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The Calabi-Yau problem for minimal surfaces (all surfaces are orientable)

Calabi-Yau (1966-2000): Can a complete embedded minimal surface be
contained in a ball (halfspace)?

Nadirashvili (Inventiones 1996): ∃M ⊂ B(1) compl immersed minimal disk.

Hoffman-Meeks (Inventiones 1990): If M ⊂ R3 properly immersed,
nonplanar minimal surface ⇒ M cannot be contained in a halfspace.

Question (embedded Calabi-Yau problem):

M ⊂ R3 complete embedded minimal surface (CEMS). Is M proper?

Theorem 1 (Meeks-P-Ros, JDG 2004)

M ⊂ R3 CEMS with finite genus and KM locally bded ⇒ M proper.

Theorem 2 (Colding-Minicozzi, Annals 2008)

M ⊂ R3 CEMS with finite topology ⇒ M proper.

Theorem 3 (MLCT, Meeks-Rosenberg, Duke 2006)

M ⊂ R3 CEMS with positive injectivity radius ⇒ M proper.
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The embedded Calabi-Yau problem for finite genus
M ⊂ R3 CEMS ⇒ M noncompact ⇒ E(M) = {ends of M} 6= Ø.

Definition 1 (set of ends)

E(M) = A/∼, where A = {α : [0,∞)→ M proper arc} and
α1 ∼ α2 if ∀C ⊂ M cpt set, α1, α2 lie eventually in the same compnt of M − C .
E ⊂ M noncpt subdomain, ∂E cpt. E represents [α] ∈ E(M) if α[t0,∞) ⊂ E for
some t0.

Theorem 4 (Collin-Kusner-Meeks-Rosenberg, JDG 2004)

If M ⊂ R3 proper EMS ⇒ E(M) countable.

Theorem 5 (Meeks-P-Ros, 2018)

M ⊂ R3 CEMS with finite genus and countably many ends ⇒ M proper.

Definition 2 (limit ends)

E(M) ↪→ [0, 1] embedding. e ∈ E(M) simple end if e isolated in E(M).
e ∈ E(M) limit end if not isolated.
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The embedded Calabi-Yau problem for finite genus, II

Theorem 6 (Meeks-P-Ros, 2018)

M ⊂ R3 CEMS, ∂M cpt, g(M) <∞, #(E(M)) =∞.
If M has countably many limit ends ⇒ M proper & M has 1 or 2 limit ends.

Sketch of proof of Thm 6:
Take M ⊂ R3 as in Thm 6. Baire’s Thm ⇒ isolated points in Elimit(M) (simple
limit ends) are dense. So it suffices to show:

1 If M has 1 or 2 simple limit ends ⇒ M proper.

2 M cannot have 3 simple limit ends (thus M has 1 or 2 limit ends, both
simple).
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Sketch of proof of Thm 6:
Take M ⊂ R3 as in Thm 6. Baire’s Thm ⇒ isolated points in Elimit(M) (simple
limit ends) are dense. So it suffices to show:

1 If M has 1 or 2 simple limit ends ⇒ M proper.

2 M cannot have 3 simple limit ends (thus M has 1 or 2 limit ends, both
simple).

Theorem 7 (Meeks-P-Ros, Inventiones 2004)

If M ⊂ R3 PEMS, ∂M = Ø, g(M) <∞ ⇒ M cannot have just 1 limit end.
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Theorem 6 (Meeks-P-Ros, 2018)
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2 M cannot have 3 simple limit ends (thus M has 1 or 2 limit ends, both
simple).

Proposition 1 (Christmas tree picture)

E simple limit end of M ⊂ R3 CEMS, g(E)=0 ⇒ E proper and ...
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limit ends) are dense. So it suffices to show:

1 If M has 1 or 2 simple limit ends ⇒ M proper.

2 M cannot have 3 simple limit ends (thus M has 1 or 2 limit ends, both
simple).

Proposition 1 (Christmas tree picture)

E simple limit end of M ⊂ R3 CEMS, g(E)=0 ⇒ E proper and after passing to a
smaller end representative, translation, rotation & homothety:

(1) Simple ends of E have FTC & log ≤ 0 (4) ∃f : R+ → E orient preserving
(2) The limit end of E is the top end diffeo (R+ = top half of a

(3) ∂E = ∂D, D
cnvx⊂ {x3 = 0},

◦
D ∩E = Ø Riemann min example)
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The Christmas tree picture for a simple limit end of genus zero

DE
(x1, x2)− plane

genus zero

FE = (h, 0, 1)

Flux along
boundary

1

2

3

4

5

simple limit end

simple ends

logarithmic

growths ≤ 0
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Discarding 3 simple limit ends for a CEMS

Produce Ẽ2 area minimizing in X3 with cpt bdry, thus with FTC (Fischer-Colbrie)

⇒ Ẽ2 has a highest catenoidal end C of positive logarithmic growth.
None of the annular ends of E1 can lie above C ⇒ E1 lies between two half
catenoids !!
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Proving the Christmas tree picture: properness
E simple limit end representative of M ⊂ R3 CEMS, g(E ) = 0.

Topologically, E ≡ D−
[
{ 1

2n}n ∪ {0}
]
, ∂E ≡ ∂D = S1

.

We will use:

Theorem 7 (MLCT Meeks-Rosenberg, Duke 2006)

M ⊂ R3 CEMS with ∂M cpt.

If IM ≥ ε > 0 outside some δ-neighb of ∂M ⇒ M proper.

If M has finite topology ⇒ IM ≥ ε > 0 outside some δ-neighb of ∂M.

So it suffices to show: IE ≥ ε > 0 outside some δ-neighb of ∂E?

Description of the annular ends in E :
En CEMS, finite topology, ∂En cpt
(Thm 7)⇒ En proper
(Collin)⇒ En has catenoidal or planar

ends, that we will assume horizontal
(after rotation indep of n).
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Proving the Christmas tree picture: properness II

Arguing by contrad, assume ∃{qn}n ⊂ E s.t. dE (qn, ∂E ) ≥ δ > 0 and IE (qn)→ 0.

Rescale by topology (Meeks-P-Ros, JDG 2018): ∃{pn}n ⊂ E , εn ↘ 0 s.t.
dE (qn, pn)→ 0 and

Mn:=closure of cpnt of E ∩ B(pn, εn) that contains pn is cpt,
∂Mn ⊂ ∂B(pn, εn)− ∂E ,

λn := 1/IE (pn), λnIE ≥ 1− 1
n in Mn, λnεn →∞,

{λn(Mn − pn)}n converges to one of the two following cases:

(C1) A PEMS M∞ ⊂ R3 with ~0 ∈ M∞, IM∞ ≥ 1, IM∞(~0) = 1, hence a catenoid
or Riemann minimal example (Meeks-P-Ros, Annals 2015).

(C2) A minimal parking garage structure with two columns.

How to find a contradiction in cases (C1) and (C2)?
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connection loop
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Properness III: Discarding a Riemann minimal example (sketch)

Suppose (C1) holds with M∞ = Riemann minimal example.
1. M∞ has vertical flux (hence it has tilted planar ends).
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Properness III: Discarding a Riemann minimal example (sketch)

Suppose (C1) holds with M∞ = Riemann minimal example.
1. M∞ has vertical flux (hence it has tilted planar ends).
Proof: γ: ‘waist’ circle of M∞  γn ⊂ Mn convex planar curve s.t.
{λn(γn − pn)}n → γ.

Lemma 1

For n large, Flux(E , γn) is vertical (thus Flux(M∞, γ) vertical).

Proof:

If γn does not wind around 0 ⇒ γn homologous to finitely many loops
around annular ends of E , all with vertical flux ⇒ Flux(E , γn) vertical.

If γn winds around 0 ∀n (after subseq) ⇒ γn homologous to γn+k plus
finitely many loops around annular ends of E ⇒
Flux(E , γn) = Flux(E , γn+k) + vert(n, k) ⇒ Fluxhoriz(E , γn+k) indep of n, k.
As length(γn) = 0⇒ Fluxhoriz(E , γn) = 0 ∀n.
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Properness III: Discarding a Riemann minimal example (sketch)

Suppose (C1) holds with M∞ = Riemann minimal example.
1. M∞ has vertical flux (hence it has tilted planar ends).
2. Find a proper subdomain ∆n ⊂ E with finite topology, s.t.
∂∆n = γ1(n) ∪ γ2(n) and after rescaling, the cpt shadowed pieces converge.

Γ4

Γ3

Γ2

Γ1

Ω1,2

Ω2,3

Ω3,4

γ2(n)

γ1(n)

converges after
rescaling

∆n = ∆n(1, 2)
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α
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Use ∆n (suitably modified in a cpt set)
as a barrier to solve a Plateau probl
in one of its complements: Take

α ⊂ M∞ enclosing a planar end.
α αn ⊂ ∆n closed curve
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Use ∆n (suitably modified in a cpt set)
as a barrier to solve a Plateau probl
in one of its complements: Take

α ⊂ M∞ enclosing a planar end.
α αn ⊂ ∆n closed curve  

Sn ⊂ R3 −∆n PEMS stable noncpt ∂Sn = αn

Sn lies in the complement of ∆n

⇒ ends of Sn are horizontal graphs
But λn(Sn − pn) has ends trapped

between those of λn(∆n − pn),
which ‘become’ tilted planes

(limit tgt plane of M∞) !!
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Properness IV: Discarding a minimal parking garage (sketch)

Suppose (C2) occurs: {λn(Mn − pn)}n converges to a minimal parking garage
structure with two columns.

For n sufficiently large, take γn ⊂ Mn ⊂ E a ‘connection loop’.

Lemma 1 gives that Flux(E , γn) is vertical ⇒ planes in the limiting parking
garage are vertical.

Adapt the arguments that ruled out a Riemann minimal example.
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Properness V: Discarding a catenoid (sketch)
Suppose (C1) holds with M∞ = catenoid.
γ: waist circle of M∞  γn ⊂ Mn convex planar curve s.t. {λn(γn − pn)}n → γ.
1. M∞ has vertical flux (by Lemma 1).
2. Three subcases (after subseq):

(D1) γn does not wind around 0 & encloses at least two ends of E ∀n.

(D2) γn winds around 0 (⇒ γn, γn+k topologically concentric ∀n, k).

(D3) γn does not wind around 0 & encloses exactly one end of E ∀n.
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(D2) γn winds around 0 (⇒ γn, γn+k topologically concentric ∀n, k).

(D3) γn does not wind around 0 & encloses exactly one end of E ∀n.

R(n)R(n+ 1)

γn+1 γn

γn
γn+1

γn+k

R(n, k)
R(n)R(n+ 1)

γn+1 γn

Case (D1) (D2) (D3)
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Properness V: Discarding a catenoid (sketch)
Suppose (C1) holds with M∞ = catenoid.
γ: waist circle of M∞  γn ⊂ Mn convex planar curve s.t. {λn(γn − pn)}n → γ.
1. M∞ has vertical flux (by Lemma 1).
2. Three subcases (after subseq):

(D1) γn does not wind around 0 & encloses at least two ends of E ∀n.

(D2) γn winds around 0 (⇒ γn, γn+k topologically concentric ∀n, k).

(D3) γn does not wind around 0 & encloses exactly one end of E ∀n.

Strategy:

1 Rule out (D1) (López-Ros deformation argument).

2 Prove Lemma 2 & rule out (D2) (rescaling-by-topology, MLCT, LRST).

3 Discard (D3) (rescaling-by-topology, MLCT, CM 1-sided curv estim).

Lemma 2

If {pn}n → p∞ ∈ R3 and (D3) holds ∀n⇒ E lies at one side of {x3 = x3(p∞)}.
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Properness VI: Discarding a catenoid, case (D1) (sketch)

Suppose (C1) holds with M∞ = catenoid and (D1) holds ∀n.

γn = ∂R(n), R(n) ⊂ E proper, finite topol domain with at least two ends &
vertical flux.

For n large, choose Cn ⊂ E s.t. γn ⊂ Int(Cn), Cn arbitrarily close to a
rescaling of a fixed large cpt unstable piece C of a vertical catenoid,with
∂Cn: two cnvx horiz curves.

The open planar disks D1(n),D2(n) ⊂ R3 bded by ∂Cn are disjoint from
R(n) (otherwise use a cpt portion of R(n) in the ’interior’ of
Cn ∪ D1(n) ∪ D2(n) as a barrier to find a stable min annulus with bdry ∂Cn,
contradicting Meeks-White).

R(n) ∪ D(γn) is a properly emb piecewise smooth surface ⇒ separates R3.
Apply López-Ros argument to R(n) to find a contradiction.

This discards case (D1).
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Properness VII: Discarding a catenoid, case (D2) (sketch)

Lemma 2

If {pn}n → p∞ ∈ R3 and (D3) holds ∀n⇒ E lies at one side of {x3 = x3(p∞)}.

Joaqúın Pérez (UGR) Embedded Calabi-Yau problem VMG 16 / 17



Properness VII: Discarding a catenoid, case (D2) (sketch)

Lemma 2

If {pn}n → p∞ ∈ R3 and (D3) holds ∀n⇒ E lies at one side of {x3 = x3(p∞)}.
Proof: (D3) holds ⇒ γn = ∂R(n), R(n) ⊂ E proper annulus.
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If {pn}n → p∞ ∈ R3 and (D3) holds ∀n⇒ E lies at one side of {x3 = x3(p∞)}.
Proof: (D3) holds ⇒ γn = ∂R(n), R(n) ⊂ E proper annulus.
We can assume total curv R(n) arbitrarily small
⇒ Gauss map of R(n) is arbitr close to e3 (or −e3)
⇒ R(n) is graphical over its projection to {x3 = 0}.
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By contrad, suppose {x3 = x3(p∞)} intersects E at an interior point
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Lemma 2

If {pn}n → p∞ ∈ R3 and (D3) holds ∀n⇒ E lies at one side of {x3 = x3(p∞)}.
Proof: (D3) holds ⇒ γn = ∂R(n), R(n) ⊂ E proper annulus.
We can assume total curv R(n) arbitrarily small
⇒ Gauss map of R(n) is arbitr close to e3 (or −e3)
⇒ R(n) is graphical over its projection to {x3 = 0}.
{γn}n → p∞ ⇒ {R(n)}n → {x3 = x3(p∞)} − {p∞} (smoothly).

By contrad, suppose {x3 = x3(p∞)} intersects E at an interior point
⇒ {x3 = x3(p∞)} − {p∞} intersects E transversely at some interior point
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Properness VII: Discarding a catenoid, case (D2) (sketch)

Lemma 2

If {pn}n → p∞ ∈ R3 and (D3) holds ∀n⇒ E lies at one side of {x3 = x3(p∞)}.
Proof: (D3) holds ⇒ γn = ∂R(n), R(n) ⊂ E proper annulus.
We can assume total curv R(n) arbitrarily small
⇒ Gauss map of R(n) is arbitr close to e3 (or −e3)
⇒ R(n) is graphical over its projection to {x3 = 0}.
{γn}n → p∞ ⇒ {R(n)}n → {x3 = x3(p∞)} − {p∞} (smoothly).

By contrad, suppose {x3 = x3(p∞)} intersects E at an interior point
⇒ {x3 = x3(p∞)} − {p∞} intersects E transversely at some interior point
⇒ for n large, R(n) intersects E − R(n) !!
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Properness VII: Discarding a catenoid, case (D2) (sketch)

Lemma 2

If {pn}n → p∞ ∈ R3 and (D3) holds ∀n⇒ E lies at one side of {x3 = x3(p∞)}.
How to rule out case (D2): Define Dn,D

′
n,Cn, that bound Wn cpt. Take k � 1.

γn Dn

γn+k
Dn+k

D′
n

D′
n+k

R(n, k)

Cn

Cn+k

(much smaller,
it could be inside Cn)

γn

γn+k

Cn

Cn+k

annular
ends

R(n, k)

Relative position of Wn,Wn+k?
Arguments as those that ruled out (D1) imply now Wn+k ⊂ Int(Wn) for n, k
large.
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Lemma 2

If {pn}n → p∞ ∈ R3 and (D3) holds ∀n⇒ E lies at one side of {x3 = x3(p∞)}.
How to rule out case (D2):
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Dn γn
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Lemma 2

If {pn}n → p∞ ∈ R3 and (D3) holds ∀n⇒ E lies at one side of {x3 = x3(p∞)}.
How to rule out case (D2):

Wn
Wn+k

Dn+k
γn+k

Dn γn

D′
n+k

D′
n

Reindexing and taking subseq,
Wn+1 ⊂ Int(Wn) ∀n
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Dn γn

D′
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D′
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Reindexing and taking subseq,
Wn+1 ⊂ Int(Wn) ∀n
⇒
⋂
n∈N

Wn = {c∞}, c∞ ∈ R3.
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Properness VII: Discarding a catenoid, case (D2) (sketch)

Lemma 2

If {pn}n → p∞ ∈ R3 and (D3) holds ∀n⇒ E lies at one side of {x3 = x3(p∞)}.
How to rule out case (D2):

Wn
Wn+k

Dn+k
γn+k

Dn γn

D′
n+k

D′
n

Reindexing and taking subseq,
Wn+1 ⊂ Int(Wn) ∀n
⇒
⋂
n∈N

Wn = {c∞}, c∞ ∈ R3.

E ∩ [Int(W1)− {c∞}] locally posit inject rad

(otherwise rescale by topology,
find a vertical catenoid as limit and

Discard (D1) by López-Ros,

Discard (D2) because ’catenoids’ are concentric,

Discard (D3) by Lemma 2 !! )
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Properness VII: Discarding a catenoid, case (D2) (sketch)

Lemma 2

If {pn}n → p∞ ∈ R3 and (D3) holds ∀n⇒ E lies at one side of {x3 = x3(p∞)}.
How to rule out case (D2):
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Dn γn

D′
n+k

D′
n

Reindexing and taking subseq,
Wn+1 ⊂ Int(Wn) ∀n
⇒
⋂
n∈N

Wn = {c∞}, c∞ ∈ R3.

E ∩ [Int(W1)− {c∞}] locally posit inject rad

⇒ L := E ∩ [Int(W1)− {c∞}]
Int(W1)−{c∞}

min lamination of Int(W1)− {c∞}
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⇒ L := E ∩ [Int(W1)− {c∞}]
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min lamination of Int(W1)− {c∞},
without limit leaves in a neighb of c∞
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Properness VII: Discarding a catenoid, case (D2) (sketch)

Lemma 2

If {pn}n → p∞ ∈ R3 and (D3) holds ∀n⇒ E lies at one side of {x3 = x3(p∞)}.
How to rule out case (D2):

Wn
Wn+k

Dn+k
γn+k

Dn γn

D′
n+k

D′
n

Reindexing and taking subseq,
Wn+1 ⊂ Int(Wn) ∀n
⇒
⋂
n∈N

Wn = {c∞}, c∞ ∈ R3.

E ∩ [Int(W1)− {c∞}] locally posit inject rad

⇒ L := E ∩ [Int(W1)− {c∞}]
Int(W1)−{c∞}

min lamination of Int(W1)− {c∞},
without limit leaves in a neighb of c∞
⇒ in some cpt neighb U of c∞,

L ∩ U is a PEMS of genus zero
(LRST)⇒ L∩ U extends smoothly across c∞ !!

This discards case (D2).
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Properness VIII: Discarding a catenoid, case (D3) (sketch)
Suppose (C1) holds with M∞ vertical catenoid and (D3) holds ∀n.
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γn = ∂R(n), R(n) ⊂ E proper graphical ann, log(R(n))↗ 0 (Length(γn)→ 0)
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E is locally simply cnn in R3: Otherwise ∃p∞ ∈ R3 s.t. E not loc simply cnn

in any neighb of p∞
(Lemma 2)⇒ E lies at one side S of Π(p∞) = {x3 = x3(p∞)}

& Π(p∞) = limn R(p∞, n), R(p∞, n) ⊂ E proper graphical annuli.
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Suppose (C1) holds with M∞ vertical catenoid and (D3) holds ∀n.
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γn = ∂R(n), R(n) ⊂ E proper graphical ann, log(R(n))↗ 0 (Length(γn)→ 0)

E is locally simply cnn in R3: Otherwise ∃p∞ ∈ R3 s.t. E not loc simply cnn

in any neighb of p∞
(Lemma 2)⇒ E lies at one side S of Π(p∞) = {x3 = x3(p∞)}

& Π(p∞) = limn R(p∞, n), R(p∞, n) ⊂ E proper graphical annuli.
E loc simply cnn around every in R3 − {p∞}: otherwise we contradict
Lemma 2 or that R(p∞, n) ∩ R(q, n) 6= Ø for n large (provided that E not
loc simply cnn around q ∈ Π(p∞)− {p∞})

Joaqúın Pérez (UGR) Embedded Calabi-Yau problem VMG 17 / 17



Properness VIII: Discarding a catenoid, case (D3) (sketch)
Suppose (C1) holds with M∞ vertical catenoid and (D3) holds ∀n.
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E is locally simply cnn in R3: Otherwise ∃p∞ ∈ R3 s.t. E not loc simply cnn

in any neighb of p∞
(Lemma 2)⇒ E lies at one side S of Π(p∞) = {x3 = x3(p∞)}

& Π(p∞) = limn R(p∞, n), R(p∞, n) ⊂ E proper graphical annuli.
E loc simply cnn around every in R3 − {p∞}
⇒ L1 := E − ∂ER3−{p∞}

min lamination of R3 − (∂E ∪ {p∞}) (MLCT)
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Properness VIII: Discarding a catenoid, case (D3) (sketch)
Suppose (C1) holds with M∞ vertical catenoid and (D3) holds ∀n.
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γn = ∂R(n), R(n) ⊂ E proper graphical ann, log(R(n))↗ 0 (Length(γn)→ 0)

E is locally simply cnn in R3: Otherwise ∃p∞ ∈ R3 s.t. E not loc simply cnn

in any neighb of p∞
(Lemma 2)⇒ E lies at one side S of Π(p∞) = {x3 = x3(p∞)}

& Π(p∞) = limn R(p∞, n), R(p∞, n) ⊂ E proper graphical annuli.
E loc simply cnn around every in R3 − {p∞}
⇒ L1 := E − ∂ER3−{p∞}

min lamination of R3 − (∂E ∪ {p∞})
E properly emb in S : otherwise ∃L1 ∈ L1 limit leaf hence horiz plane &
E ⊂ slab[Π(p∞), L1] !!
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Properness VIII: Discarding a catenoid, case (D3) (sketch)
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E is locally simply cnn in R3: Otherwise ∃p∞ ∈ R3 s.t. E not loc simply cnn

in any neighb of p∞
(Lemma 2)⇒ E lies at one side S of Π(p∞) = {x3 = x3(p∞)}

& Π(p∞) = limn R(p∞, n), R(p∞, n) ⊂ E proper graphical annuli.
E loc simply cnn around every in R3 − {p∞}
⇒ L1 := E − ∂ER3−{p∞}

min lamination of R3 − (∂E ∪ {p∞})
E properly emb in S

R(p∞, n)

R(p∞, n + 1)

R(p∞, n + 2)

p∞ Π(p∞)

∂E

nothing of E

enters here

⇒ ∂E cannot be joined
to the portion of
E − R(p∞, n)
above R(p∞, n) !!
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E is locally simply cnn in R3 ⇒ L := E − ∂ER3−∂E
min lam of R3 − ∂E .

If E not proper ⇒ L′ := L − (E − ∂E )
R3

6= Ø min lamin L′ consisting of
horizontal planes.
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E is locally simply cnn in R3 ⇒ L := E − ∂ER3−∂E
min lam of R3 − ∂E .

If E not proper ⇒ L′ := L − (E − ∂E )
R3

6= Ø min lamin L′ consisting of
horizontal planes.

L′ consists of a single plane Π: If ∃Π 6= Π′ ∈ L′ ⇒ E ⊂ slab[Π,Π′] !!
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6= Ø min lamin L′ consisting of
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L′ consists of a single plane Π ⇒ E proper in S(Π) = {x3 < x3(Π)}.
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Suppose (C1) holds with M∞ vertical catenoid and (D3) holds ∀n.
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γn = ∂R(n), R(n) ⊂ E proper graphical ann, log(R(n))↗ 0 (Length(γn)→ 0)

E is locally simply cnn in R3 ⇒ L := E − ∂ER3−∂E
min lam of R3 − ∂E .

If E not proper ⇒ L′ := L − (E − ∂E )
R3

6= Ø min lamin L′ consisting of
horizontal planes.

L′ consists of a single plane Π ⇒ E proper in S(Π) = {x3 < x3(Π)}.
Meeks-Rosenberg (CM 1-sided curv estim) ⇒ IE not bded away from zero in
any {x3(Π)− δ < x3 < x3(Π)}, δ > 0.

Joaqúın Pérez (UGR) Embedded Calabi-Yau problem VMG 17 / 17



Properness VIII: Discarding a catenoid, case (D3) (sketch)
Suppose (C1) holds with M∞ vertical catenoid and (D3) holds ∀n.
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γn = ∂R(n), R(n) ⊂ E proper graphical ann, log(R(n))↗ 0 (Length(γn)→ 0)

E is locally simply cnn in R3 ⇒ L := E − ∂ER3−∂E
min lam of R3 − ∂E .

If E not proper ⇒ L′ := L − (E − ∂E )
R3

6= Ø min lamin L′ consisting of
horizontal planes.

L′ consists of a single plane Π ⇒ E proper in S(Π) = {x3 < x3(Π)}.
Meeks-Rosenberg (CM 1-sided curv estim) ⇒ IE not bded away from zero in
any {x3(Π)− δ < x3 < x3(Π)}, δ > 0.

Adapt the separation arguments above to show that ∂E cannot be joined to
the portion of E − R(n) above R(n) for n large !! (final contradiction)
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