The embedded Calabi-Yau problem for minimal surfaces of finite genus

Joaquín Pérez
(joint work with Bill Meeks \& Antonio Ros)
email: jperez@ugr.es http: //wdb.ugr.es/~jperez/

Work partially supported by the State Research Agency (SRA) and European Regional Development Fund (ERDF) Grants no. MTM2014-52368-P and MTM2017-89677-P (AEI/FEDER, UE)

> Variational Methods in Geometry
> Princeton IAS, November 5-9 2018

The Calabi-Yau problem for minimal surfaces(all surfaces are orientable)

- Calabi-Yau (1966-2000): Can a complete embedded minimal surface be contained in a ball (halfspace)?
- Nadirashvili (Inventiones 1996): $\exists M \subset \mathbb{B}(1)$ compl immersed minimal disk
- Hoffman-Meeks (Inventiones 1990): If $M \subset \mathbb{R}^{3}$ properly immersed nonplanar minimal surface $\Rightarrow M$ cannot be contained in a halfspace.

The Calabi-Yau problem for minimal surfaces(all surfaces are orientable)

- Calabi-Yau (1966-2000): Can a complete embedded minimal surface be contained in a ball (halfspace)?
- Nadirashvili (Inventiones 1996): $\exists M \subset \mathbb{B}(1)$ compl immersed minimal disk.
- Hoffman-Meeks (Inventiones 1990): If $M \subset \mathbb{R}^{3}$ properly immersed, nonplanar minimal surface $\Rightarrow M$ cannot be contained in a halfspace.

The Calabi-Yau problem for minimal surfaces(all surfaces are orientable)

- Calabi-Yau (1966-2000): Can a complete embedded minimal surface be contained in a ball (halfspace)?
- Nadirashvili (Inventiones 1996): $\exists M \subset \mathbb{B}(1)$ compl immersed minimal disk.
- Hoffman-Meeks (Inventiones 1990): If $M \subset \mathbb{R}^{3}$ properly immersed, nonplanar minimal surface $\Rightarrow M$ cannot be contained in a halfspace.

The Calabi-Yau problem for minimal surfaces(all surfaces are orientable)

- Calabi-Yau (1966-2000): Can a complete embedded minimal surface be contained in a ball (halfspace)?
- Nadirashvili (Inventiones 1996): $\exists M \subset \mathbb{B}(1)$ compl immersed minimal disk.
- Hoffman-Meeks (Inventiones 1990): If $M \subset \mathbb{R}^{3}$ properly immersed, nonplanar minimal surface $\Rightarrow M$ cannot be contained in a halfspace.
Question (embedded Calabi-Yau problem):
$M \subset \mathbb{R}^{3}$ complete embedded minimal surface (CEMS). Is M proper?

The Calabi-Yau problem for minimal surfaces(all surfaces are orientable)

- Calabi-Yau (1966-2000): Can a complete embedded minimal surface be contained in a ball (halfspace)?
- Nadirashvili (Inventiones 1996): $\exists M \subset \mathbb{B}(1)$ compl immersed minimal disk.
- Hoffman-Meeks (Inventiones 1990): If $M \subset \mathbb{R}^{3}$ properly immersed, nonplanar minimal surface $\Rightarrow M$ cannot be contained in a halfspace.
Question (embedded Calabi-Yau problem):
$M \subset \mathbb{R}^{3}$ complete embedded minimal surface (CEMS). Is M proper?
Theorem 1 (Meeks-P-Ros, JDG 2004)
$M \subset \mathbb{R}^{3}$ CEMS with finite genus and K_{M} locally bded $\Rightarrow M$ proper.
Theorem 2 (Colding-Minicozzi, Annals 2008)
$M \subset \mathbb{R}^{3}$ CEMS with finite topology $\Rightarrow M$ proper.
Theorem 3 (MLCT, Meeks-Rosenberg, Duke 2006)
$M \subset \mathbb{R}^{3}$ CEMS with positive injectivity radius $\Rightarrow M$ proper.

The embedded Calabi-Yau problem for finite genus

```
M\subset\mp@subsup{\mathbb{R}}{}{3}CEMS =>M noncompact }=>\mathcal{E}(M)={\mathrm{ ends of }M}\not=
Definition 1 (set of ends)
\mathcal{E}(MN)=\Lambda// where }1={\alpha:[0,\infty)->M\mathrm{ proper arc} and
\alpha}~~\mp@subsup{\alpha}{2}{}\mathrm{ if }\forallC\subsetM cpt set, , , , , , lie eventually in the same compnt of M - C.
E\subsetM noncpt subdomain, }\partialE\mathrm{ cpt. E represents [ }\alpha]\in\mathcal{E}(M)\mathrm{ if }\alpha[\mp@subsup{t}{0}{},\infty)\subsetE\mathrm{ for
some to.
```

Theorem 4 (Collin-Kusner-Meeks-Rosenberg, JDG 2004) If $M \subset \mathbb{R}^{3}$ nranor $F M S \rightarrow \mathcal{E}(M)$ countable

The embedded Calabi-Yau problem for finite genus $M \subset \mathbb{R}^{3}$ CEMS $\Rightarrow M$ noncompact $\Rightarrow \mathcal{E}(M)=\{$ ends of $M\} \neq \varnothing$.

Definition 1 (set of ends)
$\mathcal{E}(M)=\mathcal{A} / \sim$, where $\mathcal{A}=\{\alpha:[0, \infty) \rightarrow M$ proper arc $\}$ and $\alpha_{1} \sim \alpha_{2}$ if $\forall C \subset M$ cpt set, α_{1}, α_{2} lie eventually in the same compnt of $M-C$. $E \subset M$ noncpt subdomain, ∂E cpt. E represents $[\alpha] \in \mathcal{E}(M)$ if $\alpha\left[t_{0}, \infty\right) \subset E$ for some t_{0}.

The embedded Calabi-Yau problem for finite genus $M \subset \mathbb{R}^{3}$ CEMS $\Rightarrow M$ noncompact $\Rightarrow \mathcal{E}(M)=\{$ ends of $M\} \neq \varnothing$.

Definition 1 (set of ends)
$\mathcal{E}(M)=\mathcal{A} / \sim$, where $\mathcal{A}=\{\alpha:[0, \infty) \rightarrow M$ proper arc $\}$ and $\alpha_{1} \sim \alpha_{2}$ if $\forall C \subset M$ cpt set, α_{1}, α_{2} lie eventually in the same compnt of $M-C$. $E \subset M$ noncpt subdomain, ∂E cpt. E represents $[\alpha] \in \mathcal{E}(M)$ if $\alpha\left[t_{0}, \infty\right) \subset E$ for some t_{0}.

Theorem 4 (Collin-Kusner-Meeks-Rosenberg, JDG 2004)
If $M \subset \mathbb{R}^{3}$ proper $E M S \Rightarrow \mathcal{E}(M)$ countable.

The embedded Calabi-Yau problem for finite genus $M \subset \mathbb{R}^{3} \mathrm{CEMS} \Rightarrow M$ noncompact $\Rightarrow \mathcal{E}(M)=\{$ ends of $M\} \neq \varnothing$.

Definition 1 (set of ends)
$\mathcal{E}(M)=\mathcal{A} / \sim$, where $\mathcal{A}=\{\alpha:[0, \infty) \rightarrow M$ proper arc $\}$ and $\alpha_{1} \sim \alpha_{2}$ if $\forall C \subset M$ cpt set, α_{1}, α_{2} lie eventually in the same compnt of $M-C$. $E \subset M$ noncpt subdomain, ∂E cpt. E represents $[\alpha] \in \mathcal{E}(M)$ if $\alpha\left[t_{0}, \infty\right) \subset E$ for some t_{0}.

Theorem 4 (Collin-Kusner-Meeks-Rosenberg, JDG 2004) If $M \subset \mathbb{R}^{3}$ proper $E M S \Rightarrow \mathcal{E}(M)$ countable.

Theorem 5 (Meeks-P-Ros, 2018)
$M \subset \mathbb{R}^{3}$ CEMS with finite genus and countably many ends $\Rightarrow M$ proper.

The embedded Calabi-Yau problem for finite genus $M \subset \mathbb{R}^{3}$ CEMS $\Rightarrow M$ noncompact $\Rightarrow \mathcal{E}(M)=\{$ ends of $M\} \neq \varnothing$.

Definition 1 (set of ends)
$\mathcal{E}(M)=\mathcal{A} / \sim$, where $\mathcal{A}=\{\alpha:[0, \infty) \rightarrow M$ proper arc $\}$ and $\alpha_{1} \sim \alpha_{2}$ if $\forall C \subset M$ cpt set, α_{1}, α_{2} lie eventually in the same compnt of $M-C$. $E \subset M$ noncpt subdomain, ∂E cpt. E represents $[\alpha] \in \mathcal{E}(M)$ if $\alpha\left[t_{0}, \infty\right) \subset E$ for some t_{0}.

Theorem 4 (Collin-Kusner-Meeks-Rosenberg, JDG 2004) If $M \subset \mathbb{R}^{3}$ proper $E M S \Rightarrow \mathcal{E}(M)$ countable.

Theorem 5 (Meeks-P-Ros, 2018)
$M \subset \mathbb{R}^{3}$ CEMS with finite genus and countably many ends $\Rightarrow M$ proper.
Definition 2 (limit ends)
$\mathcal{E}(M) \hookrightarrow[0,1]$ embedding. $\mathbf{e} \in \mathcal{E}(M)$ simple end if \mathbf{e} isolated in $\mathcal{E}(M)$. $\mathbf{e} \in \mathcal{E}(M)$ limit end if not isolated.

The embedded Calabi-Yau problem for finite genus, II
Theorem 6 (Meeks-P-Ros, 2018)
$M \subset \mathbb{R}^{3} C E M S, \partial M$ cpt, $g(M)<\infty, \#(\mathcal{E}(M))=\infty$.
If M has countably many limit ends $\Rightarrow M$ proper \& M has 1 or 2 limit ends.

Take $M \subset \mathbb{R}^{3}$ as in Thm 6. Baire's Thm \Rightarrow isolated points in $\mathcal{E}_{\text {limit }}(M)$ (simple limit ends) are dense. So it suffices to show:
(C) If M has 1 or 2 simple limit ends $\Rightarrow M$ proper.

The embedded Calabi-Yau problem for finite genus, II
Theorem 6 (Meeks-P-Ros, 2018)
$M \subset \mathbb{R}^{3} C E M S, \partial M c p t, g(M)<\infty, \#(\mathcal{E}(M))=\infty$.
If M has countably many limit ends $\Rightarrow M$ proper \& M has 1 or 2 limit ends.
Sketch of proof of Thm 6:
Take $M \subset \mathbb{R}^{3}$ as in Thm 6. Baire's Thm \Rightarrow isolated points in $\mathcal{E}_{\text {limit }}(M)$ (simple limit ends) are dense. So it suffices to show:
(C) If M has 1 or 2 simple limit ends $\Rightarrow M$ proper.
(2) M cannot have 3 simple limit ends (thus M has 1 or 2 limit ends, both simple).

The embedded Calabi-Yau problem for finite genus, II

Theorem 6 (Meeks-P-Ros, 2018)
$M \subset \mathbb{R}^{3} C E M S, \partial M c p t, g(M)<\infty, \#(\mathcal{E}(M))=\infty$.
If M has countably many limit ends $\Rightarrow M$ proper \& M has 1 or 2 limit ends.
Sketch of proof of Thm 6:
Take $M \subset \mathbb{R}^{3}$ as in Thm 6. Baire's Thm \Rightarrow isolated points in $\mathcal{E}_{\text {limit }}(M)$ (simple limit ends) are dense. So it suffices to show:
(1) If M has 1 or 2 simple limit ends $\Rightarrow M$ proper.
(2) M cannot have 3 simple limit ends (thus M has 1 or 2 limit ends, both simple).

The embedded Calabi-Yau problem for finite genus, II
Theorem 6 (Meeks-P-Ros, 2018)
$M \subset \mathbb{R}^{3} C E M S, \partial M c p t, g(M)<\infty, \#(\mathcal{E}(M))=\infty$.
If M has countably many limit ends $\Rightarrow M$ proper \& M has 1 or 2 limit ends.
Sketch of proof of Thm 6:
Take $M \subset \mathbb{R}^{3}$ as in Thm 6. Baire's Thm \Rightarrow isolated points in $\mathcal{E}_{\text {limit }}(M)$ (simple limit ends) are dense. So it suffices to show:
(1) If M has 1 or 2 simple limit ends $\Rightarrow M$ proper.
(2) M cannot have 3 simple limit ends (thus M has 1 or 2 limit ends, both simple).

Theorem 7 (Meeks-P-Ros, Inventiones 2004)
If $M \subset \mathbb{R}^{3} P E M S, \partial M=\varnothing, g(M)<\infty \Rightarrow M$ cannot have just 1 limit end.

The embedded Calabi-Yau problem for finite genus, II
Theorem 6 (Meeks-P-Ros, 2018)
$M \subset \mathbb{R}^{3} C E M S, \partial M c p t, g(M)<\infty, \#(\mathcal{E}(M))=\infty$.
If M has countably many limit ends $\Rightarrow M$ proper \& M has 1 or 2 limit ends.
Sketch of proof of Thm 6:
Take $M \subset \mathbb{R}^{3}$ as in Thm 6. Baire's Thm \Rightarrow isolated points in $\mathcal{E}_{\text {limit }}(M)$ (simple limit ends) are dense. So it suffices to show:
(1) If M has 1 or 2 simple limit ends $\Rightarrow M$ proper.
(2) M cannot have 3 simple limit ends (thus M has 1 or 2 limit ends, both simple).

Proposition 1 (Christmas tree picture)
E simple limit end of $M \subset \mathbb{R}^{3} C E M S, g(E)=0 \Rightarrow E$ proper and ...

The embedded Calabi-Yau problem for finite genus, II

Theorem 6 (Meeks-P-Ros, 2018)

$M \subset \mathbb{R}^{3} C E M S, \partial M c p t, g(M)<\infty, \#(\mathcal{E}(M))=\infty$. If M has countably many limit ends $\Rightarrow M$ proper \& M has 1 or 2 limit ends.

Sketch of proof of Thm 6:
Take $M \subset \mathbb{R}^{3}$ as in Thm 6. Baire's Thm \Rightarrow isolated points in $\mathcal{E}_{\text {limit }}(M)$ (simple limit ends) are dense. So it suffices to show:
(1) If M has 1 or 2 simple limit ends $\Rightarrow M$ proper.
(2) M cannot have 3 simple limit ends (thus M has 1 or 2 limit ends, both simple).

Proposition 1 (Christmas tree picture)

E simple limit end of $M \subset \mathbb{R}^{3}$ CEMS, $g(E)=0 \Rightarrow E$ proper and after passing to a smaller end representative, translation, rotation \& homothety:
(1) Simple ends of E have FTC \& $\log \leq 0$
(2) The limit end of E is the top end
(3) $\partial E=\partial D, D \stackrel{c n v x}{\subset}\left\{x_{3}=0\right\}, \stackrel{\circ}{D} \cap E=\varnothing$
(4) $\exists f: \mathcal{R}_{+} \rightarrow E$ orient preserving diffeo ($\mathcal{R}_{+}=$top half of a
Riemann min example)

The Christmas tree picture for a simple limit end of genus zero

simple limit end

Discarding 3 simple limit ends for a CEMS

Produce \widetilde{E}_{2} area minimizing in X_{3} with cpt bdry, thus with FTC (Fischer-Colbrie) $\Rightarrow \widetilde{E}_{2}$ has a highest catenoidal end C of positive logarithmic growth.
None of the annular ends of E_{1} can lie above $C \Rightarrow E_{1}$ lies between two half catenoids !!

Proving the Christmas tree picture: properness
E simple limit end representative of $M \subset \mathbb{R}^{3}$ CEMS, $g(E)=0$.

- Topologically, $E \equiv \overline{\mathbb{D}}-\left[\left\{\frac{1}{2 n}\right\}_{n} \cup\{0\}\right], \partial E \equiv \partial \mathbb{D}=\mathbb{S}^{1}$.

We will use:

Theorem 7 (MLCT Meeks-Rosenberg, Duke 2006)
$M \subset \mathbb{R}^{3}$ CFMS with ∂M cnt

- If $I_{M} \geq \varepsilon>0$ outside some δ-neighb of $\partial M \Rightarrow M$ proper.
- If M has finite topology $\Rightarrow I_{M} \geq \varepsilon>0$ outside some δ-neighb of ∂M.
 ends, that we will assume horizontal (after rotation inden of n)

Proving the Christmas tree picture: properness
E simple limit end representative of $M \subset \mathbb{R}^{3}$ CEMS, $g(E)=0$.

- Topologically, $E \equiv \overline{\mathbb{D}}-\left[\left\{\frac{1}{2 n}\right\}_{n} \cup\{0\}\right], \partial E \equiv \partial \mathbb{D}=\mathbb{S}^{1}$.

We will use:

Theorem 7 (MLCT Meeks-Rosenberg, Duke 2006)

$M \subset \mathbb{R}^{3}$ CEMS with $\partial M \mathrm{cpt}$.

- If $I_{M} \geq \varepsilon>0$ outside some δ-neighb of $\partial M \Rightarrow M$ proper.
- If M has finite topology $\Rightarrow I_{M} \geq \varepsilon>0$ outside some δ-neighb of ∂M.

So it suffices to show: $I_{E} \geq \varepsilon>0$ outside some δ-neighb of ∂E ?

Proving the Christmas tree picture: properness
E simple limit end representative of $M \subset \mathbb{R}^{3}$ CEMS, $g(E)=0$.

- Topologically, $E \equiv \overline{\mathbb{D}}-\left[\left\{\frac{1}{2 n}\right\}_{n} \cup\{0\}\right], \partial E \equiv \partial \mathbb{D}=\mathbb{S}^{1}$.

We will use:

Theorem 7 (MLCT Meeks-Rosenberg, Duke 2006)

$M \subset \mathbb{R}^{3}$ CEMS with $\partial M c p t$.

- If $I_{M} \geq \varepsilon>0$ outside some δ-neighb of $\partial M \Rightarrow M$ proper.
- If M has finite topology $\Rightarrow I_{M} \geq \varepsilon>0$ outside some δ-neighb of ∂M.

So it suffices to show: $I_{E} \geq \varepsilon>0$ outside some δ-neighb of ∂E ?

- Description of the annular ends in E :

∂E
E_{n} CEMS, finite topology, $\partial E_{n} \mathrm{cpt}$ $\stackrel{(T h m}{\Rightarrow}{ }^{7)} E_{n}$ proper $\stackrel{\text { Collin) }}{\Rightarrow} E_{n}$ has catenoidal or planar ends, that we will assume horizontal (after rotation indep of n).

Proving the Christmas tree picture: properness II

Arguing by contrad, assume $\exists\left\{q_{n}\right\}_{n} \subset E$ s.t. $d_{E}\left(q_{n}, \partial E\right) \geq \delta>0$ and $I_{E}\left(q_{n}\right) \rightarrow 0$. Rescale by topology (Meeks-P-Ros, JDG 2018): $\exists\left\{p_{n}\right\}_{n} \subset E, \varepsilon_{n} \searrow 0$ s.t. $d_{E}\left(q_{n}, p_{n}\right) \rightarrow 0$ and

- $M_{n}:=$ closure of $c p n t$ of $E \cap \mathbb{B}\left(p_{n}, \varepsilon_{n}\right)$ that contains p_{n} is $c p t$, $\partial M_{n} \subset \partial \mathbb{B}\left(p_{n}, \varepsilon_{n}\right)-\partial E$,
- $\lambda_{n}:=1 / I_{E}\left(p_{n}\right), \lambda_{n} I_{E} \geq 1-\frac{1}{n}$ in $M_{n}, \lambda_{n} \varepsilon_{n} \rightarrow \infty$,
- $\left\{\lambda_{n}\left(M_{n}-p_{n}\right)\right\}_{n}$ converges to one of the two following cases:
or Riemann minimal example (Meeks-P-Ros, Annals 2015)
(3) A minimal narking garage structure with two columns.

Proving the Christmas tree picture: properness II

Arguing by contrad, assume $\exists\left\{q_{n}\right\}_{n} \subset E$ s.t. $d_{E}\left(q_{n}, \partial E\right) \geq \delta>0$ and $I_{E}\left(q_{n}\right) \rightarrow 0$. Rescale by topology (Meeks-P-Ros, JDG 2018): $\exists\left\{p_{n}\right\}_{n} \subset E, \varepsilon_{n} \searrow 0$ s.t. $d_{E}\left(q_{n}, p_{n}\right) \rightarrow 0$ and

- $M_{n}:=$ closure of cpnt of $E \cap \mathbb{B}\left(p_{n}, \varepsilon_{n}\right)$ that contains p_{n} is cpt, $\partial M_{n} \subset \partial \mathbb{B}\left(p_{n}, \varepsilon_{n}\right)-\partial E$,
- $\lambda_{n}:=1 / I_{E}\left(p_{n}\right), \lambda_{n} I_{E} \geq 1-\frac{1}{n}$ in $M_{n}, \lambda_{n} \varepsilon_{n} \rightarrow \infty$,
- $\left\{\lambda_{n}\left(M_{n}-p_{n}\right)\right\}_{n}$ converges to one of the two following cases:
\square
(3) A minimal parking garage structure with two columns.

Proving the Christmas tree picture: properness II

Arguing by contrad, assume $\exists\left\{q_{n}\right\}_{n} \subset E$ s.t. $d_{E}\left(q_{n}, \partial E\right) \geq \delta>0$ and $I_{E}\left(q_{n}\right) \rightarrow 0$. Rescale by topology (Meeks-P-Ros, JDG 2018): $\exists\left\{p_{n}\right\}_{n} \subset E, \varepsilon_{n} \searrow 0$ s.t. $d_{E}\left(q_{n}, p_{n}\right) \rightarrow 0$ and

- $M_{n}:=$ closure of cpnt of $E \cap \mathbb{B}\left(p_{n}, \varepsilon_{n}\right)$ that contains p_{n} is cpt, $\partial M_{n} \subset \partial \mathbb{B}\left(p_{n}, \varepsilon_{n}\right)-\partial E$,
- $\lambda_{n}:=1 / I_{E}\left(p_{n}\right), \lambda_{n} I_{E} \geq 1-\frac{1}{n}$ in $M_{n}, \lambda_{n} \varepsilon_{n} \rightarrow \infty$,
- $\left\{\lambda_{n}\left(M_{n}-p_{n}\right)\right\}_{n}$ converges to one of the two following cases:
(1) A PEMS $M_{\infty} \subset \mathbb{R}^{3}$ with $\overrightarrow{0} \in M_{\infty}, I_{M_{\infty}} \geq 1, I_{M_{\infty}}(\overrightarrow{0})=1$, hence a catenoid or Riemann minimal example (Meeks-P-Ros, Annals 2015).
(3) A minimal parking garage structure with two columns.

How to find a contradiction in cases (C1) and (C2)?

Properness III: Discarding a Riemann minimal example (sketch)

Suppose (C1) holds with $M_{\infty}=$ Riemann minimal example.

1. M_{∞} has vertical flux (hence it has tilted planar ends).

Properness III: Discarding a Riemann minimal example (sketch)

Suppose (C1) holds with $M_{\infty}=$ Riemann minimal example.

1. M_{∞} has vertical flux (hence it has tilted planar ends).

Proof: γ : 'waist' circle of $M_{\infty} \rightsquigarrow \gamma_{n} \subset M_{n}$ convex planar curve s.t. $\left\{\lambda_{n}\left(\gamma_{n}-p_{n}\right)\right\}_{n} \rightarrow \gamma$.

Lemma 1

For n large, Flux $\left(E, \gamma_{n}\right)$ is vertical (thus Flux $\left(M_{\infty}, \gamma\right)$ vertical).

- If γ_{n} does not wind around $0 \Rightarrow \gamma_{n}$ homologous to finitely many loops around annular ends of E, all with vertical flux $\Rightarrow \operatorname{Flux}\left(E, \gamma_{n}\right)$ vertical.

Properness III: Discarding a Riemann minimal example (sketch)

Suppose (C1) holds with $M_{\infty}=$ Riemann minimal example.

1. M_{∞} has vertical flux (hence it has tilted planar ends).

Proof: γ : 'waist' circle of $M_{\infty} \rightsquigarrow \gamma_{n} \subset M_{n}$ convex planar curve s.t. $\left\{\lambda_{n}\left(\gamma_{n}-p_{n}\right)\right\}_{n} \rightarrow \gamma$.

Lemma 1

For n large, Flux $\left(E, \gamma_{n}\right)$ is vertical (thus Flux $\left(M_{\infty}, \gamma\right)$ vertical).

Proof:

- If γ_{n} does not wind around $0 \Rightarrow \gamma_{n}$ homologous to finitely many loops around annular ends of E, all with vertical flux $\Rightarrow \operatorname{Flux}\left(E, \gamma_{n}\right)$ vertical.

Properness III: Discarding a Riemann minimal example (sketch)

Suppose (C1) holds with $M_{\infty}=$ Riemann minimal example.

1. M_{∞} has vertical flux (hence it has tilted planar ends).

Proof: γ : 'waist' circle of $M_{\infty} \rightsquigarrow \gamma_{n} \subset M_{n}$ convex planar curve s.t. $\left\{\lambda_{n}\left(\gamma_{n}-p_{n}\right)\right\}_{n} \rightarrow \gamma$.

Lemma 1

For n large, Flux $\left(E, \gamma_{n}\right)$ is vertical (thus Flux $\left(M_{\infty}, \gamma\right)$ vertical).

Proof:

- If γ_{n} does not wind around $0 \Rightarrow \gamma_{n}$ homologous to finitely many loops around annular ends of E, all with vertical flux $\Rightarrow \operatorname{Flux}\left(E, \gamma_{n}\right)$ vertical.
- If γ_{n} winds around $0 \forall n$ (after subseq) $\Rightarrow \gamma_{n}$ homologous to γ_{n+k} plus finitely many loops around annular ends of $E \Rightarrow$ $\operatorname{Flux}\left(E, \gamma_{n}\right)=\operatorname{Flux}\left(E, \gamma_{n+k}\right)+\operatorname{vert}(n, k) \Rightarrow \operatorname{Flux}_{\text {horiz }}\left(E, \gamma_{n+k}\right)$ indep of n, k. As length $\left(\gamma_{n}\right)=0 \Rightarrow$ Flux $_{\text {horiz }}\left(E, \gamma_{n}\right)=0 \forall n$.

Properness III: Discarding a Riemann minimal example (sketch)

Suppose (C1) holds with $M_{\infty}=$ Riemann minimal example.

1. M_{∞} has vertical flux (hence it has tilted planar ends).
2. Find a proper subdomain $\Delta_{n} \subset E$ with finite topology, s.t. $\partial \Delta_{n}=\gamma_{1}(n) \cup \gamma_{2}(n)$ and after rescaling, the cpt shadowed pieces converge.

Properness III: Discarding a Riemann minimal example (sketch)

Suppose (C1) holds with $M_{\infty}=$ Riemann minimal example.

1. M_{∞} has vertical flux (hence it has tilted planar ends)
2. Find a proper subdomain $\Delta_{n} \subset E$ with finite topology, s.t.
$\partial \Delta_{n}=\gamma_{1}(n) \cup \gamma_{2}(n)$ and after rescaling, the cpt shadowed pieces converge.

Properness III: Discarding a Riemann minimal example (sketch)

Suppose (C1) holds with $M_{\infty}=$ Riemann minimal example.

1. M_{∞} has vertical flux (hence it has tilted planar ends)
2. Find a proper subdomain $\Delta_{n} \subset E$ with finite topology, s.t.
$\partial \Delta_{n}=\gamma_{1}(n) \cup \gamma_{2}(n)$ and after rescaling, the cpt shadowed pieces converge.

Properness III: Discarding a Riemann minimal example (sketch)

Suppose (C1) holds with $M_{\infty}=$ Riemann minimal example.

1. M_{∞} has vertical flux (hence it has tilted planar ends)
2. Find a proper subdomain $\Delta_{n} \subset E$ with finite topology, s.t.
$\partial \Delta_{n}=\gamma_{1}(n) \cup \gamma_{2}(n)$ and after rescaling, the cpt shadowed pieces converge.

Properness III: Discarding a Riemann minimal example (sketch)

Suppose (C1) holds with $M_{\infty}=$ Riemann minimal example.

1. M_{∞} has vertical flux (hence it has tilted planar ends)
2. Find a proper subdomain $\Delta_{n} \subset E$ with finite topology, s.t.
$\partial \Delta_{n}=\gamma_{1}(n) \cup \gamma_{2}(n)$ and after rescaling, the cpt shadowed pieces converge.

Properness IV: Discarding a minimal parking garage (sketch)

Suppose (C2) occurs: $\left\{\lambda_{n}\left(M_{n}-p_{n}\right)\right\}_{n}$ converges to a minimal parking garage structure with two columns.

- For n sufficiently large, take $\gamma_{n} \subset M_{n} \subset E$ a 'connection loop'.
- Lemma 1 gives that $\operatorname{Flux}\left(E, \gamma_{n}\right)$ is vertical \Rightarrow planes in the limiting parking garage are vertical.
- Adapt the arguments that ruled out a Riemann minimal example.

Properness IV: Discarding a minimal parking garage (sketch)

Suppose (C2) occurs: $\left\{\lambda_{n}\left(M_{n}-p_{n}\right)\right\}_{n}$ converges to a minimal parking garage structure with two columns.

- For n sufficiently large, take $\gamma_{n} \subset M_{n} \subset E$ a 'connection loop'.
- Lemma 1 gives that $\operatorname{Flux}\left(E, \gamma_{n}\right)$ is vertical \Rightarrow planes in the limiting parking garage are vertical.
- Adapt the arguments that ruled out a Riemann minimal example.

Properness V: Discarding a catenoid (sketch)

Suppose (C1) holds with $M_{\infty}=$ catenoid.
γ : waist circle of $M_{\infty} \rightsquigarrow \gamma_{n} \subset M_{n}$ convex planar curve s.t. $\left\{\lambda_{n}\left(\gamma_{n}-p_{n}\right)\right\}_{n} \rightarrow \gamma$.

1. M_{∞} has vertical flux (by Lemma 1).
2. Three subcases (after subseq):
γ_{n} does not wind around 0 \& encloses at least two ends of $E \forall n$.γ_{n} winds around $0\left(\Rightarrow \gamma_{n}, \gamma_{n+k}\right.$ topologically concentric $\left.\forall n, k\right)$.does not wind around 0 \& encloses exactly one end of $E \forall n$.

Properness V: Discarding a catenoid (sketch)

Suppose (C1) holds with $M_{\infty}=$ catenoid.
γ : waist circle of $M_{\infty} \rightsquigarrow \gamma_{n} \subset M_{n}$ convex planar curve s.t. $\left\{\lambda_{n}\left(\gamma_{n}-p_{n}\right)\right\}_{n} \rightarrow \gamma$.

1. M_{∞} has vertical flux (by Lemma 1).
2. Three subcases (after subseq):
(1) γ_{n} does not wind around 0 \& encloses at least two ends of $E \forall n$.
(23) γ_{n} winds around $0\left(\Rightarrow \gamma_{n}, \gamma_{n+k}\right.$ topologically concentric $\left.\forall n, k\right)$.
(3) γ_{n} does not wind around 0 \& encloses exactly one end of $E \forall n$.

(D2)

Properness V: Discarding a catenoid (sketch)

Suppose (C1) holds with $M_{\infty}=$ catenoid.
γ : waist circle of $M_{\infty} \rightsquigarrow \gamma_{n} \subset M_{n}$ convex planar curve s.t. $\left\{\lambda_{n}\left(\gamma_{n}-p_{n}\right)\right\}_{n} \rightarrow \gamma$.

1. M_{∞} has vertical flux (by Lemma 1).
2. Three subcases (after subseq):
(1) γ_{n} does not wind around 0 \& encloses at least two ends of $E \forall n$.
(2) γ_{n} winds around $0\left(\Rightarrow \gamma_{n}, \gamma_{n+k}\right.$ topologically concentric $\left.\forall n, k\right)$.
(3) γ_{n} does not wind around 0 \& encloses exactly one end of $E \forall n$.

Strategy:

(1) Rule out (D1) (López-Ros deformation argument).
(2) Prove Lemma $2 \&$ rule out (D2) (rescaling-by-topology, MLCT, LRST).
(3) Discard (D3) (rescaling-by-topology, MLCT, CM 1-sided curv estim).

[^0]
Properness VI: Discarding a catenoid, case (D1) (sketch)

Suppose (C1) holds with $M_{\infty}=$ catenoid and (D1) holds $\forall n$.

Properness VI: Discarding a catenoid, case (D1) (sketch)

Suppose (C1) holds with $M_{\infty}=$ catenoid and (D1) holds $\forall n$.

- $\gamma_{n}=\partial R(n), R(n) \subset E$ proper, finite topol domain with at least two ends \& vertical flux.
- For n large, choose $C_{n} \subset E$ s.t. $\gamma_{n} \subset \operatorname{lnt}\left(C_{n}\right), C_{n}$ arbitrarily close to a rescaling of a fixed large cpt unstable piece C of a vertical catenoid, with ∂C_{n} : two cnvx horiz curves.
contradicting Meeks-White)

Properness VI: Discarding a catenoid, case (D1) (sketch)

Suppose (C1) holds with $M_{\infty}=$ catenoid and (D1) holds $\forall n$.

- $\gamma_{n}=\partial R(n), R(n) \subset E$ proper, finite topol domain with at least two ends \& vertical flux.
- For n large, choose $C_{n} \subset E$ s.t. $\gamma_{n} \subset \operatorname{Int}\left(C_{n}\right), C_{n}$ arbitrarily close to a rescaling of a fixed large cpt unstable piece C of a vertical catenoid, with ∂C_{n} : two cnvx horiz curves.
- The open planar disks $D_{1}(n), D_{2}(n) \subset \mathbb{R}^{3}$ bded by ∂C_{n} are disjoint from $R(n)$ (otherwise use a cpt portion of $R(n)$ in the 'interior' of $C_{n} \cup D_{1}(n) \cup D_{2}(n)$ as a barrier to find a stable min annulus with bdry ∂C_{n}, contradicting Meeks-White)

Properness VI: Discarding a catenoid, case (D1) (sketch)

Suppose (C1) holds with $M_{\infty}=$ catenoid and (D1) holds $\forall n$.

- $\gamma_{n}=\partial R(n), R(n) \subset E$ proper, finite topol domain with at least two ends \& vertical flux.
- For n large, choose $C_{n} \subset E$ s.t. $\gamma_{n} \subset \operatorname{Int}\left(C_{n}\right), C_{n}$ arbitrarily close to a rescaling of a fixed large cpt unstable piece C of a vertical catenoid, with ∂C_{n} : two cnvx horiz curves.
- The open planar disks $D_{1}(n), D_{2}(n) \subset \mathbb{R}^{3}$ bded by ∂C_{n} are disjoint from $R(n)$ (otherwise use a cpt portion of $R(n)$ in the 'interior' of $C_{n} \cup D_{1}(n) \cup D_{2}(n)$ as a barrier to find a stable min annulus with bdry ∂C_{n}, contradicting Meeks-White).
- $R(n) \cup D(\gamma n)$ is a properly emb piecewise smooth surface \Rightarrow separates \mathbb{R}^{3} Apply López-Ros argument to $R(n)$ to find a contradiction.

Properness VI: Discarding a catenoid, case (D1) (sketch)

Suppose (C1) holds with $M_{\infty}=$ catenoid and (D1) holds $\forall n$.

- $\gamma_{n}=\partial R(n), R(n) \subset E$ proper, finite topol domain with at least two ends \& vertical flux.
- For n large, choose $C_{n} \subset E$ s.t. $\gamma_{n} \subset \operatorname{Int}\left(C_{n}\right), C_{n}$ arbitrarily close to a rescaling of a fixed large cpt unstable piece C of a vertical catenoid, with ∂C_{n} : two cnvx horiz curves.
- The open planar disks $D_{1}(n), D_{2}(n) \subset \mathbb{R}^{3}$ bded by ∂C_{n} are disjoint from $R(n)$ (otherwise use a cpt portion of $R(n)$ in the 'interior' of $C_{n} \cup D_{1}(n) \cup D_{2}(n)$ as a barrier to find a stable min annulus with bdry ∂C_{n}, contradicting Meeks-White).
- $R(n) \cup D\left(\gamma_{n}\right)$ is a properly emb piecewise smooth surface \Rightarrow separates \mathbb{R}^{3}. Apply López-Ros argument to $R(n)$ to find a contradiction.

This discards case (D1).

Properness VII: Discarding a catenoid, case (D2) (sketch)

Lemma 2
If $\left\{p_{n}\right\}_{n} \rightarrow p_{\infty} \in \mathbb{R}^{3}$ and (D3) holds $\forall n \Rightarrow E$ lies at one side of $\left\{x_{3}=x_{3}\left(p_{\infty}\right)\right\}$.

Properness VII: Discarding a catenoid, case (D2) (sketch)

Lemma 2
If $\left\{p_{n}\right\}_{n} \rightarrow p_{\infty} \in \mathbb{R}^{3}$ and (D3) holds $\forall n \Rightarrow E$ lies at one side of $\left\{x_{3}=x_{3}\left(p_{\infty}\right)\right\}$.
Proof: (D3) holds $\Rightarrow \gamma_{n}=\partial R(n), R(n) \subset E$ proper annulus.

Properness VII: Discarding a catenoid, case (D2) (sketch)

Lemma 2
If $\left\{p_{n}\right\}_{n} \rightarrow p_{\infty} \in \mathbb{R}^{3}$ and (D3) holds $\forall n \Rightarrow E$ lies at one side of $\left\{x_{3}=x_{3}\left(p_{\infty}\right)\right\}$.
Proof: (D3) holds $\Rightarrow \gamma_{n}=\partial R(n), R(n) \subset E$ proper annulus.
We can assume total curv $R(n)$ arbitrarily small
\Rightarrow Gauss map of $R(n)$ is arbitr close to e_{3} (or $-e_{3}$)
$\Rightarrow R(n)$ is graphical over its projection to $\left\{x_{3}=0\right\}$.

Properness VII: Discarding a catenoid, case (D2) (sketch)

Lemma 2

If $\left\{p_{n}\right\}_{n} \rightarrow p_{\infty} \in \mathbb{R}^{3}$ and (D3) holds $\forall n \Rightarrow E$ lies at one side of $\left\{x_{3}=x_{3}\left(p_{\infty}\right)\right\}$.
Proof: (D3) holds $\Rightarrow \gamma_{n}=\partial R(n), R(n) \subset E$ proper annulus.
We can assume total curv $R(n)$ arbitrarily small
\Rightarrow Gauss map of $R(n)$ is arbitr close to e_{3} (or $-e_{3}$)
$\Rightarrow R(n)$ is graphical over its projection to $\left\{x_{3}=0\right\}$.
$\left\{\gamma_{n}\right\}_{n} \rightarrow p_{\infty} \Rightarrow\{R(n)\}_{n} \rightarrow\left\{x_{3}=x_{3}\left(p_{\infty}\right)\right\}-\left\{p_{\infty}\right\}$ (smoothly).

Properness VII: Discarding a catenoid, case (D2) (sketch)

Lemma 2

If $\left\{p_{n}\right\}_{n} \rightarrow p_{\infty} \in \mathbb{R}^{3}$ and (D3) holds $\forall n \Rightarrow E$ lies at one side of $\left\{x_{3}=x_{3}\left(p_{\infty}\right)\right\}$.
Proof: (D3) holds $\Rightarrow \gamma_{n}=\partial R(n), R(n) \subset E$ proper annulus.
We can assume total curv $R(n)$ arbitrarily small
\Rightarrow Gauss map of $R(n)$ is arbitr close to e_{3} (or $-e_{3}$)
$\Rightarrow R(n)$ is graphical over its projection to $\left\{x_{3}=0\right\}$.
$\left\{\gamma_{n}\right\}_{n} \rightarrow p_{\infty} \Rightarrow\{R(n)\}_{n} \rightarrow\left\{x_{3}=x_{3}\left(p_{\infty}\right)\right\}-\left\{p_{\infty}\right\}$ (smoothly).
By contrad, suppose $\left\{x_{3}=x_{3}\left(p_{\infty}\right)\right\}$ intersects E at an interior point

Properness VII: Discarding a catenoid, case (D2) (sketch)

Lemma 2

If $\left\{p_{n}\right\}_{n} \rightarrow p_{\infty} \in \mathbb{R}^{3}$ and (D3) holds $\forall n \Rightarrow E$ lies at one side of $\left\{x_{3}=x_{3}\left(p_{\infty}\right)\right\}$.
Proof: (D3) holds $\Rightarrow \gamma_{n}=\partial R(n), R(n) \subset E$ proper annulus.
We can assume total curv $R(n)$ arbitrarily small
\Rightarrow Gauss map of $R(n)$ is arbitr close to e_{3} (or $-e_{3}$)
$\Rightarrow R(n)$ is graphical over its projection to $\left\{x_{3}=0\right\}$.
$\left\{\gamma_{n}\right\}_{n} \rightarrow p_{\infty} \Rightarrow\{R(n)\}_{n} \rightarrow\left\{x_{3}=x_{3}\left(p_{\infty}\right)\right\}-\left\{p_{\infty}\right\}$ (smoothly).
By contrad, suppose $\left\{x_{3}=x_{3}\left(p_{\infty}\right)\right\}$ intersects E at an interior point $\Rightarrow\left\{x_{3}=x_{3}\left(p_{\infty}\right)\right\}-\left\{p_{\infty}\right\}$ intersects E transversely at some interior point

Properness VII: Discarding a catenoid, case (D2) (sketch)

Lemma 2

If $\left\{p_{n}\right\}_{n} \rightarrow p_{\infty} \in \mathbb{R}^{3}$ and (D3) holds $\forall n \Rightarrow E$ lies at one side of $\left\{x_{3}=x_{3}\left(p_{\infty}\right)\right\}$.
Proof: (D3) holds $\Rightarrow \gamma_{n}=\partial R(n), R(n) \subset E$ proper annulus.
We can assume total curv $R(n)$ arbitrarily small
\Rightarrow Gauss map of $R(n)$ is arbitr close to e_{3} (or $-e_{3}$)
$\Rightarrow R(n)$ is graphical over its projection to $\left\{x_{3}=0\right\}$.
$\left\{\gamma_{n}\right\}_{n} \rightarrow p_{\infty} \Rightarrow\{R(n)\}_{n} \rightarrow\left\{x_{3}=x_{3}\left(p_{\infty}\right)\right\}-\left\{p_{\infty}\right\}$ (smoothly).
By contrad, suppose $\left\{x_{3}=x_{3}\left(p_{\infty}\right)\right\}$ intersects E at an interior point $\Rightarrow\left\{x_{3}=x_{3}\left(p_{\infty}\right)\right\}-\left\{p_{\infty}\right\}$ intersects E transversely at some interior point
\Rightarrow for n large, $R(n)$ intersects $E-R(n)$!!

Properness VII: Discarding a catenoid, case (D2) (sketch)

Lemma 2

If $\left\{p_{n}\right\}_{n} \rightarrow p_{\infty} \in \mathbb{R}^{3}$ and (D3) holds $\forall n \Rightarrow E$ lies at one side of $\left\{x_{3}=x_{3}\left(p_{\infty}\right)\right\}$.
How to rule out case (D2): Define $D_{n}, D_{n}^{\prime}, C_{n}$, that bound $W_{n} c p t$. Take $k \gg 1$.

Relative position of W_{n}, W_{n+k} ?
Arguments as those that ruled out (D1) imply now $W_{n+k} \subset \operatorname{Int}\left(W_{n}\right)$ for n, k large.

Properness VII: Discarding a catenoid, case (D2) (sketch)

Lemma 2
If $\left\{p_{n}\right\}_{n} \rightarrow p_{\infty} \in \mathbb{R}^{3}$ and (D3) holds $\forall n \Rightarrow E$ lies at one side of $\left\{x_{3}=x_{3}\left(p_{\infty}\right)\right\}$.
How to rule out case (D2):

Properness VII: Discarding a catenoid, case (D2) (sketch)

Lemma 2
If $\left\{p_{n}\right\}_{n} \rightarrow p_{\infty} \in \mathbb{R}^{3}$ and (D3) holds $\forall n \Rightarrow E$ lies at one side of $\left\{x_{3}=x_{3}\left(p_{\infty}\right)\right\}$.
How to rule out case (D2):
Reindexing and taking subseq, $W_{n+1} \subset \operatorname{Int}\left(W_{n}\right) \forall n$

Properness VII: Discarding a catenoid, case (D2) (sketch)

Lemma 2

If $\left\{p_{n}\right\}_{n} \rightarrow p_{\infty} \in \mathbb{R}^{3}$ and (D3) holds $\forall n \Rightarrow E$ lies at one side of $\left\{x_{3}=x_{3}\left(p_{\infty}\right)\right\}$.
How to rule out case (D2):
Reindexing and taking subseq, $W_{n+1} \subset \operatorname{Int}\left(W_{n}\right) \forall n$
$\Rightarrow \bigcap_{n \in \mathbb{N}} W_{n}=\left\{c_{\infty}\right\}, c_{\infty} \in \mathbb{R}^{3}$.

Properness VII: Discarding a catenoid, case (D2) (sketch)

Lemma 2

If $\left\{p_{n}\right\}_{n} \rightarrow p_{\infty} \in \mathbb{R}^{3}$ and (D3) holds $\forall n \Rightarrow E$ lies at one side of $\left\{x_{3}=x_{3}\left(p_{\infty}\right)\right\}$.
How to rule out case (D2):
Reindexing and taking subseq, $W_{n+1} \subset \operatorname{Int}\left(W_{n}\right) \forall n$
$\Rightarrow \bigcap W_{n}=\left\{c_{\infty}\right\}, c_{\infty} \in \mathbb{R}^{3}$. $n \in \mathbb{N}$
$E \cap\left[\operatorname{lnt}\left(W_{1}\right)-\left\{c_{\infty}\right\}\right]$ locally posit inject rad (otherwise rescale by topology, find a vertical catenoid as limit and

- Discard (D1) by López-Ros,

- Discard (D2) because 'catenoids' are concentric,
- Discard (D3) by Lemma 2 !!)

Properness VII: Discarding a catenoid, case (D2) (sketch)

Lemma 2

If $\left\{p_{n}\right\}_{n} \rightarrow p_{\infty} \in \mathbb{R}^{3}$ and (D3) holds $\forall n \Rightarrow E$ lies at one side of $\left\{x_{3}=x_{3}\left(p_{\infty}\right)\right\}$.
How to rule out case (D2):
Reindexing and taking subseq, $W_{n+1} \subset \operatorname{Int}\left(W_{n}\right) \forall n$
$\Rightarrow \bigcap W_{n}=\left\{c_{\infty}\right\}, c_{\infty} \in \mathbb{R}^{3}$. $n \in \mathbb{N}$
$E \cap\left[\operatorname{lnt}\left(W_{1}\right)-\left\{c_{\infty}\right\}\right]$ locally posit inject rad
$\Rightarrow \mathcal{L}:=\overline{E \cap\left[\operatorname{lnt}\left(W_{1}\right)-\left\{c_{\infty}\right\}\right]} \operatorname{lnt}\left(W_{1}\right)-\left\{c_{\infty}\right\}$
\min lamination of $\operatorname{Int}\left(W_{1}\right)-\left\{c_{\infty}\right\}$

Properness VII: Discarding a catenoid, case (D2) (sketch)

Lemma 2

If $\left\{p_{n}\right\}_{n} \rightarrow p_{\infty} \in \mathbb{R}^{3}$ and (D3) holds $\forall n \Rightarrow E$ lies at one side of $\left\{x_{3}=x_{3}\left(p_{\infty}\right)\right\}$.
How to rule out case (D2):
Reindexing and taking subseq, $W_{n+1} \subset \operatorname{Int}\left(W_{n}\right) \forall n$
$\Rightarrow \bigcap W_{n}=\left\{c_{\infty}\right\}, c_{\infty} \in \mathbb{R}^{3}$. $n \in \mathbb{N}$
$E \cap\left[\operatorname{lnt}\left(W_{1}\right)-\left\{c_{\infty}\right\}\right]$ locally posit inject rad
$\Rightarrow \mathcal{L}:=\overline{E \cap\left[\operatorname{lnt}\left(W_{1}\right)-\left\{c_{\infty}\right\}\right]}$
min lamination of $\operatorname{lnt}\left(W_{1}\right)-\left\{c_{\infty}\right\}$, without limit leaves in a neighb of c_{∞}

Properness VII: Discarding a catenoid, case (D2) (sketch)

Lemma 2

If $\left\{p_{n}\right\}_{n} \rightarrow p_{\infty} \in \mathbb{R}^{3}$ and (D3) holds $\forall n \Rightarrow E$ lies at one side of $\left\{x_{3}=x_{3}\left(p_{\infty}\right)\right\}$.
How to rule out case (D2):
Reindexing and taking subseq, $W_{n+1} \subset \operatorname{Int}\left(W_{n}\right) \forall n$
$\Rightarrow \bigcap W_{n}=\left\{c_{\infty}\right\}, c_{\infty} \in \mathbb{R}^{3}$. $n \in \mathbb{N}$
$E \cap\left[\operatorname{lnt}\left(W_{1}\right)-\left\{c_{\infty}\right\}\right]$ locally posit inject rad
$\Rightarrow \mathcal{L}:=\overline{E \cap\left[\operatorname{lnt}\left(W_{1}\right)-\left\{c_{\infty}\right\}\right]}$
min lamination of $\operatorname{lnt}\left(W_{1}\right)-\left\{c_{\infty}\right\}$, without limit leaves in a neighb of c_{∞}

\Rightarrow in some cpt neighb U of c_{∞},
$\stackrel{(\text { LRST })}{\Rightarrow} \mathcal{L} \cap U$ extends smoothly across $c_{\infty}!!$
$\mathcal{L} \cap U$ is a PEMS of genus zero $\stackrel{\mathcal{L}}{\Rightarrow} \cap U$ extends smoothly across c_{∞} !!

This discards case (D2).

Properness VIII: Discarding a catenoid, case (D3) (sketch)

Suppose (C1) holds with M_{∞} vertical catenoid and (D3) holds $\forall n$.

$\gamma_{n}=\partial R(n), R(n) \subset E$ proper graphical ann, $\log (R(n)) \nearrow 0\left(\right.$ Length $\left.\left(\gamma_{n}\right) \rightarrow 0\right)$

Properness VIII: Discarding a catenoid, case (D3) (sketch)

Suppose (C1) holds with M_{∞} vertical catenoid and (D3) holds $\forall n$.

$\gamma_{n}=\partial R(n), R(n) \subset E$ proper graphical ann, $\log (R(n)) \nearrow 0\left(\right.$ Length $\left.\left(\gamma_{n}\right) \rightarrow 0\right)$

- E is locally simply cnn in \mathbb{R}^{3} : Otherwise $\exists p_{\infty} \in \mathbb{R}^{3}$ s.t. E not loc simply cnn in any neighb of $p_{\infty} \stackrel{(\text { Lemma } 2)}{\Rightarrow} E$ lies at one side S of $\Pi\left(p_{\infty}\right)=\left\{x_{3}=x_{3}\left(p_{\infty}\right)\right\}$ $\& \Pi\left(p_{\infty}\right)=\lim _{n} R\left(p_{\infty}, n\right), R\left(p_{\infty}, n\right) \subset E$ proper graphical annuli.

Properness VIII: Discarding a catenoid, case (D3) (sketch)

Suppose (C1) holds with M_{∞} vertical catenoid and (D3) holds $\forall n$.

$\gamma_{n}=\partial R(n), R(n) \subset E$ proper graphical ann, $\log (R(n)) \nearrow 0\left(\right.$ Length $\left.\left(\gamma_{n}\right) \rightarrow 0\right)$

- E is locally simply cnn in \mathbb{R}^{3} : Otherwise $\exists p_{\infty} \in \mathbb{R}^{3}$ s.t. E not loc simply cnn in any neighb of $p_{\infty} \stackrel{(\text { Lemma } 2)}{\Rightarrow} E$ lies at one side S of $\Pi\left(p_{\infty}\right)=\left\{x_{3}=x_{3}\left(p_{\infty}\right)\right\}$ $\& \Pi\left(p_{\infty}\right)=\lim _{n} R\left(p_{\infty}, n\right), R\left(p_{\infty}, n\right) \subset E$ proper graphical annuli. E loc simply cnn around every in $\mathbb{R}^{3}-\left\{p_{\infty}\right\}$: otherwise we contradict Lemma 2 or that $R\left(p_{\infty}, n\right) \cap R(q, n) \neq \varnothing$ for n large (provided that E not loc simply cnn around $\left.q \in \Pi\left(p_{\infty}\right)-\left\{p_{\infty}\right\}\right)$

Properness VIII: Discarding a catenoid, case (D3) (sketch)

Suppose (C1) holds with M_{∞} vertical catenoid and (D3) holds $\forall n$.

$\gamma_{n}=\partial R(n), R(n) \subset E$ proper graphical ann, $\log (R(n)) \nearrow 0\left(\right.$ Length $\left.\left(\gamma_{n}\right) \rightarrow 0\right)$

- E is locally simply cnn in \mathbb{R}^{3} : Otherwise $\exists p_{\infty} \in \mathbb{R}^{3}$ s.t. E not loc simply cnn in any neighb of $p_{\infty} \stackrel{(\text { Lemma 2) }}{\Rightarrow} E$ lies at one side S of $\Pi\left(p_{\infty}\right)=\left\{x_{3}=x_{3}\left(p_{\infty}\right)\right\}$ $\& \Pi\left(p_{\infty}\right)=\lim _{n} R\left(p_{\infty}, n\right), R\left(p_{\infty}, n\right) \subset E$ proper graphical annuli. E loc simply cnn around every in $\mathbb{R}^{3}-\left\{p_{\infty}\right\}$
$\Rightarrow \mathcal{L}_{1}:=\overline{E-\partial E^{\mathbb{R}^{3}-\left\{p_{\infty}\right\}}}$ min lamination of $\mathbb{R}^{3}-\left(\partial E \cup\left\{p_{\infty}\right\}\right)($ MLCT $)$

Properness VIII: Discarding a catenoid, case (D3) (sketch)

Suppose (C1) holds with M_{∞} vertical catenoid and (D3) holds $\forall n$.

$\gamma_{n}=\partial R(n), R(n) \subset E$ proper graphical ann, $\log (R(n)) \nearrow 0\left(\right.$ Length $\left.\left(\gamma_{n}\right) \rightarrow 0\right)$

- E is locally simply cnn in \mathbb{R}^{3} : Otherwise $\exists p_{\infty} \in \mathbb{R}^{3}$ s.t. E not loc simply cnn in any neighb of $p_{\infty} \stackrel{(\text { Lemma } 2)}{\Rightarrow} E$ lies at one side S of $\Pi\left(p_{\infty}\right)=\left\{x_{3}=x_{3}\left(p_{\infty}\right)\right\}$ $\& \Pi\left(p_{\infty}\right)=\lim _{n} R\left(p_{\infty}, n\right), R\left(p_{\infty}, n\right) \subset E$ proper graphical annuli. E loc simply cnn around every in $\mathbb{R}^{3}-\left\{p_{\infty}\right\}$
$\Rightarrow \mathcal{L}_{1}:=\overline{E-\partial E^{\mathbb{R}^{3}-\left\{p_{\infty}\right\}}}$ min lamination of $\mathbb{R}^{3}-\left(\partial E \cup\left\{p_{\infty}\right\}\right)$
E properly emb in S : otherwise $\exists L_{1} \in \mathcal{L}_{1}$ limit leaf hence horiz plane \& $E \subset \operatorname{slab}\left[\Pi\left(p_{\infty}\right), L_{1}\right]!!$

Properness VIII: Discarding a catenoid, case (D3) (sketch)

Suppose (C1) holds with M_{∞} vertical catenoid and (D3) holds $\forall n$.

$\gamma_{n}=\partial R(n), R(n) \subset E$ proper graphical ann, $\log (R(n)) \nearrow 0\left(\right.$ Length $\left.\left(\gamma_{n}\right) \rightarrow 0\right)$

- E is locally simply cnn in \mathbb{R}^{3} : Otherwise $\exists p_{\infty} \in \mathbb{R}^{3}$ s.t. E not lac simply cnn in any neighb of $p_{\infty} \stackrel{(\text { Lemma } 2)}{\Rightarrow} E$ lies at one side S of $\Pi\left(p_{\infty}\right)=\left\{x_{3}=x_{3}\left(p_{\infty}\right)\right\}$ $\& \Pi\left(p_{\infty}\right)=\lim _{n} R\left(p_{\infty}, n\right), R\left(p_{\infty}, n\right) \subset E$ proper graphical annuli. E oc simply cnn around every in $\mathbb{R}^{3}-\left\{p_{\infty}\right\}$
$\Rightarrow \mathcal{L}_{1}:=\overline{E-\partial E^{\mathbb{R}^{3}-\left\{p_{\infty}\right\}}}$ min lamination of $\mathbb{R}^{3}-\left(\partial E \cup\left\{p_{\infty}\right\}\right)$
E properly mb in S
$\Rightarrow \partial E$ cannot be joined
d
to the portion of
$E-R\left(p_{\infty}, n\right)$ above $R\left(p_{\infty}, n\right)$!!

Properness VIII: Discarding a catenoid, case (D3) (sketch)

Suppose (C1) holds with M_{∞} vertical catenoid and (D3) holds $\forall n$.

$\gamma_{n}=\partial R(n), R(n) \subset E$ proper graphical ann, $\log (R(n)) \nearrow 0\left(\right.$ Length $\left.\left(\gamma_{n}\right) \rightarrow 0\right)$

- E is locally simply cnn in $\mathbb{R}^{3} \Rightarrow \mathcal{L}:=\overline{E-\partial E^{\mathbb{R}^{3}}-\partial E}$ min lam of $\mathbb{R}^{3}-\partial E$.

Properness VIII: Discarding a catenoid, case (D3) (sketch)

Suppose (C1) holds with M_{∞} vertical catenoid and (D3) holds $\forall n$.

$\gamma_{n}=\partial R(n), R(n) \subset E$ proper graphical ann, $\log (R(n)) \nearrow 0\left(\right.$ Length $\left.\left(\gamma_{n}\right) \rightarrow 0\right)$

- E is locally simply cnn in $\mathbb{R}^{3} \Rightarrow \mathcal{L}:=\overline{E-\partial E^{\mathbb{R}^{3}}-\partial E}$ min lam of $\mathbb{R}^{3}-\partial E$.
- If E not proper $\Rightarrow \mathcal{L}^{\prime}:=\overline{\mathcal{L}-(E-\partial E)^{\mathbb{R}^{3}}} \neq \varnothing$ min lamin \mathcal{L}^{\prime} consisting of horizontal planes.

Properness VIII: Discarding a catenoid, case (D3) (sketch)

Suppose (C1) holds with M_{∞} vertical catenoid and (D3) holds $\forall n$.

$\gamma_{n}=\partial R(n), R(n) \subset E$ proper graphical ann, $\log (R(n)) \nearrow 0\left(\right.$ Length $\left.\left(\gamma_{n}\right) \rightarrow 0\right)$

- E is locally simply cnn in $\mathbb{R}^{3} \Rightarrow \mathcal{L}:=\overline{E-\partial E^{\mathbb{R}^{3}}-\partial E}$ min lam of $\mathbb{R}^{3}-\partial E$.
- If E not proper $\Rightarrow \mathcal{L}^{\prime}:=\overline{\mathcal{L}-(E-\partial E)^{\mathbb{R}^{3}}} \neq \varnothing$ min lamin \mathcal{L}^{\prime} consisting of horizontal planes.
- \mathcal{L}^{\prime} consists of a single plane Π : If $\exists \Pi \neq \Pi^{\prime} \in \mathcal{L}^{\prime} \Rightarrow E \subset \operatorname{slab}\left[\Pi, \Pi^{\prime}\right]$!!

Properness VIII: Discarding a catenoid, case (D3) (sketch)

Suppose (C1) holds with M_{∞} vertical catenoid and (D3) holds $\forall n$.

$\gamma_{n}=\partial R(n), R(n) \subset E$ proper graphical ann, $\log (R(n)) \nearrow 0\left(\right.$ Length $\left.\left(\gamma_{n}\right) \rightarrow 0\right)$

- E is locally simply cnn in $\mathbb{R}^{3} \Rightarrow \mathcal{L}:=\overline{E-\partial E^{\mathbb{R}^{3}}-\partial E}$ min lam of $\mathbb{R}^{3}-\partial E$.
- If E not proper $\Rightarrow \mathcal{L}^{\prime}:=\overline{\mathcal{L}-(E-\partial E)^{\mathbb{R}^{3}}} \neq \varnothing$ min lamin \mathcal{L}^{\prime} consisting of horizontal planes.
- \mathcal{L}^{\prime} consists of a single plane $\Pi \Rightarrow E$ proper in $S(\Pi)=\left\{x_{3}<x_{3}(\Pi)\right\}$.

Properness VIII: Discarding a catenoid, case (D3) (sketch)

Suppose (C1) holds with M_{∞} vertical catenoid and (D3) holds $\forall n$.

$\gamma_{n}=\partial R(n), R(n) \subset E$ proper graphical ann, $\log (R(n)) \nearrow 0\left(\right.$ Length $\left.\left(\gamma_{n}\right) \rightarrow 0\right)$

- E is locally simply cnn in $\mathbb{R}^{3} \Rightarrow \mathcal{L}:=\overline{E-\partial E^{\mathbb{R}^{3}}-\partial E}$ min lam of $\mathbb{R}^{3}-\partial E$.
- If E not proper $\Rightarrow \mathcal{L}^{\prime}:=\overline{\mathcal{L}-(E-\partial E)} \mathbb{R}^{\mathbb{R}^{3}} \neq \varnothing$ min lamin \mathcal{L}^{\prime} consisting of horizontal planes.
- \mathcal{L}^{\prime} consists of a single plane $\Pi \Rightarrow E$ proper in $S(\Pi)=\left\{x_{3}<x_{3}(\Pi)\right\}$.
- Meeks-Rosenberg $\left(C M 1\right.$-sided curv estim) $\Rightarrow I_{E}$ not bded away from zero in any $\left\{x_{3}(\Pi)-\delta<x_{3}<x_{3}(\Pi)\right\}, \delta>0$.

Properness VIII: Discarding a catenoid, case (D3) (sketch)

Suppose (C1) holds with M_{∞} vertical catenoid and (D3) holds $\forall n$.

$\gamma_{n}=\partial R(n), R(n) \subset E$ proper graphical ann, $\log (R(n)) \nearrow 0\left(\right.$ Length $\left.\left(\gamma_{n}\right) \rightarrow 0\right)$

- E is locally simply cnn in $\mathbb{R}^{3} \Rightarrow \mathcal{L}:=\overline{E-\partial E^{\mathbb{R}^{3}}-\partial E} \min$ lam of $\mathbb{R}^{3}-\partial E$.
- If E not proper $\Rightarrow \mathcal{L}^{\prime}:=\overline{\mathcal{L}-(E-\partial E)^{\mathbb{R}^{3}}} \neq \varnothing$ min lamin \mathcal{L}^{\prime} consisting of horizontal planes.
- \mathcal{L}^{\prime} consists of a single plane $\Pi \Rightarrow E$ proper in $S(\Pi)=\left\{x_{3}<x_{3}(\Pi)\right\}$.
- Meeks-Rosenberg $\left(C M 1\right.$-sided curv estim) $\Rightarrow I_{E}$ not bded away from zero in any $\left\{x_{3}(\Pi)-\delta<x_{3}<x_{3}(\Pi)\right\}, \delta>0$.
- Adapt the separation arguments above to show that ∂E cannot be joined to the portion of $E-R(n)$ above $R(n)$ for n large !! (final contradiction)

[^0]: Lemma 2
 If $\left\{p_{n}\right\}_{n} \rightarrow p_{\infty} \in \mathbb{R}^{3}$ and (D3) holds $\forall n \Rightarrow E$ lies at one side of $\left\{x_{3}=x_{3}\left(p_{\infty}\right)\right\}$.

