimal disk.

@ Hoffman-Meeks (Inventiones 1990): If M C R3 properly immersed,
nonplanar minimal surface = M cannot be contained in a halfspace.

Question (embedded Calabi-Yau problem):
M C R3 complete embedded minimal surface (CEMS). Is M proper?

Theorem 1 (Meeks-P-Ros, JDG 2004)
M C R3 CEMS with finite genus and Ky, locally bded = M proper.

Theorem 2 (Colding-Minicozzi, Annals 2008)
M c R3 CEMS with finite topology = M proper.

Theorem 3 (MLCT, Meeks-Rosenberg, Duke 2006)
M C R3 CEMS with positive injectivity radius = M proper.
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The embedded Calabi-Yau problem for finite genus

Joaquin Pérez (UGR) Embedded Calabi-Yau problem



The embedded Calabi-Yau problem for finite genus
M c R® CEMS = M noncompact = &(M) = {ends of M} # @.

Definition 1 (set of ends)

E(M) = A/, where A= {a: [0,00) — M proper arc} and
ag ~ ap if YC C M cpt set, ag, as lie eventually in the same compnt of M — C.
E C M noncpt subdomain, OE cpt. E represents [a] € E(M) if afty,o0) C E for

some tg.
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The embedded Calabi-Yau problem for finite genus
M c R® CEMS = M noncompact = &(M) = {ends of M} # @.

Definition 1 (set of ends)

E(M) = A/, where A= {a: [0,00) — M proper arc} and

ag ~ ap if YC C M cpt set, ag, as lie eventually in the same compnt of M — C.
E C M noncpt subdomain, OE cpt. E represents [a] € E(M) if afty,o0) C E for
some to.

Theorem 4 (Collin-Kusner-Meeks-Rosenberg, JDG 2004)
If M C R® proper EMS = E(M) countable.

Theorem 5 (Meeks-P-Ros, 2018)
M C R3 CEMS with finite genus and countably many ends = M proper.

Definition 2 (limit ends)

E(M) < [0, 1] embedding. e € £(M) simple end if e isolated in E(M).
e € &(M) limit end if not isolated.
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The embedded Calabi-Yau problem for finite genus, Il

Theorem 6 (Meeks-P-Ros, 2018)

M C R® CEMS, OM cpt, g(M) < oo, #(£(M)) = .
If M has countably many limit ends = M proper & M has 1 or 2 limit ends.
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The embedded Calabi-Yau problem for finite genus, Il
Theorem 6 (Meeks-P-Ros, 2018)

M C R® CEMS, OM cpt, g(M) < oo, #(£(M)) = .
If M has countably many limit ends = M proper & M has 1 or 2 limit ends.

Sketch of proof of Thm 6:

Take M C R3 as in Thm 6. Baire's Thm = isolated points in Ejimi:(M) (simple
limit ends) are dense.
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If M has countably many limit ends = M proper & M has 1 or 2 limit ends.

Sketch of proof of Thm 6:

Take M C R3 as in Thm 6. Baire's Thm = isolated points in Ejimi:(M) (simple
limit ends) are dense. So it suffices to show:

@ If M has 1 or 2 simple limit ends = M proper.

@ M cannot have 3 simple limit ends (thus M has 1 or 2 limit ends, both
simple).
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The embedded Calabi-Yau problem for finite genus, Il
Theorem 6 (Meeks-P-Ros, 2018)

M C R® CEMS, OM cpt, g(M) < oo, #(£(M)) = .
If M has countably many limit ends = M proper & M has 1 or 2 limit ends.

Sketch of proof of Thm 6:
Take M C R3 as in Thm 6. Baire's Thm = isolated points in Ejimi:(M) (simple
limit ends) are dense. So it suffices to show:

@ If M has 1 or 2 simple limit ends = M proper.
@ M cannot have 3 simple limit ends (thus M has 1 or 2 limit ends, both

simple).
Theorem 7 (Meeks-P-Ros, Inventiones 2004)
If M C R® PEMS, OM = @, g(M) < oo = M cannot have just 1 limit end. J
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The embedded Calabi-Yau problem for finite genus, Il
Theorem 6 (Meeks-P-Ros, 2018)

M C R® CEMS, OM cpt, g(M) < oo, #(£(M)) = .
If M has countably many limit ends = M proper & M has 1 or 2 limit ends.

Sketch of proof of Thm 6:

Take M C R3 as in Thm 6. Baire's Thm = isolated points in Ejimi:(M) (simple
limit ends) are dense. So it suffices to show:

@ If M has 1 or 2 simple limit ends = M proper.
@ M cannot have 3 simple limit ends (thus M has 1 or 2 limit ends, both
simple).
Proposition 1 (Christmas tree picture)
E simple limit end of M C R CEMS, g(E)=0 = E proper and ... J
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The embedded Calabi-Yau problem for finite genus, Il
Theorem 6 (Meeks-P-Ros, 2018)

M C R® CEMS, OM cpt, g(M) < oo, #(£(M)) = .
If M has countably many limit ends = M proper & M has 1 or 2 limit ends.

Sketch of proof of Thm 6:

Take M C R3 as in Thm 6. Baire's Thm = isolated points in Ejimi:(M) (simple
limit ends) are dense. So it suffices to show:

© If M has 1 or 2 simple limit ends == M proper.
@ M cannot have 3 simple limit ends (thus M has 1 or 2 limit ends, both
simple).
Proposition 1 (Christmas tree picture)

E simple limit end of M C R® CEMS, g(E)=0 = E proper and after passing to a
smaller end representative, translation, rotation & homothety:
(1) Simple ends of E have FTC & log <0 | (4) 3f: Ry — E orient preserving
(2) The limit end of E is the top end diffeo (R4 = top half of a

(3) 0OE =0D, D < {x3 =0}, D NE = @ | Riemann min example)
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The Christmas

tree picture for a simple limit end of genus zero

simple limit end

A

4
simple ends
logarithmic 3
growths <0 genus zero
2
L— 1
Flux along
boundary
¥
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Discarding 3 simple limit ends for a CEMS

Produce E, area minimizing in X3 with cpt bdry, thus with FTC (Fischer-Colbrie)

= E, has a highest catenoidal end C of positive logarithmic growth.
None of the annular ends of E; can lie above C = E; lies between two half

catenoids !
Joaquin Pérez (UGR) Embedded Calabi-Yau problem VMG 6/17



Proving the Christmas tree picture: properness
E simple limit end representative of M C R3 CEMS, g(E) = 0.

o Topologically, E=D — [{£1},U{0}], 9E = 9D = S".

ﬂh oF
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Proving the Christmas tree picture: properness
E simple limit end representative of M C R3 CEMS, g(E) = 0.

@ Topologically, E=D — [{£},U{0}], 0E = 9D = st
We will use:

Theorem 7 (MLCT Meeks-Rosenberg, Duke 2006)
M c R® CEMS with OM cpt.

@ If Ipy > € > 0 outside some d-neighb of OM = M proper.

@ If M has finite topology = Iy > & > 0 outside some §-neighb of OM.

So it suffices to show: /g > ¢ > 0 outside some d-neighb of OE?

limit| end
Kj annular
ends
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Proving the Christmas tree picture: properness
E simple limit end representative of M C R3 CEMS, g(E) = 0.

@ Topologically, E=D — [{£},U{0}], 0E = 9D = st
We will use:

Theorem 7 (MLCT Meeks-Rosenberg, Duke 2006)
M c R® CEMS with OM cpt.

@ If Ipy > € > 0 outside some d-neighb of OM = M proper.

@ If M has finite topology = Iy > & > 0 outside some §-neighb of OM.

So it suffices to show: /g > ¢ > 0 outside some d-neighb of OE?
@ Description of the annular ends in E:
E, CEMS, finite topology, OE, cpt

a En OE (Th:m>7) E,, proper
limit end (Collin)

=’ E, has catenoidal or planar
K/ annular ends, that we will assume horizontal
ends (after rotation indep of n).
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Proving the Christmas tree picture: properness |l

Arguing by contrad, assume 3{q,}, C E s.t. de(gn, 0E) > > 0 and Ig(q,) — 0.
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Proving the Christmas tree picture: properness |l

Arguing by contrad, assume 3{q,}, C E s.t. de(gn, 0E) > > 0 and Ie(qn)

Rescale by topology (Meeks-P-Ros, JDG 2018): 3{p,}, C E, e, \, 0 s.t.
de(qn, pn) — 0 and

@ M,:=closure of cpnt of E NB(p,,e,) that contains p, is cpt,
oM, C OB(pn,en) — OE,

o X\, :=1/Ig(pn), Anle > 1— % in M,,, Anen — 00,

o {\,(M, — pn)}n converges to one of the two following cases:
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Proving the Christmas tree picture: properness |l

Arguing by contrad, assume 3{q,}, C E s.t. de(qn,0E) > > 0 and Ig(g,) — O.

Rescale by topology (Meeks-P-Ros, JDG 2018): 3{p,}, C E, e, \, 0 s.t.
de(qn, pn) — 0 and

@ M,:=closure of cpnt of E NB(p,,e,) that contains p, is cpt,
oM, C 9B(pn,en) — OF,

0 N\, :=1/lg(pn), Anle > 1 — % in M,, A\pen, — 00,
o {\,(M, — pn)}n converges to one of the two following cases:

@ APEMS M., C R® with 0 € My, I > 1, I (0) = 1, hence a catenoid
or Riemann minimal example (Meeks-P-Ros, Annals 2015).

@ A minimal parking garage structure with two columns.

How to find a contradiction in cases (C1) and (C2)?
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Properness IlI: Discarding a Riemann minimal example (sketch)

Suppose (C1) holds with M., = Riemann minimal example.
1. M has vertical flux (hence it has tilted planar ends).
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Properness IlI: Discarding a Riemann minimal example (sketch)

Suppose (C1) holds with M., = Riemann minimal example.
1. M has vertical flux (hence it has tilted planar ends).

Proof: ~: ‘waist’ circle of My, ~- ~, C M, convex planar curve s.t.
{An(7n - pn)}n — -

Lemma 1

For n large, Flux(E,~,) is vertical (thus Flux(Mu, ) vertical).
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Properness IlI: Discarding a Riemann minimal example (sketch)

Suppose (C1) holds with M., = Riemann minimal example.

1. M has vertical flux (hence it has tilted planar ends).

Proof: ~: ‘waist’ circle of My, ~- ~, C M, convex planar curve s.t.
{)\n(’)/n - pn)}n — -

Lemma 1
For n large, Flux(E,~,) is vertical (thus Flux(Mu, ) vertical). J

Proof:

@ If v, does not wind around 0 = 7, homologous to finitely many loops
around annular ends of E, all with vertical flux = Flux(E,~,) vertical.
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Properness IlI: Discarding a Riemann minimal example (sketch)

Suppose (C1) holds with M., = Riemann minimal example.
1. M has vertical flux (hence it has tilted planar ends).
Proof: ~: ‘waist’ circle of My, ~- ~, C M, convex planar curve s.t.

{)\n(’)/n - pn)}n — -

Lemma 1
For n large, Flux(E,~,) is vertical (thus Flux(Mu, ) vertical). J

Proof:

@ If v, does not wind around 0 = 7, homologous to finitely many loops
around annular ends of E, all with vertical flux = Flux(E, ~,) vertical.

@ If 4, winds around 0 Vn (after subseq) = ~, homologous to v, plus
finitely many loops around annular ends of £ =
Flux(E,~,) = Flux(E, yn4x) + vert(n, k) = Fluxporiz(E, Ynik) indep of n, k.
As length(~y,) = 0 = Fluxperiz(E,v,) = 0 Vn.
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Properness IlI: Discarding a Riemann minimal example (sketch)

Suppose (C1) holds with M., = Riemann minimal example.

1. M has vertical flux (hence it has tilted planar ends).

2. Find a proper subdomain A, C E with finite topology, s.t.

OA, = v1(n) U~2(n) and after rescaling, the cpt shadowed pieces converge.

</ “ converges after
0. = rescaling
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Suppose (C1) holds with M., = Riemann minimal example.

1. My has vertical flux (hence it has tilted planar ends)

2. Find a proper subdomain A, C E with finite topology, s.t.

OA, = v1(n) U ~2(n) and after rescaling, the cpt shadowed pieces converge.

Use A, (suitably modified in a cpt set)
as a barrier to solve a Plateau probl

in one of its complements: Take

a C M, enclosing a planar end.

X N o~ o, C A, closed curve

</ converges after
Q33 :

. rescaling
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Properness IlI: Discarding a Riemann minimal example (sketch)

Suppose (C1) holds with M., = Riemann minimal example.

1. My has vertical flux (hence it has tilted planar ends)

2. Find a proper subdomain A, C E with finite topology, s.t.

OA, = v1(n) U ~2(n) and after rescaling, the cpt shadowed pieces converge.

Use A, (suitably modified in a cpt set)
as a barrier to solve a Plateau probl

in one of its complements: Take

a C M, enclosing a planar end.

a ~ a, C A, closed curve ~

</ j ' el S, C R® — A, PEMS stable noncpt 95, = a,
hzl‘g - i

</ converges after
o k

. rescaling
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Properness IlI: Discarding a Riemann minimal example (sketch)

Suppose (C1) holds with M., = Riemann minimal example.

1. My has vertical flux (hence it has tilted planar ends)

2. Find a proper subdomain A, C E with finite topology, s.t.

OA, = v1(n) U ~2(n) and after rescaling, the cpt shadowed pieces converge.

Use A, (suitably modified in a cpt set)
as a barrier to solve a Plateau probl

in one of its complements: Take

a C M, enclosing a planar end.

a ~ a, C A, closed curve ~

</ 7, = 754§, C R3 — A, PEMS stable noncpt 9S, = a,
3 . = S, lies in the complement of A,
</ ‘1_‘ converges after d f 5 h . t | h
o " rescaling = ends of S, are horizontal graphs
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Properness IlI: Discarding a Riemann minimal example (sketch)

Suppose (C1) holds with M., = Riemann minimal example.

1. My has vertical flux (hence it has tilted planar ends)

2. Find a proper subdomain A, C E with finite topology, s.t.

OA, = v1(n) U ~2(n) and after rescaling, the cpt shadowed pieces converge.

Use A, (suitably modified in a cpt set)

as a barrier to solve a Plateau probl
in one of its complements: Take
a C M, enclosing a planar end.
f/ a ~ a, C A, closed curve ~
S, c R®— A, PEMS stable noncpt 95, = a,,
~ S, lies in the complement of A,

- converges after .
o “ rescaling = ends of S, are horizontal graphs
But A,(S, — ps) has ends trapped

between those of \,(A, — pp),
hich ‘become’ tilted planes
A : (limit tgt plane of M) !

\

)
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Properness |V: Discarding a minimal parking garage (sketch)

Suppose (C2) occurs: {An(M, — pn)}n converges to a minimal parking garage
structure with two columns.
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Properness |V: Discarding a minimal parking garage (sketch)

Suppose (C2) occurs: {An(M, — pn)}n converges to a minimal parking garage
structure with two columns.

@ For n sufficiently large, take v, C M, C E a ‘connection loop'.

@ Lemma 1 gives that Flux(E,~,) is vertical = planes in the limiting parking
garage are vertical.

@ Adapt the arguments that ruled out a Riemann minimal example.
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Properness V: Discarding a catenoid (sketch)
Suppose (C1) holds with M., = catenoid.

~: waist circle of My, ~ v, C M, convex planar curve s.t. {X,(vn — pn)}n — -
1. M has vertical flux (by Lemma 1).
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Properness V: Discarding a catenoid (sketch)
Suppose (C1) holds with M, = catenoid.

~: waist circle of My, ~ v, C M, convex planar curve s.t. {X,(vn — pn)}n — -
1. My has vertical flux (by Lemma 1).

2. Three subcases (after subseq):

@ ~, does not wind around 0 & encloses at least two ends of E Vn

@ ~, winds around 0 (= ~,, Yo+« topologically concentric Vn, k).

@ ~, does not wind around 0 & encloses exactly one end of E Vn.

Case (D1)
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Properness V: Discarding a catenoid (sketch)
Suppose (C1) holds with M, = catenoid.

~: waist circle of My, ~- v, C M, convex planar curve s.t. {\,(7n — pn)}n =7
1. My has vertical flux (by Lemma 1).
2. Three subcases (after subseq):

@ ~, does not wind around 0 & encloses at least two ends of E Vn.

@ ~, winds around 0 (= ~,, Yo+« topologically concentric Vn, k).

@ ~, does not wind around 0 & encloses exactly one end of E Vn.
Strategy:

@ Rule out (D1) (Lépez-Ros deformation argument).

@ Prove Lemma 2 & rule out (D2) (rescaling-by-topology, MLCT, LRST).
© Discard (D3) (rescaling-by-topology, MLCT, CM 1-sided curv estim).

Lemma 2

If {pn}n — Poo € R® and (D3) holds Vn = E lies at one side of {x3 = x3(pso)}. J

Joaquin Pérez (UGR) Embedded Calabi-Yau problem

VMG 14/17



Properness VI: Discarding a catenoid, case (D1) (sketch)

Suppose (C1) holds with M., = catenoid and (D1) holds Vn.
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Properness VI: Discarding a catenoid, case (D1) (sketch)

Suppose (C1) holds with M., = catenoid and (D1) holds Vn.

@ v, = dR(n), R(n) C E proper, finite topol domain with at least two ends &
vertical flux.
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Properness VI: Discarding a catenoid, case (D1) (sketch)

Suppose (C1) holds with M., = catenoid and (D1) holds Vn.

@ v, = dR(n), R(n) C E proper, finite topol domain with at least two ends &
vertical flux.

@ For n large, choose C, C E s.t. v, C Int(C,), C, arbitrarily close to a

rescaling of a fixed large cpt unstable piece C of a vertical catenoid,with
0C,: two cnvx horiz curves.
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Properness VI: Discarding a catenoid, case (D1) (sketch)

Suppose (C1) holds with M., = catenoid and (D1) holds Vn.

@ 7, = 9dR(n), R(n) C E proper, finite topol domain with at least two ends &
vertical flux.

@ For n large, choose C, C E s.t. v, C Int(C,), C, arbitrarily close to a

rescaling of a fixed large cpt unstable piece C of a vertical catenoid,with
0C,: two cnvx horiz curves.

@ The open planar disks D;(n), D2(n) C R3 bded by OC, are disjoint from
R(n) (otherwise use a cpt portion of R(n) in the 'interior’ of

Cn, U Dy(n) U Dy(n) as a barrier to find a stable min annulus with bdry 9C,,
contradicting Meeks-White).
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Properness VI: Discarding a catenoid, case (D1) (sketch)

Suppose (C1) holds with M., = catenoid and (D1) holds Vn.

@ 7, = 9dR(n), R(n) C E proper, finite topol domain with at least two ends &
vertical flux.

@ For n large, choose C, C E s.t. v, C Int(C,), C, arbitrarily close to a
rescaling of a fixed large cpt unstable piece C of a vertical catenoid,with
0C,: two cnvx horiz curves.

@ The open planar disks D;(n), D2(n) C R3 bded by OC, are disjoint from
R(n) (otherwise use a cpt portion of R(n) in the 'interior’ of
Cn, U Dy(n) U Dy(n) as a barrier to find a stable min annulus with bdry 9C,,
contradicting Meeks-White).

@ R(n)U D(v,) is a properly emb piecewise smooth surface = separates R3,
Apply Lépez-Ros argument to R(n) to find a contradiction.

This discards case (D1).
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Properness VII: Discarding a catenoid, case (D2) (sketch)

Lemma 2
If {Pn}n — Poo € R® and (D3) holds ¥n = E lies at one side of {x3 = x3(pso)}- J
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Properness VII: Discarding a catenoid, case (D2) (sketch)

If {Pn}n — Poo € R® and (D3) holds ¥n = E lies at one side of {x3 = x3(pso)}-
Proof: (D3) holds = ~, = OR(n), R(n) C E proper annulus.

Lemma 2 J
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Properness VII: Discarding a catenoid, case (D2) (sketch)
Lemma 2
If {Pn}n — Poo € R and (D3) holds ¥n = E lies at one side of {x3 = x3(pxo)}- J

Proof: (D3) holds = ~, = OR(n), R(n) C E proper annulus.
We can assume total curv R(n) arbitrarily small

= Gauss map of R(n) is arbitr close to e; (or —e3)

= R(n) is graphical over its projection to {x3 = 0}.
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Properness VII: Discarding a catenoid, case (D2) (sketch)

Lemma 2
If {Pn}n — Poo € R and (D3) holds ¥n = E lies at one side of {x3 = x3(pxo)}- J

Proof: (D3) holds = ~, = OR(n), R(n) C E proper annulus.
We can assume total curv R(n) arbitrarily small

= Gauss map of R(n) is arbitr close to e; (or —e3)

= R(n) is graphical over its projection to {x3 = 0}.

{ntn = Poo = {R(n)}n = {x3 = x3(Poc)} = {Poc} (smoothly).
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Properness VII: Discarding a catenoid, case (D2) (sketch)

Lemma 2
If {Pn}n — Poo € R and (D3) holds ¥n = E lies at one side of {x3 = x3(pxo)}- J

Proof: (D3) holds = ~, = OR(n), R(n) C E proper annulus.
We can assume total curv R(n) arbitrarily small

= Gauss map of R(n) is arbitr close to e; (or —e3)

= R(n) is graphical over its projection to {x3 = 0}.

{ntn = Poo = {R(n)}n = {x3 = x3(Poc)} = {Poc} (smoothly).

By contrad, suppose {x3 = x3(pso)} intersects E at an interior point
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Properness VII: Discarding a catenoid, case (D2) (sketch)

Lemma 2

If {Pn}n — Poo € R and (D3) holds ¥n = E lies at one side of {x3 = x3(pxo)}- }

Proof: (D3) holds = ~, = OR(n), R(n) C E proper annulus.
We can assume total curv R(n) arbitrarily small

= Gauss map of R(n) is arbitr close to e3 (or —e3)

= R(n) is graphical over its projection to {x3 = 0}.

{ntn = Poo = {R(n)}n = {x3 = x3(Poc)} = {Poc} (smoothly).

By contrad, suppose {x3 = x3(pso)} intersects E at an interior point
= {x3 = x3(Pso)} — {Poo} intersects E transversely at some interior point

Joaquin Pérez (UGR) Embedded Calabi-Yau problem VMG
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Properness VII: Discarding a catenoid, case (D2) (sketch)
Lemma 2
If {Pn}n — Poo € R and (D3) holds ¥n = E lies at one side of {x3 = x3(pxo)}- J

Proof: (D3) holds = ~, = OR(n), R(n) C E proper annulus.
We can assume total curv R(n) arbitrarily small

= Gauss map of R(n) is arbitr close to e3 (or —e3)

= R(n) is graphical over its projection to {x3 = 0}.

{ntn = Poo = {R()}n = {xs = x3(Poo)} = {Poo} (smoothly).

By contrad, suppose {x3 = x3(pso)} intersects E at an interior point
= {x3 = x3(Pso)} — {Po} intersects E transversely at some interior point
= for n large, R(n) intersects E — R(n) !
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Properness VII: Discarding a catenoid, case (D2) (sketch)

Lemma 2
If {Pn}n — Poo € R and (D3) holds ¥n = E lies at one side of {x3 = x3(pxo)}- J

How to rule out case (D2): Define D,, D!, C,, that bound W, cpt. Take k > 1.

______

/
D n
Rin, k) O
< n+k . ’
/
_ntk
> C Crik
Tn+k (much smaller,
ntk it could be inside C,)

Relative position of W,,, W, ?
Arguments as those that ruled out (D1) imply now W, C Int(W,) for n, k
large.
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Properness VII: Discarding a catenoid, case (D2) (sketch)

Lemma 2
If {Pn}n — Poo € R® and (D3) holds ¥n = E lies at one side of {x3 = x3(pso)}- J

How to rule out case (D2):
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Properness VII: Discarding a catenoid, case (D2) (sketch)
Lemma 2
If {Pn}n — Poo € R® and (D3) holds ¥n = E lies at one side of {x3 = x3(pso)}- J

How to rule out case (D2):

Reindexing and taking subseq,
Wpi1 C Int(W,) Vn
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Properness VII: Discarding a catenoid, case (D2) (sketch)
Lemma 2
If {Pn}n — Poo € R® and (D3) holds ¥n = E lies at one side of {x3 = x3(pso)}- J

How to rule out case (D2):

Reindexing and taking subseq,

Wpi1 C Int(W,) Vn

= ﬂ W, = {cxo}, Coo € R3.
neN
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Properness VII: Discarding a catenoid, case (D2) (sketch)

Lemma 2
If {Pn}n — Poo € R and (D3) holds ¥n = E lies at one side of {x3 = x3(pxo)}- J

How to rule out case (D2):

Reindexing and taking subseq,

Wpi1 C Int(W,) Vn

= (| Wa = {cxc}, co € R%. W,
neN

E N[Int(Wr) — {co}] locally posit inject rad

(otherwise rescale by topology,

find a vertical catenoid as limit and B,

@ Discard (D1) by Lépez-Ros,

@ Discard (D2) because 'catenoids’ are concentric,

@ Discard (D3) by Lemma 2 1)
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Properness VII: Discarding a catenoid, case (D2) (sketch)

Lemma 2
If {Pn}n — Poo € R and (D3) holds ¥n = E lies at one side of {x3 = x3(pxo)}- }

How to rule out case (D2):

Reindexing and taking subseq,

Wit C Int(W,) Vn

= ﬂ W, = {cx}, €0 € R3. W,
neN

E N [Int(W1) — {co }] locally posit inject rad

| t 1 Coo
= L= EN[Ing(Wh) — {e}] ) ieed
min lamination of Int(W;) — {c} 0’4
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Properness VII: Discarding a catenoid, case (D2) (sketch)

Lemma 2
If {Pn}n — Poo € R and (D3) holds ¥n = E lies at one side of {x3 = x3(pxo)}- J

How to rule out case (D2):

Reindexing and taking subseq,

Wit C Int(W,) Vn

= ﬂ W, = {cx}, €0 € R3. W,
neN

E N [Int(W1) — {co }] locally posit inject rad

Int(w1)—{cse
= L= En[nt(W) — {cf] 0Tt
min lamination of Int(W;) — {cw }, Oo
without limit leaves in a neighb of ¢,
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Properness VII: Discarding a catenoid, case (D2) (sketch)

Lemma 2
If {Pn}n — Poo € R and (D3) holds ¥n = E lies at one side of {x3 = x3(pxo)}- J

How to rule out case (D2):

Reindexing and taking subseq,

Wpi1 C Int(W,) Vn

= (| Wa = {cxc}, co € R%. W,
neN

E N [Int(W1) — {co }] locally posit inject rad

Int(Wy)—{co}

= L:=EN[int(W) — {cx}]
min lamination of Int(W;) — {cx}, 0
without limit leaves in a neighb of ¢4

= in some cpt neighb U of c,

. (LRST)
LN Uis a PEMS of genus zero © =~ LN U extends smoothly across ¢, !!

This discards case (D2).
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Properness VIII: Discarding a catenoid, case (D3) (sketch)
Suppose (C1) holds with M, vertical catenoid and (D3) holds Vn.

Cn+1
Tnt1 R(n + 1)

CI 1
R(n
f)/" ( )

vn = OR(n), R(n) C E proper graphical ann, log(R(n)) .0 (Length(v,) — 0)
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Properness VIII: Discarding a catenoid, case (D3) (sketch)
Suppose (C1) holds with M, vertical catenoid and (D3) holds Vn.

Cn+1
Vnt1 R(n T 1)

Cn

R(n
fy’l?, ( )

vn = OR(n), R(n) C E proper graphical ann, log(R(n)) .0 (Length(v,) — 0)
@ E islocally simply cnn in R3: Otherwise 3p,, € R3 s.t. E not loc simply cnn

Lemma 2)

in any neighb of poo m22) £ Jies at one side S of MN(pso) = {x3 = x3(Pc) }
& MN(poo) = lim, R(pso, 1), R(poo, n) C E proper graphical annuli.
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Properness VIII: Discarding a catenoid, case (D3) (sketch)
Suppose (C1) holds with M., vertical catenoid and (D3) holds Vn.

Cn+1
Vnt1 R(n T 1)

CI 1
R(n
f)/n < )

vn = OR(n), R(n) C E proper graphical ann, log(R(n)) .0 (Length(v,) — 0)
@ E islocally simply cnn in R3: Otherwise 3p,, € R3 s.t. E not loc simply cnn

Lemma 2)

in any neighb of poo m22) £ Jies at one side S of MN(pso) = {x3 = x3(Pc) }
& MN(poo) = lim, R(pso, 1), R(poo, n) C E proper graphical annuli.

E loc simply cnn around every in R® — {p..}: otherwise we contradict
Lemma 2 or that R(peo, ) N R(q, n) # @ for n large (provided that E not
loc simply cnn around g € M(poc) — {Poo})
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Properness VIII: Discarding a catenoid, case (D3) (sketch)
Suppose (C1) holds with M, vertical catenoid and (D3) holds Vn.

Cn+1
Vnt1 R(n T 1)

Cn

R(n
fy’l?, ( )

vn = OR(n), R(n) C E proper graphical ann, log(R(n)) .0 (Length(v,) — 0)
@ E islocally simply cnn in R3: Otherwise 3p,, € R3 s.t. E not loc simply cnn

Lemma 2)

in any neighb of poo m22) £ Jies at one side S of MN(pso) = {x3 = x3(Pc) }
& MN(poo) = lim, R(pso, 1), R(poo, n) C E proper graphical annuli.
E loc simply cnn around every in R® — {p..}

R
= Ly =F— 9E" "=} min lamination of R? — (OE U{px}) (MLCT)
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Properness VIII: Discarding a catenoid, case (D3) (sketch)
Suppose (C1) holds with M., vertical catenoid and (D3) holds Vn.

OTL+1
Vnt1 R(n T 1)

Cn

R(n
f)/n < )

vn = OR(n), R(n) C E proper graphical ann, log(R(n)) .0 (Length(v,) — 0)
@ E islocally simply cnn in R3: Otherwise 3p,, € R3 s.t. E not loc simply cnn

Lemma 2)

in any neighb of poo m22) £ Jies at one side S of MN(pso) = {x3 = x3(Pc) }
& MN(poo) = lim, R(pso, 1), R(poo, n) C E proper graphical annuli.
E loc simply cnn around every in R — {p..}

v S 1 S P 3
= Ly:=E—-0E min lamination of R* — (0FE U {pso})

E properly emb in S: otherwise 3L; € £ limit leaf hence horiz plane &
E C slab[M(poo), L1] !
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Properness VIII: Discarding a catenoid, case (D3) (sketch)
Suppose (C1) holds with M., vertical catenoid and (D3) holds Vn.

OTL+1
Vnt1 R(n T 1)

Cn

R(n
f)/n < )

vn = OR(n), R(n) C E proper graphical ann, log(R(n)) .0 (Length(v,) — 0)
@ E islocally simply cnn in R3: Otherwise 3p,, € R3 s.t. E not loc simply cnn

Lemma 2)

in any neighb of poo m22) £ Jies at one side S of MN(pso) = {x3 = x3(Pc) }
& MN(poo) = lim, R(pso, 1), R(poo, n) C E proper graphical annuli.

E loc simply cnn around every in R — {p..}
Rl
= Ly =F— BE" =) min Iaminationpmc R3 — (OE U {po})

E properly emb in S

to the portion of nothing of E

E—-R (poo, ”) enters here
above R(poo, n) !!

R(pso,n+1)

R(poo,m)
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Properness VIII: Discarding a catenoid, case (D3) (sketch)
Suppose (C1) holds with M, vertical catenoid and (D3) holds Vn.

Cn+1
Vnt1 R(n T 1)

CI 1
R(n
f)/" ( )

~vn = OR(n), R(n) C E proper graphical ann, Iog(R( )) 0 (Length(~y,) — 0)

@ E is locally simply cnnin R® = £ :=E — E—0E" % min lam of R3 — 9E.
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Properness VIII: Discarding a catenoid, case (D3) (sketch)
Suppose (C1) holds with M, vertical catenoid and (D3) holds Vn.

Cn+1
Vnt1 R(n T 1)

CI 1
R(n
fy’l?, ( )

~vn = OR(n), R(n) C E proper graphical ann, Iog(R( )) 0 (Length(~y,) — 0)

o Eis locally simply cnn in R3 = £:=E —0E . °° min lam of R3 — 9E.

@ If E not proper = L' := L — (E — 8E)]R # @ min lamin £’ consisting of
horizontal planes.
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Properness VIII: Discarding a catenoid, case (D3) (sketch)
Suppose (C1) holds with M, vertical catenoid and (D3) holds Vn.

Cn+1
Vnt1 R(n T 1)

CI 1
R(n
fy’l?, ( )

~vn = OR(n), R(n) C E proper graphical ann, Iog(R( )) 0 (Length(~y,) — 0)

o Eis locally simply cnn in R3 = £:=E —0E . °° min lam of R3 — 9E.

@ If E not proper = L' := L — (E — 8E)]R # @ min lamin £’ consisting of
horizontal planes.

@ [’ consists of a single plane M: If AN #£ 1" € L' = E C slab[M,N’] !
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Properness VIII: Discarding a catenoid, case (D3) (sketch)
Suppose (C1) holds with M, vertical catenoid and (D3) holds Vn.

Cn+1
Vnt1 R(n T 1)

CI 1
R(n
fy’l?, ( )

~vn = OR(n), R(n) C E proper graphical ann, Iog(R( )) 0 (Length(~y,) — 0)

o Eis locally simply cnn in R3 = £:=E —0E . °° min lam of R3 — 9E.

@ If E not proper = L' := L — (E — 8E)]R # @ min lamin £’ consisting of
horizontal planes.

@ [’ consists of a single plane M = E proper in S(M) = {x3 < x3(M)}.
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Properness VIII: Discarding a catenoid, case (D3) (sketch)
Suppose (C1) holds with M, vertical catenoid and (D3) holds Vn.

Cn+1
Vnt1 R(n T 1)

CI 1
R(n
fy’l?, ( )

~vn = OR(n), R(n) C E proper graphical ann, Iog(R(q)) 0 (Length(~y,) — 0)

o Eis locally simply cnn in R3 = £:=E —0E . °° min lam of R3 — 9E.

3
@ If E not proper = L' := L — (E — 8E)]R # @ min lamin £’ consisting of
horizontal planes.

@ L’ consists of a single plane I = E proper in S(IN) = {x3 < x3(MM)}.

@ Meeks-Rosenberg (CM 1-sided curv estim) = /¢ not bded away from zero in

any {x3(MM) —§ < x3 < x3(M)}, 6 > 0.
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Properness VIII: Discarding a catenoid, case (D3) (sketch)
Suppose (C1) holds with M., vertical catenoid and (D3) holds Vn.

Cn+l
Vnt1 R(TL +1 )

CI 1
R(n
f)/n ( )

~vn = OR(n), R(n) C E proper graphical ann, Iog(R(q)) 0 (Length(~y,) — 0)

o Eis locally simply cnn in R3 = £:=E —0E . °° min lam of R3 — 9E.

3
@ If E not proper = L' := L — (E — 3E)]R # @ min lamin £’ consisting of
horizontal planes.

@ L’ consists of a single plane I = E proper in S(IN) = {x3 < x3(MM)}.

@ Meeks-Rosenberg (CM 1-sided curv estim) = /¢ not bded away from zero in

any {x3(M) —d < x3 < x3(M}, § > 0.

@ Adapt the separation arguments above to show that JE cannot be joined
the portion of E — R(n) above R(n) for n large !!  (final contradiction)
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