The embedded Calabi-Yau problem for minimal surfaces of finite genus

Joaquín Pérez (joint work with Bill Meeks & Antonio Ros) email: jperez@ugr.es http://wdb.ugr.es/~jperez/

Work partially supported by the State Research Agency (SRA) and European Regional Development Fund (ERDF) Grants no. MTM2014-52368-P and MTM2017-89677-P (AEI/FEDER, UE)

Variational Methods in Geometry Princeton IAS, November 5-9 2018

Joaquín Pérez (UGR)

Embedded Calabi-Yau problem

- Calabi-Yau (1966-2000): Can a complete embedded minimal surface be contained in a ball (halfspace)?
- Nadirashvili (Inventiones 1996): $\exists M \subset \mathbb{B}(1)$ compl immersed minimal disk.
- Hoffman-Meeks (Inventiones 1990): If M ⊂ R³ properly immersed, nonplanar minimal surface ⇒ M cannot be contained in a halfspace.

Question (embedded Calabi-Yau problem):

 $M \subset \mathbb{R}^3$ complete embedded minimal surface (CEMS). Is *M* proper?

Theorem 1 (Meeks-P-Ros, JDG 2004)

 $M \subset \mathbb{R}^3$ CEMS with finite genus and K_M locally bded \Rightarrow M proper.

Theorem 2 (Colding-Minicozzi, Annals 2008)

 $M \subset \mathbb{R}^3$ CEMS with finite topology \Rightarrow M proper.

Theorem 3 (MLCT, Meeks-Rosenberg, Duke 2006)

- Calabi-Yau (1966-2000): Can a complete embedded minimal surface be contained in a ball (halfspace)?
- Nadirashvili (Inventiones 1996): $\exists M \subset \mathbb{B}(1)$ compl immersed minimal disk.
- Hoffman-Meeks (Inventiones 1990): If M ⊂ ℝ³ properly immersed, nonplanar minimal surface ⇒ M cannot be contained in a halfspace.

Question (embedded Calabi-Yau problem):

 $M \subset \mathbb{R}^3$ complete embedded minimal surface (CEMS). Is *M* proper?

Theorem 1 (Meeks-P-Ros, JDG 2004)

 $M \subset \mathbb{R}^3$ CEMS with finite genus and K_M locally bded $\Rightarrow M$ proper.

Theorem 2 (Colding-Minicozzi, Annals 2008)

 $M \subset \mathbb{R}^3$ CEMS with finite topology \Rightarrow M proper.

Theorem 3 (MLCT, Meeks-Rosenberg, Duke 2006)

- Calabi-Yau (1966-2000): Can a complete embedded minimal surface be contained in a ball (halfspace)?
- Nadirashvili (Inventiones 1996): $\exists M \subset \mathbb{B}(1)$ compl immersed minimal disk.
- Hoffman-Meeks (Inventiones 1990): If M ⊂ ℝ³ properly immersed, nonplanar minimal surface ⇒ M cannot be contained in a halfspace.

Question (embedded Calabi-Yau problem):

 $M \subset \mathbb{R}^3$ complete embedded minimal surface (CEMS). Is M proper?

Theorem 1 (Meeks-P-Ros, JDG 2004)

 $M \subset \mathbb{R}^3$ CEMS with finite genus and K_M locally bded $\Rightarrow M$ proper.

Theorem 2 (Colding-Minicozzi, Annals 2008)

 $M \subset \mathbb{R}^3$ CEMS with finite topology \Rightarrow M proper.

Theorem 3 (MLCT, Meeks-Rosenberg, Duke 2006)

- Calabi-Yau (1966-2000): Can a complete embedded minimal surface be contained in a ball (halfspace)?
- Nadirashvili (Inventiones 1996): $\exists M \subset \mathbb{B}(1)$ compl immersed minimal disk.
- Hoffman-Meeks (Inventiones 1990): If M ⊂ ℝ³ properly immersed, nonplanar minimal surface ⇒ M cannot be contained in a halfspace.

Question (embedded Calabi-Yau problem):

 $M \subset \mathbb{R}^3$ complete embedded minimal surface (CEMS). Is M proper?

Theorem 1 (Meeks-P-Ros, JDG 2004)

 $M \subset \mathbb{R}^3$ CEMS with finite genus and K_M locally bded $\Rightarrow M$ proper.

Theorem 2 (Colding-Minicozzi, Annals 2008)

 $M \subset \mathbb{R}^3$ CEMS with finite topology $\Rightarrow M$ proper.

Theorem 3 (MLCT, Meeks-Rosenberg, Duke 2006)

- Calabi-Yau (1966-2000): Can a complete embedded minimal surface be contained in a ball (halfspace)?
- Nadirashvili (Inventiones 1996): $\exists M \subset \mathbb{B}(1)$ compl immersed minimal disk.
- Hoffman-Meeks (Inventiones 1990): If $M \subset \mathbb{R}^3$ properly immersed, nonplanar minimal surface $\Rightarrow M$ cannot be contained in a halfspace.

Question (embedded Calabi-Yau problem):

 $M \subset \mathbb{R}^3$ complete embedded minimal surface (CEMS). Is M proper?

Theorem 1 (Meeks-P-Ros, JDG 2004)

 $M \subset \mathbb{R}^3$ CEMS with finite genus and K_M locally bded $\Rightarrow M$ proper.

Theorem 2 (Colding-Minicozzi, Annals 2008)

 $M \subset \mathbb{R}^3$ CEMS with finite topology $\Rightarrow M$ proper.

Theorem 3 (MLCT, Meeks-Rosenberg, Duke 2006)

 $M \subset \mathbb{R}^3 \text{ CEMS} \Rightarrow M \text{ noncompact } \Rightarrow \mathcal{E}(M) = \{\text{ends of } M\} \neq \emptyset.$

Definition 1 (set of ends)

 $\mathcal{E}(M) = \mathcal{A}/_{\sim}$, where $\mathcal{A} = \{\alpha : [0, \infty) \to M \text{ proper arc}\}$ and $\alpha_1 \sim \alpha_2$ if $\forall C \subset M$ cpt set, α_1, α_2 lie eventually in the same comput of M - C. $E \subset M$ noncpt subdomain, ∂E cpt. E represents $[\alpha] \in \mathcal{E}(M)$ if $\alpha[t_0, \infty) \subset E$ for some t_0 .

Theorem 4 (Collin-Kusner-Meeks-Rosenberg, JDG 2004) If $M \subset \mathbb{R}^3$ proper EMS $\Rightarrow \mathcal{E}(M)$ countable.

Theorem 5 (Meeks-P-Ros, 2018)

 $M \subset \mathbb{R}^3$ CEMS with finite genus and countably many ends \Rightarrow M proper.

Definition 2 (limit ends)

Definition 1 (set of ends)

 $\mathcal{E}(M) = \mathcal{A}/_{\sim}$, where $\mathcal{A} = \{\alpha : [0, \infty) \to M \text{ proper arc}\}$ and $\alpha_1 \sim \alpha_2$ if $\forall C \subset M$ cpt set, α_1, α_2 lie eventually in the same comput of M - C. $E \subset M$ noncpt subdomain, ∂E cpt. E represents $[\alpha] \in \mathcal{E}(M)$ if $\alpha[t_0, \infty) \subset E$ for some t_0 .

Theorem 4 (Collin-Kusner-Meeks-Rosenberg, JDG 2004) If $M \subset \mathbb{R}^3$ proper EMS $\Rightarrow \mathcal{E}(M)$ countable.

Theorem 5 (Meeks-P-Ros, 2018)

 $M \subset \mathbb{R}^3$ CEMS with finite genus and countably many ends \Rightarrow M proper.

Definition 2 (limit ends)

Definition 1 (set of ends)

 $\mathcal{E}(M) = \mathcal{A}/_{\sim}$, where $\mathcal{A} = \{\alpha : [0, \infty) \to M \text{ proper arc}\}$ and $\alpha_1 \sim \alpha_2$ if $\forall C \subset M$ cpt set, α_1, α_2 lie eventually in the same comput of M - C. $E \subset M$ noncpt subdomain, ∂E cpt. E represents $[\alpha] \in \mathcal{E}(M)$ if $\alpha[t_0, \infty) \subset E$ for some t_0 .

Theorem 4 (Collin-Kusner-Meeks-Rosenberg, JDG 2004)

If $M \subset \mathbb{R}^3$ proper $EMS \Rightarrow \mathcal{E}(M)$ countable.

Theorem 5 (Meeks-P-Ros, 2018)

 $M \subset \mathbb{R}^3$ CEMS with finite genus and countably many ends \Rightarrow M proper.

Definition 2 (limit ends)

Definition 1 (set of ends)

 $\mathcal{E}(M) = \mathcal{A}/_{\sim}$, where $\mathcal{A} = \{\alpha : [0, \infty) \to M \text{ proper arc}\}$ and $\alpha_1 \sim \alpha_2$ if $\forall C \subset M$ cpt set, α_1, α_2 lie eventually in the same comput of M - C. $E \subset M$ noncpt subdomain, ∂E cpt. E represents $[\alpha] \in \mathcal{E}(M)$ if $\alpha[t_0, \infty) \subset E$ for some t_0 .

Theorem 4 (Collin-Kusner-Meeks-Rosenberg, JDG 2004)

If $M \subset \mathbb{R}^3$ proper $EMS \Rightarrow \mathcal{E}(M)$ countable.

Theorem 5 (Meeks-P-Ros, 2018)

 $M \subset \mathbb{R}^3$ CEMS with finite genus and countably many ends $\Rightarrow M$ proper.

Definition 2 (limit ends)

Definition 1 (set of ends)

 $\mathcal{E}(M) = \mathcal{A}/_{\sim}$, where $\mathcal{A} = \{\alpha : [0, \infty) \to M \text{ proper arc}\}$ and $\alpha_1 \sim \alpha_2$ if $\forall C \subset M$ cpt set, α_1, α_2 lie eventually in the same comput of M - C. $E \subset M$ noncpt subdomain, ∂E cpt. E represents $[\alpha] \in \mathcal{E}(M)$ if $\alpha[t_0, \infty) \subset E$ for some t_0 .

Theorem 4 (Collin-Kusner-Meeks-Rosenberg, JDG 2004)

If $M \subset \mathbb{R}^3$ proper $EMS \Rightarrow \mathcal{E}(M)$ countable.

Theorem 5 (Meeks-P-Ros, 2018)

 $M \subset \mathbb{R}^3$ CEMS with finite genus and countably many ends $\Rightarrow M$ proper.

Definition 2 (limit ends)

Theorem 6 (Meeks-P-Ros, 2018)

 $M \subset \mathbb{R}^3$ CEMS, ∂M cpt, $g(M) < \infty$, $\#(\mathcal{E}(M)) = \infty$. If M has countably many limit ends $\Rightarrow M$ proper & M has 1 or 2 limit ends.

Sketch of proof of Thm 6:

Take $M \subset \mathbb{R}^3$ as in Thm 6. Baire's Thm \Rightarrow isolated points in $\mathcal{E}_{limit}(M)$ (simple limit ends) are dense. So it suffices to show:

- If M has 1 or 2 simple limit ends \Rightarrow M proper.
- M cannot have 3 simple limit ends (thus M has 1 or 2 limit ends, both simple).

Theorem 6 (Meeks-P-Ros, 2018)

 $M \subset \mathbb{R}^3$ CEMS, ∂M cpt, $g(M) < \infty$, $\#(\mathcal{E}(M)) = \infty$. If M has countably many limit ends $\Rightarrow M$ proper & M has 1 or 2 limit ends.

Sketch of proof of Thm 6: Take $M \subset \mathbb{R}^3$ as in Thm 6. Baire's Thm \Rightarrow isolated points in $\mathcal{E}_{limit}(M)$ (simple limit ends) are dense. So it suffices to show:

- 1 If M has 1 or 2 simple limit ends \Rightarrow M proper.
- M cannot have 3 simple limit ends (thus M has 1 or 2 limit ends, both simple).

Theorem 6 (Meeks-P-Ros, 2018)

 $M \subset \mathbb{R}^3$ CEMS, ∂M cpt, $g(M) < \infty$, $\#(\mathcal{E}(M)) = \infty$. If M has countably many limit ends $\Rightarrow M$ proper & M has 1 or 2 limit ends.

Sketch of proof of Thm 6:

Take $M \subset \mathbb{R}^3$ as in Thm 6. Baire's Thm \Rightarrow isolated points in $\mathcal{E}_{limit}(M)$ (simple limit ends) are dense. So it suffices to show:

- **1** If *M* has 1 or 2 simple limit ends \Rightarrow *M* proper.
- Ø M cannot have 3 simple limit ends (thus M has 1 or 2 <u>limit ends</u>, both simple).

Theorem 6 (Meeks-P-Ros, 2018)

 $M \subset \mathbb{R}^3$ CEMS, ∂M cpt, $g(M) < \infty$, $\#(\mathcal{E}(M)) = \infty$. If M has countably many limit ends $\Rightarrow M$ proper & M has 1 or 2 limit ends.

Sketch of proof of Thm 6: Take $M \subset \mathbb{R}^3$ as in Thm 6. Baire's Thm \Rightarrow isolated points in $\mathcal{E}_{limit}(M)$ (simple limit ends) are dense. So it suffices to show:

- **1** If *M* has 1 or 2 simple limit ends \Rightarrow *M* proper.
- Ø M cannot have 3 simple limit ends (thus M has 1 or 2 <u>limit ends</u>, both simple).

Theorem 7 (Meeks-P-Ros, Inventiones 2004)

If $M \subset \mathbb{R}^3$ PEMS, $\partial M = \emptyset$, $g(M) < \infty \Rightarrow M$ cannot have just 1 limit end.

Theorem 6 (Meeks-P-Ros, 2018)

 $M \subset \mathbb{R}^3$ CEMS, ∂M cpt, $g(M) < \infty$, $\#(\mathcal{E}(M)) = \infty$. If M has countably many limit ends $\Rightarrow M$ proper & M has 1 or 2 limit ends.

Sketch of proof of Thm 6: Take $M \subset \mathbb{R}^3$ as in Thm 6. Baire's Thm \Rightarrow isolated points in $\mathcal{E}_{limit}(M)$ (simple limit ends) are dense. So it suffices to show:

1 If *M* has 1 or 2 simple limit ends \Rightarrow *M* proper.

Ø M cannot have 3 simple limit ends (thus M has 1 or 2 <u>limit ends</u>, both simple).

Proposition 1 (Christmas tree picture)

E simple limit end of $M \subset \mathbb{R}^3$ CEMS, $g(E)=0 \Rightarrow E$ proper and ...

Theorem 6 (Meeks-P-Ros, 2018)

 $M \subset \mathbb{R}^3$ CEMS, ∂M cpt, $g(M) < \infty$, $\#(\mathcal{E}(M)) = \infty$. If M has countably many limit ends $\Rightarrow M$ proper & M has 1 or 2 limit ends.

Sketch of proof of Thm 6:

Take $M \subset \mathbb{R}^3$ as in Thm 6. Baire's Thm \Rightarrow isolated points in $\mathcal{E}_{limit}(M)$ (simple limit ends) are dense. So it suffices to show:

1 If *M* has 1 or 2 simple limit ends \Rightarrow *M* proper.

Ø Cannot have 3 simple limit ends (thus M has 1 or 2 limit ends, both simple).

Proposition 1 (Christmas tree picture)

E simple limit end of $M \subset \mathbb{R}^3$ CEMS, $g(E)=0 \Rightarrow E$ proper and after passing to a smaller end representative, translation, rotation & homothety:

(1) Simple ends of E have FTC & $\log \le 0$ (2) The limit end of E is the top end (3) $\partial E = \partial D$, $D \subset x_3 = 0$, $\mathring{D} \cap E = \emptyset$ (4) $\exists f : \mathcal{R}_+ \to E$ orient preserving diffeo ($\mathcal{R}_+ = top$ half of a Riemann min example)

The Christmas tree picture for a simple limit end of genus zero

Discarding 3 simple limit ends for a CEMS

Produce \widetilde{E}_2 area minimizing in X_3 with cpt bdry, thus with FTC (Fischer-Colbrie) $\Rightarrow \widetilde{E}_2$ has a highest catenoidal end *C* of positive logarithmic growth. None of the annular ends of E_1 can lie above $C \Rightarrow E_1$ lies between two half catenoids !!

Proving the Christmas tree picture: properness *E* simple limit end representative of $M \subset \mathbb{R}^3$ CEMS, g(E) = 0.

• Topologically,
$$E \equiv \overline{\mathbb{D}} - \left[\{ \frac{1}{2n} \}_n \cup \{ 0 \} \right]$$
, $\partial E \equiv \partial \mathbb{D} = \mathbb{S}^1$.

We will use:

Theorem 7 (MLCT Meeks-Rosenberg, Duke 2006)

 $M \subset \mathbb{R}^3$ CEMS with ∂M cpt.

- If $I_M \ge \varepsilon > 0$ outside some δ -neighb of $\partial M \Rightarrow M$ proper.
- If M has finite topology $\Rightarrow I_M \ge \varepsilon > 0$ outside some δ -neighb of ∂M .

So it suffices to show: $I_E \ge \varepsilon > 0$ outside some δ -neighb of ∂E ?

Description of the annular ends in E:

 $\partial E \stackrel{(Thm 7)}{\Rightarrow} E_n$ proper $(Collin) \\ \Rightarrow E_n$ has catenoidal or planar ends, that we will assume horizontal (after rotation indep of n).

Proving the Christmas tree picture: properness *E* simple limit end representative of $M \subset \mathbb{R}^3$ CEMS, g(E) = 0.

• Topologically, $E \equiv \overline{\mathbb{D}} - \left[\{ \frac{1}{2n} \}_n \cup \{ 0 \} \right]$, $\partial E \equiv \partial \mathbb{D} = \mathbb{S}^1$.

We will use:

Theorem 7 (MLCT Meeks-Rosenberg, Duke 2006)

 $M \subset \mathbb{R}^3$ CEMS with ∂M cpt.

- If $I_M \ge \varepsilon > 0$ outside some δ -neighb of $\partial M \Rightarrow M$ proper.
- If M has finite topology ⇒ I_M ≥ ε > 0 outside some δ-neighb of ∂M.

So it suffices to show: $I_E \ge \varepsilon > 0$ outside some δ -neighb of ∂E ?

 $\partial E \stackrel{E_n \text{ CEMS, finite topology, } \partial E_n \text{ cpt}}{\stackrel{(\text{Thm 7})}{\Rightarrow} E_n \text{ proper}} E_n \text{ has catenoidal or planar}$ ends, that we will assume horizontal (after rotation indep of *n*).

Proving the Christmas tree picture: properness *E* simple limit end representative of $M \subset \mathbb{R}^3$ CEMS, g(E) = 0.

• Topologically, $E \equiv \overline{\mathbb{D}} - \left[\{ \frac{1}{2n} \}_n \cup \{ 0 \} \right]$, $\partial E \equiv \partial \mathbb{D} = \mathbb{S}^1$.

We will use:

Theorem 7 (MLCT Meeks-Rosenberg, Duke 2006)

 $M \subset \mathbb{R}^3$ CEMS with ∂M cpt.

- If $I_M \ge \varepsilon > 0$ outside some δ -neighb of $\partial M \Rightarrow M$ proper.
- If M has finite topology ⇒ I_M ≥ ε > 0 outside some δ-neighb of ∂M.

So it suffices to show: $I_E \ge \varepsilon > 0$ outside some δ -neighb of ∂E ?

• Description of the annular ends in *E*:

 $\begin{array}{c} & E_n \text{ CEMS, finite topology, } \partial E_n \text{ cpt} \\ \partial E & \stackrel{(\mathsf{Thm}\ 7)}{\Rightarrow} E_n \text{ proper} \\ & \stackrel{(\textit{Collin})}{\Rightarrow} E_n \text{ has catenoidal or planar} \\ & \text{ends, that we will assume horizontal} \\ & (after rotation indep of n). \end{array}$

Proving the Christmas tree picture: properness II

Arguing by contrad, assume $\exists \{q_n\}_n \subset E$ s.t. $d_E(q_n, \partial E) \geq \delta > 0$ and $I_E(q_n) \rightarrow 0$.

Rescale by topology (Meeks-P-Ros, JDG 2018): $\exists \{p_n\}_n \subset E, \varepsilon_n \searrow 0$ s.t. $d_E(q_n, p_n) \rightarrow 0$ and

• M_n :=closure of cpnt of $E \cap \mathbb{B}(p_n, \varepsilon_n)$ that contains p_n is cpt, $\partial M_n \subset \partial \mathbb{B}(p_n, \varepsilon_n) - \partial E$,

•
$$\lambda_n := 1/I_E(p_n), \ \lambda_n I_E \ge 1 - \frac{1}{n} \ \text{in} \ M_n, \ \lambda_n \varepsilon_n \to \infty,$$

- $\{\lambda_n(M_n p_n)\}_n$ converges to one of the two following cases:
- A PEMS M_∞ ⊂ ℝ³ with 0 ∈ M_∞, I_{M_∞} ≥ 1, I_{M_∞}(0) = 1, hence a catenoid or Riemann minimal example (Meeks-P-Ros, Annals 2015).
- A minimal parking garage structure with two columns.

How to find a contradiction in cases (C1) and (C2)?

Proving the Christmas tree picture: properness II

Arguing by contrad, assume $\exists \{q_n\}_n \subset E \text{ s.t. } d_E(q_n, \partial E) \geq \delta > 0 \text{ and } I_E(q_n) \to 0.$

Rescale by topology (Meeks-P-Ros, JDG 2018): $\exists \{p_n\}_n \subset E, \varepsilon_n \searrow 0 \text{ s.t.}$ $d_E(q_n, p_n) \rightarrow 0 \text{ and}$

• M_n :=closure of cpnt of $E \cap \mathbb{B}(p_n, \varepsilon_n)$ that contains p_n is cpt, $\partial M_n \subset \partial \mathbb{B}(p_n, \varepsilon_n) - \partial E$,

•
$$\lambda_n := 1/I_E(p_n), \ \lambda_n I_E \ge 1 - \frac{1}{n} \text{ in } M_n, \ \lambda_n \varepsilon_n \to \infty,$$

- $\{\lambda_n(M_n p_n)\}_n$ converges to one of the two following cases:
- ⓐ A PEMS $M_{\infty} \subset \mathbb{R}^3$ with $\vec{0} \in M_{\infty}$, $I_{M_{\infty}} \ge 1$, $I_{M_{\infty}}(\vec{0}) = 1$, hence a catenoid or Riemann minimal example (Meeks-P-Ros, Annals 2015).
- A minimal parking garage structure with two columns.

How to find a contradiction in cases (C1) and (C2)?

Proving the Christmas tree picture: properness II

Arguing by contrad, assume $\exists \{q_n\}_n \subset E \text{ s.t. } d_E(q_n, \partial E) \geq \delta > 0 \text{ and } I_E(q_n) \to 0.$

Rescale by topology (Meeks-P-Ros, JDG 2018): $\exists \{p_n\}_n \subset E, \varepsilon_n \searrow 0 \text{ s.t.} d_E(q_n, p_n) \rightarrow 0 \text{ and}$

• M_n :=closure of cpnt of $E \cap \mathbb{B}(p_n, \varepsilon_n)$ that contains p_n is cpt, $\partial M_n \subset \partial \mathbb{B}(p_n, \varepsilon_n) - \partial E$,

•
$$\lambda_n := 1/I_E(p_n), \ \lambda_n I_E \ge 1 - \frac{1}{n} \text{ in } M_n, \ \lambda_n \varepsilon_n \to \infty,$$

- $\{\lambda_n(M_n p_n)\}_n$ converges to one of the two following cases:
- A PEMS $M_{\infty} \subset \mathbb{R}^3$ with $\vec{0} \in M_{\infty}$, $I_{M_{\infty}} \ge 1$, $I_{M_{\infty}}(\vec{0}) = 1$, hence a catenoid or Riemann minimal example (Meeks-P-Ros, Annals 2015).
- A minimal parking garage structure with two columns.

How to find a contradiction in cases (C1) and (C2)?

Suppose (C1) holds with M_{∞} = Riemann minimal example. **1.** M_{∞} has vertical flux (hence it has tilted planar ends).

Suppose (C1) holds with M_{∞} = Riemann minimal example. **1.** M_{∞} has vertical flux (hence it has tilted planar ends). Proof: γ : 'waist' circle of $M_{\infty} \rightsquigarrow \gamma_n \subset M_n$ convex planar curve s.t. $\{\lambda_n(\gamma_n - p_n)\}_n \to \gamma$.

Lemma 1

For n large, $Flux(E, \gamma_n)$ is vertical (thus $Flux(M_{\infty}, \gamma)$ vertical).

Proof:

- If γ_n does not wind around $0 \Rightarrow \gamma_n$ homologous to finitely many loops around annular ends of *E*, all with vertical flux \Rightarrow Flux(*E*, γ_n) vertical.
- If γ_n winds around $0 \forall n$ (after subseq) $\Rightarrow \gamma_n$ homologous to γ_{n+k} plus finitely many loops around annular ends of $E \Rightarrow$ Flux $(E, \gamma_n) = \text{Flux}(E, \gamma_{n+k}) + \text{vert}(n, k) \Rightarrow \text{Flux}_{horiz}(E, \gamma_{n+k}) \text{ indep of } n, k.$ As length $(\gamma_n) = 0 \Rightarrow \text{Flux}_{horiz}(E, \gamma_n) = 0 \forall n.$

Suppose (C1) holds with M_{∞} = Riemann minimal example. **1.** M_{∞} has vertical flux (hence it has tilted planar ends). Proof: γ : 'waist' circle of $M_{\infty} \rightsquigarrow \gamma_n \subset M_n$ convex planar curve s.t. $\{\lambda_n(\gamma_n - p_n)\}_n \to \gamma$.

Lemma 1

For n large, $Flux(E, \gamma_n)$ is vertical (thus $Flux(M_{\infty}, \gamma)$ vertical).

Proof:

• If γ_n does not wind around $0 \Rightarrow \gamma_n$ homologous to finitely many loops around annular ends of *E*, all with vertical flux \Rightarrow Flux(*E*, γ_n) vertical.

• If γ_n winds around $0 \forall n$ (after subseq) $\Rightarrow \gamma_n$ homologous to γ_{n+k} plus finitely many loops around annular ends of $E \Rightarrow$ Flux $(E, \gamma_n) = \text{Flux}(E, \gamma_{n+k}) + \text{vert}(n, k) \Rightarrow \text{Flux}_{horiz}(E, \gamma_{n+k}) \text{ indep of } n, k.$ As length $(\gamma_n) = 0 \Rightarrow \text{Flux}_{horiz}(E, \gamma_n) = 0 \forall n.$

Suppose (C1) holds with M_{∞} = Riemann minimal example. **1.** M_{∞} has vertical flux (hence it has tilted planar ends). Proof: γ : 'waist' circle of $M_{\infty} \rightsquigarrow \gamma_n \subset M_n$ convex planar curve s.t. $\{\lambda_n(\gamma_n - p_n)\}_n \to \gamma$.

Lemma 1

For n large, $Flux(E, \gamma_n)$ is vertical (thus $Flux(M_{\infty}, \gamma)$ vertical).

Proof:

- If γ_n does not wind around $0 \Rightarrow \gamma_n$ homologous to finitely many loops around annular ends of *E*, all with vertical flux \Rightarrow Flux(*E*, γ_n) vertical.
- If γ_n winds around $0 \forall n$ (after subseq) $\Rightarrow \gamma_n$ homologous to γ_{n+k} plus finitely many loops around annular ends of $E \Rightarrow$ $Flux(E, \gamma_n) = Flux(E, \gamma_{n+k}) + vert(n, k) \Rightarrow Flux_{horiz}(E, \gamma_{n+k})$ indep of n, k. As length $(\gamma_n) = 0 \Rightarrow Flux_{horiz}(E, \gamma_n) = 0 \forall n$.

Suppose (C1) holds with M_{∞} = Riemann minimal example.

1. M_{∞} has vertical flux (hence it has tilted planar ends).

2. Find a proper subdomain $\Delta_n \subset E$ with finite topology, s.t.

 $\partial \Delta_n = \gamma_1(n) \cup \gamma_2(n)$ and after rescaling, the cpt shadowed pieces converge.

converges after

rescaling

 $\gamma_1(n)$

Suppose (C1) holds with M_{∞} = Riemann minimal example. **1.** M_{∞} has vertical flux (hence it has tilted planar ends) **2.** Find a proper subdomain $\Delta_n \subset E$ with finite topology, s.t. $\partial \Delta_n = \gamma_1(n) \cup \gamma_2(n)$ and after rescaling, the cpt shadowed pieces converge. Use Δ_n (suitably modified in a cpt set) as a barrier to solve a Plateau probl in one of its complements: Take $\alpha \subset M_{\infty}$ enclosing a planar end.

 $\alpha \rightsquigarrow \alpha_n \subset \Delta_n$ closed curve

 $\Omega_{2,3}$

 $\Omega_{3,4}$

 $\Delta_n = \Delta_n(1, 2)$

Suppose (C1) holds with M_{∞} = Riemann minimal example.

- **1.** M_{∞} has vertical flux (hence it has tilted planar ends)
- **2.** Find a proper subdomain $\Delta_n \subset E$ with finite topology, s.t.

 $\partial \Delta_n = \gamma_1(n) \cup \gamma_2(n)$ and after rescaling, the cpt shadowed pieces converge.

Suppose (C1) holds with M_{∞} = Riemann minimal example.

- **1.** M_{∞} has vertical flux (hence it has tilted planar ends)
- **2.** Find a proper subdomain $\Delta_n \subset E$ with finite topology, s.t.

 $\partial \Delta_n = \gamma_1(n) \cup \gamma_2(n)$ and after rescaling, the cpt shadowed pieces converge.

Suppose (C1) holds with M_{∞} = Riemann minimal example.

- **1.** M_{∞} has vertical flux (hence it has tilted planar ends)
- **2.** Find a proper subdomain $\Delta_n \subset E$ with finite topology, s.t.

 $\partial \Delta_n = \gamma_1(n) \cup \gamma_2(n)$ and after rescaling, the cpt shadowed pieces converge.

Use Δ_n (suitably modified in a cpt set) as a barrier to solve a Plateau probl in one of its complements: Take $\alpha \subset M_{\infty}$ enclosing a planar end. $\alpha \rightsquigarrow \alpha_n \subset \Delta_n$ closed curve \rightsquigarrow $S_n \subset \mathbb{R}^3 - \Delta_n$ PEMS stable noncpt $\partial S_n = \alpha_n$ S_n lies in the complement of Δ_n converges after \Rightarrow ends of S_n are horizontal graphs rescaling $\Omega_{3,4}$ But $\lambda_n(S_n - p_n)$ has ends trapped between those of $\lambda_n(\Delta_n - p_n)$, $\gamma_1(n)$ which 'become' tilted planes \sim (limit tgt plane of M_{∞}) !! $\Delta_n = \Delta_n(1, 2$
Properness IV: Discarding a minimal parking garage (sketch)

Suppose (C2) occurs: $\{\lambda_n(M_n - p_n)\}_n$ converges to a minimal parking garage structure with two columns.

- For *n* sufficiently large, take $\gamma_n \subset M_n \subset E$ a 'connection loop'.
- Lemma 1 gives that $Flux(E, \gamma_n)$ is vertical \Rightarrow planes in the limiting parking garage are vertical.
- Adapt the arguments that ruled out a Riemann minimal example.

Properness IV: Discarding a minimal parking garage (sketch)

Suppose (C2) occurs: $\{\lambda_n(M_n - p_n)\}_n$ converges to a minimal parking garage structure with two columns.

- For *n* sufficiently large, take $\gamma_n \subset M_n \subset E$ a 'connection loop'.
- Lemma 1 gives that $Flux(E, \gamma_n)$ is vertical \Rightarrow planes in the limiting parking garage are vertical.
- Adapt the arguments that ruled out a Riemann minimal example.

Properness V: Discarding a catenoid (sketch)

Suppose (C1) holds with M_{∞} = catenoid.

 γ : waist circle of $M_{\infty} \rightsquigarrow \gamma_n \subset M_n$ convex planar curve s.t. $\{\lambda_n(\gamma_n - p_n)\}_n \to \gamma$. **1.** M_{∞} has vertical flux (by Lemma 1).

2. Three subcases (after subseq):

 \mathfrak{P}_{n} γ_{n} does not wind around 0 & encloses at least two ends of $E \forall n$.

 $\mathfrak{P} \quad \gamma_n \text{ winds around } 0 \ (\Rightarrow \gamma_n, \gamma_{n+k} \text{ topologically concentric } \forall n, k).$

 γ_n does not wind around 0 & encloses exactly one end of $E \forall n$.

Properness V: Discarding a catenoid (sketch)

Suppose (C1) holds with M_{∞} = catenoid.

- γ : waist circle of $M_{\infty} \rightsquigarrow \gamma_n \subset M_n$ convex planar curve s.t. $\{\lambda_n(\gamma_n p_n)\}_n \to \gamma$. **1.** M_{∞} has vertical flux (by Lemma 1).
- 2. Three subcases (after subseq):
 - **Q** γ_n does not wind around 0 & encloses at least two ends of $E \forall n$.
 - **2** γ_n winds around 0 ($\Rightarrow \gamma_n, \gamma_{n+k}$ topologically concentric $\forall n, k$).
 - γ_n does not wind around 0 & encloses exactly one end of $E \forall n$.

Properness V: Discarding a catenoid (sketch)

Suppose (C1) holds with M_{∞} = catenoid.

- γ : waist circle of $M_{\infty} \rightsquigarrow \gamma_n \subset M_n$ convex planar curve s.t. $\{\lambda_n(\gamma_n p_n)\}_n \to \gamma$. **1.** M_{∞} has vertical flux (by Lemma 1).
- **2.** Three subcases (after subseq):

Q γ_n does not wind around 0 & encloses at least two ends of $E \forall n$.

 \mathfrak{Q} γ_n winds around $0 \ (\Rightarrow \gamma_n, \gamma_{n+k} \text{ topologically concentric } \forall n, k).$

⁽²⁾ γ_n does not wind around 0 & encloses exactly one end of $E \forall n$. Strategy:

- Rule out (D1) (López-Ros deformation argument).
- Prove Lemma 2 & rule out (D2) (rescaling-by-topology, MLCT, LRST).
- Solution Discard (D3) (rescaling-by-topology, MLCT, CM 1-sided curv estim).

Lemma 2

If $\{p_n\}_n \to p_\infty \in \mathbb{R}^3$ and (D3) holds $\forall n \Rightarrow E$ lies at one side of $\{x_3 = x_3(p_\infty)\}$.

Suppose (C1) holds with M_{∞} = catenoid and (D1) holds $\forall n$.

- γ_n = ∂R(n), R(n) ⊂ E proper, finite topol domain with at least two ends & vertical flux.
- For *n* large, choose $C_n \subset E$ s.t. $\gamma_n \subset \text{Int}(C_n)$, C_n arbitrarily close to a rescaling of a fixed large cpt unstable piece *C* of a vertical catenoid, with ∂C_n : two cnvx horiz curves.
- The open planar disks $D_1(n), D_2(n) \subset \mathbb{R}^3$ bded by ∂C_n are disjoint from R(n) (otherwise use a cpt portion of R(n) in the 'interior' of $C_n \cup D_1(n) \cup D_2(n)$ as a barrier to find a stable min annulus with bdry ∂C_n , contradicting Meeks-White).
- R(n) ∪ D(γ_n) is a properly emb piecewise smooth surface ⇒ separates ℝ³. Apply López-Ros argument to R(n) to find a contradiction.

Suppose (C1) holds with M_{∞} = catenoid and (D1) holds $\forall n$.

- $\gamma_n = \partial R(n)$, $R(n) \subset E$ proper, finite topol domain with at least two ends & vertical flux.
- For *n* large, choose $C_n \subset E$ s.t. $\gamma_n \subset \text{Int}(C_n)$, C_n arbitrarily close to a rescaling of a fixed large cpt unstable piece *C* of a vertical catenoid, with ∂C_n : two cnvx horiz curves.
- The open planar disks $D_1(n), D_2(n) \subset \mathbb{R}^3$ bded by ∂C_n are disjoint from R(n) (otherwise use a cpt portion of R(n) in the 'interior' of $C_n \cup D_1(n) \cup D_2(n)$ as a barrier to find a stable min annulus with bdry ∂C_n , contradicting Meeks-White).
- $R(n) \cup D(\gamma_n)$ is a properly emb piecewise smooth surface \Rightarrow separates \mathbb{R}^3 . Apply López-Ros argument to R(n) to find a contradiction.

Suppose (C1) holds with M_{∞} = catenoid and (D1) holds $\forall n$.

- γ_n = ∂R(n), R(n) ⊂ E proper, finite topol domain with at least two ends & vertical flux.
- For n large, choose C_n ⊂ E s.t. γ_n ⊂ Int(C_n), C_n arbitrarily close to a rescaling of a fixed large cpt unstable piece C of a vertical catenoid, with ∂C_n: two cnvx horiz curves.
- The open planar disks $D_1(n), D_2(n) \subset \mathbb{R}^3$ bded by ∂C_n are disjoint from R(n) (otherwise use a cpt portion of R(n) in the 'interior' of $C_n \cup D_1(n) \cup D_2(n)$ as a barrier to find a stable min annulus with bdry ∂C_n , contradicting Meeks-White).
- $R(n) \cup D(\gamma_n)$ is a properly emb piecewise smooth surface \Rightarrow separates \mathbb{R}^3 . Apply López-Ros argument to R(n) to find a contradiction.

Suppose (C1) holds with M_{∞} = catenoid and (D1) holds $\forall n$.

- γ_n = ∂R(n), R(n) ⊂ E proper, finite topol domain with at least two ends & vertical flux.
- For *n* large, choose $C_n \subset E$ s.t. $\gamma_n \subset \text{Int}(C_n)$, C_n arbitrarily close to a rescaling of a fixed large cpt unstable piece *C* of a vertical catenoid, with ∂C_n : two cnvx horiz curves.
- The open planar disks $D_1(n), D_2(n) \subset \mathbb{R}^3$ bded by ∂C_n are disjoint from R(n) (otherwise use a cpt portion of R(n) in the 'interior' of $C_n \cup D_1(n) \cup D_2(n)$ as a barrier to find a stable min annulus with bdry ∂C_n , contradicting Meeks-White).
- $R(n) \cup D(\gamma_n)$ is a properly emb piecewise smooth surface \Rightarrow separates \mathbb{R}^3 . Apply López-Ros argument to R(n) to find a contradiction.

Suppose (C1) holds with M_{∞} = catenoid and (D1) holds $\forall n$.

- γ_n = ∂R(n), R(n) ⊂ E proper, finite topol domain with at least two ends & vertical flux.
- For *n* large, choose $C_n \subset E$ s.t. $\gamma_n \subset Int(C_n)$, C_n arbitrarily close to a rescaling of a fixed large cpt unstable piece *C* of a vertical catenoid, with ∂C_n : two cnvx horiz curves.
- The open planar disks $D_1(n), D_2(n) \subset \mathbb{R}^3$ bded by ∂C_n are disjoint from R(n) (otherwise use a cpt portion of R(n) in the 'interior' of $C_n \cup D_1(n) \cup D_2(n)$ as a barrier to find a stable min annulus with bdry ∂C_n , contradicting Meeks-White).
- $R(n) \cup D(\gamma_n)$ is a properly emb piecewise smooth surface \Rightarrow separates \mathbb{R}^3 . Apply López-Ros argument to R(n) to find a contradiction.

Lemma 2

If $\{p_n\}_n \to p_\infty \in \mathbb{R}^3$ and (D3) holds $\forall n \Rightarrow E$ lies at one side of $\{x_3 = x_3(p_\infty)\}$.

Lemma 2

If $\{p_n\}_n \to p_\infty \in \mathbb{R}^3$ and (D3) holds $\forall n \Rightarrow E$ lies at one side of $\{x_3 = x_3(p_\infty)\}$.

Proof: (D3) holds $\Rightarrow \gamma_n = \partial R(n)$, $R(n) \subset E$ proper annulus.

Lemma 2

If $\{p_n\}_n \to p_\infty \in \mathbb{R}^3$ and (D3) holds $\forall n \Rightarrow E$ lies at one side of $\{x_3 = x_3(p_\infty)\}$.

Proof: (D3) holds $\Rightarrow \gamma_n = \partial R(n)$, $R(n) \subset E$ proper annulus.

We can assume total curv R(n) arbitrarily small

 \Rightarrow Gauss map of R(n) is arbitr close to e_3 (or $-e_3$)

 $\Rightarrow R(n)$ is graphical over its projection to $\{x_3 = 0\}$.

Lemma 2

If $\{p_n\}_n \to p_\infty \in \mathbb{R}^3$ and (D3) holds $\forall n \Rightarrow E$ lies at one side of $\{x_3 = x_3(p_\infty)\}$.

Proof: (D3) holds $\Rightarrow \gamma_n = \partial R(n)$, $R(n) \subset E$ proper annulus. We can assume total curv R(n) arbitrarily small \Rightarrow Gauss map of R(n) is arbitr close to e_3 (or $-e_3$) $\Rightarrow R(n)$ is graphical over its projection to $\{x_3 = 0\}$. $\{\gamma_n\}_n \to p_{\infty} \Rightarrow \{R(n)\}_n \to \{x_3 = x_3(p_{\infty})\} - \{p_{\infty}\}$ (smoothly).

Lemma 2

If $\{p_n\}_n \to p_\infty \in \mathbb{R}^3$ and (D3) holds $\forall n \Rightarrow E$ lies at one side of $\{x_3 = x_3(p_\infty)\}$.

Proof: (D3) holds $\Rightarrow \gamma_n = \partial R(n)$, $R(n) \subset E$ proper annulus. We can assume total curv R(n) arbitrarily small \Rightarrow Gauss map of R(n) is arbitr close to e_3 (or $-e_3$) $\Rightarrow R(n)$ is graphical over its projection to $\{x_3 = 0\}$. $\{\gamma_n\}_n \rightarrow p_\infty \Rightarrow \{R(n)\}_n \rightarrow \{x_3 = x_3(p_\infty)\} - \{p_\infty\}$ (smoothly).

By contrad, suppose $\{x_3 = x_3(p_\infty)\}$ intersects *E* at an interior point

Lemma 2

If $\{p_n\}_n \to p_\infty \in \mathbb{R}^3$ and (D3) holds $\forall n \Rightarrow E$ lies at one side of $\{x_3 = x_3(p_\infty)\}$.

Proof: (D3) holds $\Rightarrow \gamma_n = \partial R(n)$, $R(n) \subset E$ proper annulus. We can assume total curv R(n) arbitrarily small \Rightarrow Gauss map of R(n) is arbitr close to e_3 (or $-e_3$) $\Rightarrow R(n)$ is graphical over its projection to $\{x_3 = 0\}$. $\{\gamma_n\}_n \rightarrow p_\infty \Rightarrow \{R(n)\}_n \rightarrow \{x_3 = x_3(p_\infty)\} - \{p_\infty\}$ (smoothly).

By contrad, suppose $\{x_3 = x_3(p_\infty)\}$ intersects E at an interior point $\Rightarrow \{x_3 = x_3(p_\infty)\} - \{p_\infty\}$ intersects E transversely at some interior point

Lemma 2

If $\{p_n\}_n \to p_\infty \in \mathbb{R}^3$ and (D3) holds $\forall n \Rightarrow E$ lies at one side of $\{x_3 = x_3(p_\infty)\}$.

Proof: (D3) holds $\Rightarrow \gamma_n = \partial R(n)$, $R(n) \subset E$ proper annulus. We can assume total curv R(n) arbitrarily small \Rightarrow Gauss map of R(n) is arbitr close to e_3 (or $-e_3$) $\Rightarrow R(n)$ is graphical over its projection to $\{x_3 = 0\}$. $\{\gamma_n\}_n \to p_\infty \Rightarrow \{R(n)\}_n \to \{x_3 = x_3(p_\infty)\} - \{p_\infty\}$ (smoothly).

By contrad, suppose $\{x_3 = x_3(p_\infty)\}$ intersects E at an interior point $\Rightarrow \{x_3 = x_3(p_\infty)\} - \{p_\infty\}$ intersects E transversely at some interior point \Rightarrow for n large, R(n) intersects E - R(n) !!

Lemma 2

How to rule out case (D2): Define D_n, D'_n, C_n , that bound W_n cpt. Take $k \gg 1$.

Relative position of W_n, W_{n+k} ? Arguments as those that ruled out (D1) imply now $W_{n+k} \subset Int(W_n)$ for n, k large.

Lemma 2

If $\{p_n\}_n \to p_\infty \in \mathbb{R}^3$ and (D3) holds $\forall n \Rightarrow E$ lies at one side of $\{x_3 = x_3(p_\infty)\}$.

How to rule out case (D2):

Lemma 2

If $\{p_n\}_n \to p_\infty \in \mathbb{R}^3$ and (D3) holds $\forall n \Rightarrow E$ lies at one side of $\{x_3 = x_3(p_\infty)\}$.

How to rule out case (D2): Reindexing and taking subseq, $W_{n+1} \subset Int(W_n) \ \forall n$

Lemma 2

If $\{p_n\}_n \to p_\infty \in \mathbb{R}^3$ and (D3) holds $\forall n \Rightarrow E$ lies at one side of $\{x_3 = x_3(p_\infty)\}$.

How to rule out case (D2): Reindexing and taking subseq, $W_{n+1} \subset \operatorname{Int}(W_n) \forall n$ $\Rightarrow \bigcap_{n \in \mathbb{N}} W_n = \{c_\infty\}, c_\infty \in \mathbb{R}^3.$

Lemma 2

If $\{p_n\}_n \to p_\infty \in \mathbb{R}^3$ and (D3) holds $\forall n \Rightarrow E$ lies at one side of $\{x_3 = x_3(p_\infty)\}$.

- Discard (D2) because 'catenoids' are concentric,
- Discard (D3) by Lemma 2 !!)

Lemma 2

If
$$\{p_n\}_n \to p_\infty \in \mathbb{R}^3$$
 and (D3) holds $\forall n \Rightarrow E$ lies at one side of $\{x_3 = x_3(p_\infty)\}$.

Lemma 2

If
$$\{p_n\}_n \to p_\infty \in \mathbb{R}^3$$
 and (D3) holds $\forall n \Rightarrow E$ lies at one side of $\{x_3 = x_3(p_\infty)\}$.

Lemma 2

If
$$\{p_n\}_n \to p_\infty \in \mathbb{R}^3$$
 and (D3) holds $\forall n \Rightarrow E$ lies at one side of $\{x_3 = x_3(p_\infty)\}$.

 $\gamma_n = \partial R(n), R(n) \subset E$ proper graphical ann, $\log(R(n)) \nearrow 0$ (Length $(\gamma_n) \rightarrow 0$)

$$\begin{split} \gamma_n &= \partial R(n), \ R(n) \subset E \ \text{proper graphical ann, } \log(R(n)) \nearrow 0 \ (\text{Length}(\gamma_n) \to 0) \\ \bullet \ E \ \text{is locally simply cnn in } \mathbb{R}^3: \ \text{Otherwise } \exists p_\infty \in \mathbb{R}^3 \ \text{s.t. } E \ \text{not loc simply cnn} \\ \text{in any neighb of } p_\infty \stackrel{(\text{Lenma 2})}{\Rightarrow} E \ \text{lies at one side } S \ \text{of } \Pi(p_\infty) = \{x_3 = x_3(p_\infty)\} \\ \& \ \Pi(p_\infty) = \lim_n R(p_\infty, n), \ R(p_\infty, n) \subset E \ \text{proper graphical annuli.} \end{split}$$

$$\begin{split} \gamma_n &= \partial R(n), \ R(n) \subset E \ \text{proper graphical ann, } \log(R(n)) \nearrow 0 \ (\text{Length}(\gamma_n) \to 0) \\ \bullet \ E \ \text{is locally simply cnn in } \mathbb{R}^3: \ \text{Otherwise } \exists p_\infty \in \mathbb{R}^3 \ \text{s.t. } E \ \text{not loc simply cnn in any neighb of } p_\infty \overset{(\text{Lemma } 2)}{\Rightarrow} E \ \text{lies at one side } S \ \text{of } \Pi(p_\infty) = \{x_3 = x_3(p_\infty)\} \\ \& \ \Pi(p_\infty) = \lim_n R(p_\infty, n), \ R(p_\infty, n) \subset E \ \text{proper graphical annuli.} \\ E \ \text{loc simply cnn around every in } \mathbb{R}^3 - \{p_\infty\}: \ \text{otherwise we contradict} \\ \text{Lemma } 2 \ \text{or that } R(p_\infty, n) \cap R(q, n) \neq \emptyset \ \text{for } n \ \text{large (provided that } E \ \text{not} \\ \text{loc simply cnn around } q \in \Pi(p_\infty) - \{p_\infty\}) \end{split}$$

Joaquín Pérez (UGR)

VMG 17 / 17

 $\gamma_n = \partial R(n), R(n) \subset E$ proper graphical ann, $\log(R(n)) \nearrow 0$ (Length(γ_n) $\rightarrow 0$) • *E* is locally simply cnn in $\mathbb{R}^3 \Rightarrow \mathcal{L} := \overline{E - \partial E}^{\mathbb{R}^3 - \partial E}$ min lam of $\mathbb{R}^3 - \partial E$.

 $\gamma_n = \partial R(n), R(n) \subset E$ proper graphical ann, $\log(R(n)) \nearrow 0$ (Length(γ_n) $\rightarrow 0$) • *E* is locally simply cnn in $\mathbb{R}^3 \Rightarrow \mathcal{L} := \overline{E - \partial E}^{\mathbb{R}^3 - \partial E}$ min lam of $\mathbb{R}^3 - \partial E$.

• If *E* not proper $\Rightarrow \mathcal{L}' := \overline{\mathcal{L} - (E - \partial E)}^{\mathbb{R}^3} \neq \emptyset$ min lamin \mathcal{L}' consisting of horizontal planes.

 $\gamma_n = \partial R(n), R(n) \subset E$ proper graphical ann, $\log(R(n)) \nearrow 0$ (Length(γ_n) $\rightarrow 0$) • *E* is locally simply cnn in $\mathbb{R}^3 \Rightarrow \mathcal{L} := \overline{E - \partial E}^{\mathbb{R}^3 - \partial E}$ min lam of $\mathbb{R}^3 - \partial E$.

• If *E* not proper $\Rightarrow \mathcal{L}' := \overline{\mathcal{L} - (E - \partial E)}^{\mathbb{R}^3} \neq \emptyset$ min lamin \mathcal{L}' consisting of horizontal planes.

• \mathcal{L}' consists of a single plane Π : If $\exists \Pi \neq \Pi' \in \mathcal{L}' \Rightarrow E \subset slab[\Pi, \Pi'] !!$

 $\gamma_n = \partial R(n), R(n) \subset E$ proper graphical ann, $\log(R(n)) \nearrow 0$ (Length(γ_n) $\rightarrow 0$) • *E* is locally simply cnn in $\mathbb{R}^3 \Rightarrow \mathcal{L} := \overline{E - \partial E}^{\mathbb{R}^3 - \partial E}$ min lam of $\mathbb{R}^3 - \partial E$.

- If *E* not proper $\Rightarrow \mathcal{L}' := \overline{\mathcal{L} (E \partial E)}^{\mathbb{R}^3} \neq \emptyset$ min lamin \mathcal{L}' consisting of horizontal planes.
- \mathcal{L}' consists of a single plane $\Pi \Rightarrow E$ proper in $S(\Pi) = \{x_3 < x_3(\Pi)\}$.

 $\gamma_n = \partial R(n), R(n) \subset E$ proper graphical ann, $\log(R(n)) \nearrow 0$ (Length(γ_n) $\rightarrow 0$) • *E* is locally simply cnn in $\mathbb{R}^3 \Rightarrow \mathcal{L} := \overline{E - \partial E}^{\mathbb{R}^3 - \partial E}$ min lam of $\mathbb{R}^3 - \partial E$.

- If *E* not proper $\Rightarrow \mathcal{L}' := \overline{\mathcal{L} (E \partial E)}^{\mathbb{R}^3} \neq \emptyset$ min lamin \mathcal{L}' consisting of horizontal planes.
- \mathcal{L}' consists of a single plane $\Pi \Rightarrow E$ proper in $S(\Pi) = \{x_3 < x_3(\Pi)\}$.
- Meeks-Rosenberg (CM 1-sided curv estim) ⇒ *I_E* not bded away from zero in any {x₃(Π) δ < x₃ < x₃(Π)}, δ > 0.
Properness VIII: Discarding a catenoid, case (D3) (sketch) Suppose (C1) holds with M_{∞} vertical catenoid and (D3) holds $\forall n$.

 $\gamma_n = \partial R(n), R(n) \subset E$ proper graphical ann, $\log(R(n)) \nearrow 0$ (Length(γ_n) $\rightarrow 0$) • *E* is locally simply cnn in $\mathbb{R}^3 \Rightarrow \mathcal{L} := \overline{E - \partial E}^{\mathbb{R}^3 - \partial E}$ min lam of $\mathbb{R}^3 - \partial E$.

- If *E* not proper $\Rightarrow \mathcal{L}' := \overline{\mathcal{L} (E \partial E)}^{\mathbb{R}^3} \neq \emptyset$ min lamin \mathcal{L}' consisting of horizontal planes.
- \mathcal{L}' consists of a single plane $\Pi \Rightarrow E$ proper in $S(\Pi) = \{x_3 < x_3(\Pi)\}.$
- Meeks-Rosenberg (CM 1-sided curv estim) ⇒ *I_E* not bded away from zero in any {*x*₃(Π) − δ < *x*₃ < *x*₃(Π)}, δ > 0.
- Adapt the separation arguments above to show that ∂E cannot be joined to the portion of E R(n) above R(n) for n large !! (final contradiction)