Integral points on some cubic surfaces

Amit Ghosh

Oklahoma State University

December 2017

(joint work with Peter Sarnak)

Definition

By an affine form f in n-variables we mean $f \in \mathbb{Z}[x_1, \ldots, x_n]$ whose leading homogeneous term f_0 is non-degenerate and such that f - k is (absolutely) irreducible for all constants k.

Definition

An affine cubic form F is an affine form in three variables with f_0 a cubic form.

Definition

For $k \neq 0$ and $\mathbb{X} \subset \mathbb{C}^n$, set

$$V_{k,f}(\mathbb{X}) = \{ \mathbf{x} \in \mathbb{X} : f(\mathbf{x}) = k \},$$

and $v_f(k) := |V_{k,f}(\mathbb{Z})|$.

Basic question: For which k is $V_{k,f}(\mathbb{Z}) \neq \emptyset$, or more generally infinite or Zariski dense in $V_{k,f}$?

To measure the richness of representations by f, we say

Definition

- 1. f is perfect if $V_{k,f}(\mathbb{Z})$ is Zariski dense in $V_{k,f}$ for all but finitely many admissible k's;
- 2. f is almost perfect if the same holds for almost all admissible k (in the sense of natural density);
- 3. f is full if $v_f(k) \to \infty$ as $k \to \infty$ for almost all admissible k's.

For an affine form the admissible k's are given in terms of a congruence condition.

If all integers are admissible and if f is perfect, then we say it is universal.

If f is a homogenous form in n variables and of degree $d \geq n+1$, then Vojta's Conjectures predict that $V_{k,f}(\mathbb{Z})$ lies in a proper Zariski-closed subset of $\mathbb{P}^{n-1}(\mathbb{Q})$.

Examples

- ▶ n = 2:
 - ► A generic quadratic is never full (and not absolutely irreducible).
 - ▶ For cubic f, Thue (1909), Siegel(1929) show that $V_{k,f}(\mathbb{Z})$ is finite. Moreover only for very few of the admissible k's is $V_{k,f}(\mathbb{Z})$ non-empty (Schmidt 1987).
- ▶ (Davenport 1939) The sum of four cubes is full.
- ▶ (Hooley 2016) If f is a homogeneous cubic and is nonsingular with $n \ge 5$, then f is full, while conditional on the Riemann Hypothesis for certain Hasse-Weil L-functions, the same is true for $n \ge 4$. Conjectured: any such f with $n \ge 4$ is perfect.
- ▶ (Browning/Heath-Brown 2009) If f is a cubic polynomial, $n \ge 10$ and f_0 is nonsingular then f is perfect.

So for cubics, the case n = 3 remains to be studied.

Examples: Ternary Cubics

- ► F = S, the sum of three cubes: $S(x_1, x_2, x_3) = x_1^3 + x_2^3 + x_3^3$.
 - ▶ Congruence obstructions: $V_{k,S}(\mathbb{Z}) = \emptyset$ if $k \equiv 4, 5 \pmod{9}$.
 - ▶ $V_{1,S}(\mathbb{Z})$ is Zariski dense in $V_{1,S}$ (Lehmer 1956). Infinitely many one-parameter families of solutions constructed, using factorization and the unit group in quadratic fields.
 - Strong approximation in its strongest form fails for $V_{k,S}(\mathbb{Z})$; the global obstruction coming from an application of cubic reciprocity (Cassels 1985, Heath-Brown 1992, Colliot-Thélène/Wittenberg 2012).
- ▶ $F = L_1L_2L_3$, product of linear forms. Then $V_{k,F}(\mathbb{Z})$ is finite.
- For a \mathbb{Q} -anistropic torus given by $N(\mathbf{x}) = Nm_{K/\mathbb{Q}}(\alpha_1x_1 + \alpha_2x_2 + \alpha_3x_3)$, where $\alpha_1, \alpha_2, \alpha_3$ is a \mathbb{Z} -basis of an order in a cubic number field K. Most k are not represented (Odoni 1977):

$$|\{|k| \le X : \mathfrak{v}_N(k) \ne 0\}| \sim CX(\log X)^{-\frac{2}{3}}.$$

Examples of F which are not perfect:

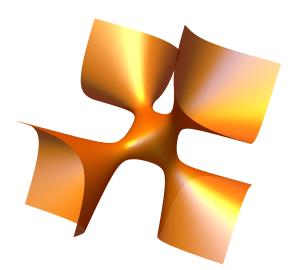
- ► (Mordell 1953) $x_1^2 + x_2^2 + x_3^2 + 2x_1x_2x_3 = k$ where $k = 1 4w^2$; with $4 \nmid w$ and w without prime factors congruent to 3 mod 4.
- (Cassels/Guy 1966) $5x_1^3 + 9x_2^3 + 10x_3^3 = k$, where $k = 12w^3$.

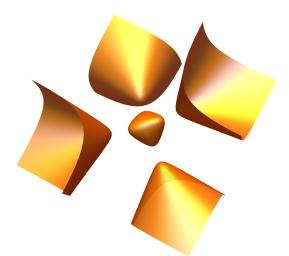
These fail the Hasse Principle for infinitely many k.

Main Topic: Markoff Level Surfaces

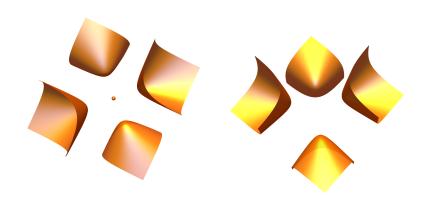
$$M(\mathbf{x}) = x_1^2 + x_2^2 + x_3^2 - x_1 x_2 x_3.$$

- ▶ (Markoff 1879) $V_{0,M}(\mathbb{Z})$ gives the Markoff triples.
- ▶ Local obstructions: $V_{k,M}(\mathbb{Z})$ is empty if $k \equiv 3 \mod 4$, or $k \equiv \pm 3 \mod 9$.
- ▶ Group Γ of polynomial affine transformations act nonlinearly on $V_{k,M}(\mathbb{Z})$.
- ▶ Γ generated by permutations, double sign-changes and three Vieta involutions V_i with $V_1: (x_1, x_2, x_3) \mapsto (x_2x_3 x_1, x_2, x_3)$.
- ▶ For k = 0, one orbit generated by the point (3,3,3) (Markoff). Moreover, $V_{0,M}(\mathbb{Z})$ is Zariski-dense (Corvaja/Zannier 2006).
- ▶ (Markoff, Mordell, Hurwitz) For $k \neq 4$, finitely many Γ -orbits.
- ▶ k = 4 is the Cayley cubic. Infinitely many inequivalent orbits generated by points (2, a, a), $a \ge 0$.





$k=\frac{1}{10}$ and k=0



Theorem (Parametric solutions)

- ▶ If $k-4 \neq \square$, there are no one-parameter family of solutions.
- ▶ If $k = 4 + w^2$, then (2, t, t + w) is a parametric family of solutions.

Proof.

Apply the group Γ to the parametric family and observe a descent in the degrees of the polynomial coordinates.

Theorem (Zariski Dense)

If k is not a square, and if $V_{k,M}(\mathbb{Z}) \neq \emptyset$, then $V_{k,M}(\mathbb{Z})$ is Zariski-dense.

Proof.

Use two Vieta transformations to get a $SL(2,\mathbb{Z})$ element of infinite order. Slicing the surface along a hyperplane gives a conic section with infinitely many points. Extension of Corjava/Zannier.

Deformations of Markoff Level Surfaces

Results extend to F's of the form $F=cx_1x_2x_3+G$, where $G=\sum_{i,j}a_{ij}x_ix_j+\sum_ia_ix_i+a$, with $a_{jj}=\pm 1$ for j=1,2,3 and $c,a,a_{ij},a_i\in\mathbb{Z}$. There is a corresponding group action.

Theorem (Universal Ternary Cubic Affine Forms)

 U_1 and U_2 are universal. Here

$$U_1(x_1,x_2,x_3)=x_1+M(x_1,x_2,x_3),$$

and

$$U_2(x_1, x_2, x_3) = x_2(x_3 - x_1) + M(x_1, x_2, x_3).$$

Proof.

 $V_{k,U_j}(\mathbb{Z})$ is Zariski-dense for all but finitely many k; moreover for every k, there is a one-parameter family of solutions.

Hasse Failures of M

Theorem (*M* is not perfect)

For the following choices of k, $V_k(\mathbb{Z})$ is empty but $V_k(\mathbb{Z}_p)$ is non-empty for all primes p:

- 1. Let ν have all of its prime factors lie in the congruence classes $\{\pm 1\}$ modulo 8 with the additional requirement that $\nu \in \{0, \pm 3, \pm 4\}$ modulo 9. Then choose $k = 4 \pm 2\nu^2$.
- 2. Suppose $\ell \ge 13$ is a prime number with $\ell \equiv \pm 4 \pmod{9}$. Then choose $k = 4 + 2\ell^2$.

The smallest positive k here is 342.

Proof.

Use quadratic reciprocity. Similar to Mordell's proof.

The related $F = x_1^2 + x_2^2 - x_3^2 - x_1x_2x_3$ is also not perfect. It has an infinity of Hasse failures.

Descent and Fundamental Sets of M

Recall: if $k \neq 4$, there are a finite number $\mathfrak{h}_M(k)$ of inequivalent Γ -orbits, with $\mathfrak{h}_M(k) = 0$ if $V_{k,M}(\mathbb{Z})$ is empty.

Definition

k is generic if k is admissible but not of the form (i) $k = u^2 + v^2$ or (ii) $4(k-1) = u^2 + 3v^2$. These latter are exceptional.

- ▶ In $|k| \le K$, there are $O(K(\log K)^{-\frac{1}{2}})$ exceptional k's.
- ▶ There are $\sim \frac{7}{12}K$ generic k's.

Theorem (Fundamental sets)

1. Let $k \ge 5$ be generic and consider the compact set

$$\mathfrak{F}_k^+(\mathbb{R}^3) = \left\{ \mathbf{u} : 3 \leq u_1 \leq u_2 \leq u_3 \,, \,\, u_1^2 + u_2^2 + u_3^2 + u_1 u_2 u_3 = k \right\}.$$

The points in $\mathfrak{F}_k^+(\mathbb{Z})$ are Γ -inequivalent, and any $\mathbf{x} \in V_{k,M}(\mathbb{Z})$ is Γ -equivalent to a unique point $\mathbf{u}' = (-u_1, u_2, u_3)$ with $\mathbf{u} = (u_1, u_2, u_3) \in \mathfrak{F}_k^+(\mathbb{Z})$.

2. Let k < 0 be admissible and consider the compact set

$$\mathfrak{F}_{k}^{-}(\mathbb{R}^{3}) = \{\mathbf{u}: 3 \leq u_{1} \leq u_{2} \leq u_{3} \leq \frac{u_{1}u_{2}}{2}, u_{1}^{2} + u_{2}^{2} + u_{3}^{2} - u_{1}u_{2}u_{3} = k\}.$$

The points in $\mathfrak{F}_k^-(\mathbb{Z})$ are Γ -inequivalent, and any $\mathbf{x} \in V_{k,M}(\mathbb{Z})$ is Γ -equivalent to a unique point $\mathbf{u} = (u_1, u_2, u_3) \in \mathfrak{F}_k^-(\mathbb{Z})$.

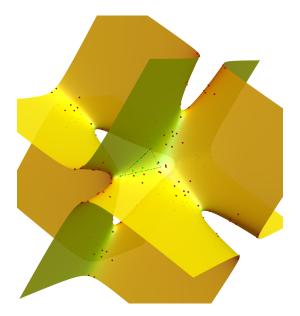


Figure: Lattice points and fundamental set (triangular) for k = 3685.

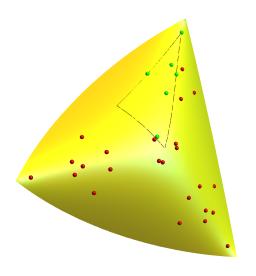


Figure: Closeup of fundamental set (triangular) for k = 3685.

Figure: Lattice points and fundamental set for k = -3691.

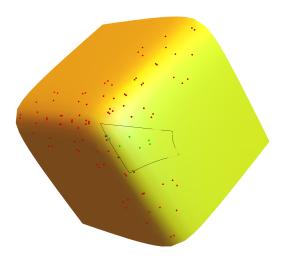


Figure: Closeup of fundamental set for k = -3691.

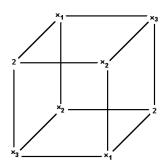
Sketch of Proof for Fundamental Sets

Standard descent argument gets down to the compact sets. To show the points are inequivalent, we use the function

$$\Delta(\mathbf{x}) = (2 + x_1 + x_2 + x_3)(2 + x_2 - x_1 - x_3)_{\times}$$

$$(2 + x_3 - x_1 - x_2)(2 + x_1 - x_2 - x_3).$$

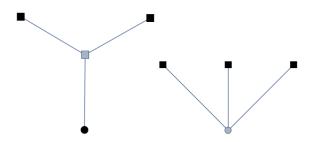
Originally derived by considering the Bhargava cube



lacktriangle Δ is invariant under permutations and double sign-changes.

 $\Delta \circ V_1(\mathbf{x}) - \Delta(\mathbf{x}) =$ $x_2 x_3 (x_2 x_3 - 2x_1) \left[2(k-4) + (x_2^2 - 4)(x_3^2 - 4) \right].$

Analyse the tree generated by nodes



Properties of $\mathfrak{h}_M(k)$

- $\mathfrak{h}_M(46) = 0$, the first positive Hasse failure .
- ▶ k = -4 is the first negative Hasse failure .
- $\mathfrak{h}_M(k) \ll_{\varepsilon} |k|^{\frac{1}{3}+\varepsilon}$ as $k \to \pm \infty$.
- Let $\mathfrak{h}_{M}^{\pm}(k) = |\mathfrak{F}_{k}^{\pm}(\mathbb{Z})|$ where $\pm = \operatorname{sgn}(k)$, this being defined for any k.

For generic k, $\mathfrak{h}_{M}^{\pm}(k) = \mathfrak{h}_{M}(k)$ while otherwise $\mathfrak{h}_{M}(k) \leq \mathfrak{h}_{M}^{\pm}(k)$. Then

$$\frac{1}{K} \sum_{\substack{k \neq 4 \\ |k| \leq K}} \mathfrak{h}_M^{\pm}(k) \sim C^{\pm}(\log K)^2,$$

where $C^{\pm} > 0$ and $K \to \infty$.

Main Result

Theorem

M is almost perfect. That is

▶ $V_{k,M}(\mathbb{Z})$ is Zariski dense for any admissible k if $V_{k,M}(\mathbb{Z})$ is non-empty;

•

$$\#\{|k| \leq K : k \text{ admissible}, \ \mathfrak{h}_M(k) = 0\} = o(K),$$

as $K \to \infty$ i.e. M is full;

• Consequently, if $t \ge 0$ is fixed, then

$$\#\{0 \le |k| \le K : \mathfrak{h}_M(k) = t, \ k \ generic\} = o(K),$$

as $K \to \infty$.

Sketch of Proof

The proof is a variation of the work of Sarnak and of Bourgain-Fuchs on Apollonian packings.

We choose any a in a set \mathcal{A} , each of size a suitable power of $A \approx \log K$ and consider the quadratics

$$g_a(x_1, x_2) = x_1^2 + x_2^2 + ax_1x_2$$
 and $f_a(x_1, x_2) = g_a(x_1, x_2) + a^2$.

Restricting the variables suitably, for each a, we seek the value distribution of f_a . Setting $d=a^2-4$, define the sector \mathcal{S}_d in the plane as

$$S_d = \left\{ (x_1, x_2) : \begin{array}{l} x_1, x_2 \ge 0, \ 0 \le g_a(x_1, x_2) \le \frac{1}{4}, \\ \frac{1}{2} \left(2\sqrt{d} - a \right) x_2 \le x_1 \le \frac{1}{2} \left(3\sqrt{d} - a \right) x_2 \end{array} \right\}.$$

For $a \in \mathcal{A}$ and $k \leq K$ let

$$r_a(k) = \# \left\{ (x_1, x_2) \in \sqrt{4K} S_d \cap \mathbb{Z}^2 : f_a(x_1, x_2) = k \right\}.$$

We now set

$$b_{\mathcal{A}}(k) = \sum_{a \in \mathcal{A}} r_a(k),$$

and we are interested in this as a function of k for $1 \le k \le K$. We define our variance

$$V(K) = \sum_{k \leq K} \left(b_{\mathcal{A}}(k) - C(\log A) \delta^{(m)}(k) \right)^2.$$

Here m is a parameter, $\delta^{(m)}(k)$ a density function.

Expanding and evaluating all the terms asymptotically, using results of Blomer-Granville on the value distribution of positive definite quadratic forms, versions of the circle method by Heath-Brown and Niedermowwe, and some detailed analysis of local densities, shows that V(K) = o(K), from which the result follows.

Computations: Counting Hasse Failures

K	# Hasse Fail	Predictor	% error
6 550 000	200 405	200 474	0.00070404
6,552,000	388,485	388,474	0.00279494
13,104,000	738,402	738,476	-0.0100959
19,656,000	1,074,038	1,074,075	-0.00351784
26,208,000	1,400,385	1,400,458	-0.00526837
78,624,000	3,845,160	3,845,601	-0.0114887
85,176,000	4,138,458	4,138,557	-0.00241157
91,728,000	4,429,888	4,429,563	0.00732315
98,280,000	4,718,612	4,718,766	-0.00326508
157,248,000	7,256,456	7,257,091	-0.00876333
163,800,000	7,532,631	7,533,279	-0.00860614
170,352,000	7,807,978	7,808,490	-0.00656096
176,904,000	8,082,302	8,082,764	-0.00572446
255,528,000	11,313,674	11,312,152	0.0134518
262,080,000	11,577,887	11,576,836	0.00907272
268,632,000	11,841,388	11,840,928	0.00388283
275,184,000	12,104,565	12,104,442	0.00101294

The data in the table suggests that (at least for K in the range $\{10^7, 50*10^7\}$) in the interval [0, K],

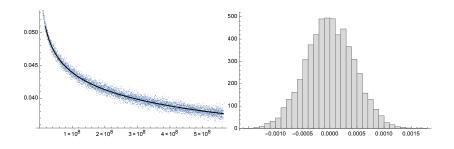
of Hasse Failures
$$\sim C K^{f(K)}$$
,

with

$$f(K) \approx 0.887516 - 8.06653 L^{-2} - 21.8923 L^{-3} + 2.38097 L^{-4} + \dots,$$

for some constant C>0; here $L=\log K$. The error is smaller than 0.1% for $K\geq 10^7$ and gets better for larger values of K.

Average of HF in subintervals of length $h \approx 100,000$



Dark curve is given by $g(x) = 0.2353x^{-0.0908047} - 46.7396x^{-0.661084}$

Sample class numbers $\mathfrak{h}(k)$, k > 0

k	$\mathfrak{h}(k)$	Fundamental points
54	1	(3, 3, 3)
70	1	(3, 3, 4)
88	1	(3, 3, 5)
108	1	(3, 3, 6)
133	1	(3, 4, 6)
154	1	(3, 3, 8)
166	1	(4, 5, 5)
9230	3	(3, 28, 59), (7, 17, 52), (11, 25, 28)
9234	2	(3, 15, 75), (9, 9, 63)
9253	3	(3, 42, 44), (8, 9, 66), (12, 18, 35)
9260	9	(3, 7, 86), (3, 19, 70), (3, 29, 58), (5, 19, 58), (5, 31, 42)
		(6, 23, 47), (7, 31, 33),(9, 13, 53), (9, 22, 37)
9261	1	(6, 15, 60)
9268	1	(6, 32, 36)
9288	2	(3, 30, 57), (6, 12, 66)
9289	1	(3, 24, 64)
9296	1	(10, 11, 55)
9302	3	(4, 21, 61), (5, 9, 76), (11, 19, 36)
9304	5	(3, 13, 78), (9, 14, 51), (9, 27, 31), (13, 18, 33), (14, 21, 27)
9308	3	(5, 27, 47), (9, 11, 58), (10, 23, 33)

Distribution of $\mathfrak{h}(k)$, generic $0 < k \le 10^7$

$\mathfrak{h}(k)$	$\mathfrak{n}(\mathfrak{h}(k))$ occurrences	
0	574,778	
1	423,094	
2	346,019	
3	259,787	
4	202,111	
5	157,726	
6	124,744	
7	100,431	
8	81,243	
9	66,794	
10	54,942	
11	45,898	
12	38,719	
13	32,886	
14	28,001	
15	23,954	
16	20,930	
17	17,932	
18	15,970	
19	13,748	
20	12,105	
21	10,434	

5	$\mathfrak{n}(s+1)/\mathfrak{n}(s)$
0	0.7361
1	0.81783
2	0.750788
3	0.777987
4	0.780393
5	0.790891
6	0.805097
7	0.808943
8	0.822151
9	0.822559
10	0.83539
11	0.843588
12	0.84935
13	0.851457
14	0.855469
15	0.873758
16	0.856761
17	0.890587
18	0.860864
19	0.880492
20	0.861958
21	0.888921

Distribution of $\mathfrak{h}(k)$, generic $0 < k \le 10^7$

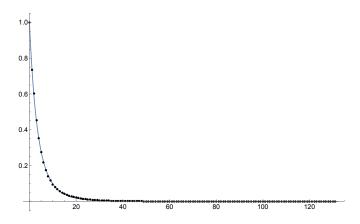


Figure: Occurences of relative number of orbits: $\mathfrak{n}(\mathfrak{h}(k))/\mathfrak{n}(0)$, generic $k \leq 10^7$. Approximation curve $\mathfrak{n}(h) = \mathfrak{n}(0)(6.86293 + 4.62621h + 0.0576149h^2)e^{-1.92905\sqrt{h+1}}$.

Conjectures

Conjecture

For any $\varepsilon > 0$

$$\mathfrak{h}(k) \ll_{\varepsilon} |k|^{\varepsilon}.$$

Conjecture

The number of Hasse failures for $0 \le k \le K$ satisfies

$$|\{0 \le k \le K : \mathfrak{h}(k) = 0 \text{ and } k \text{ admissible }\}| \sim C_0 K^{\theta},$$

for some $C_0 > 0$ and some $\frac{1}{2} < \theta < 1$. More generally, for $t \ge 1$

$$|\{0 \leq k \leq K : \mathfrak{h}(k) = t \}| \sim C_t K^{\theta},$$

with $C_t > 0$.

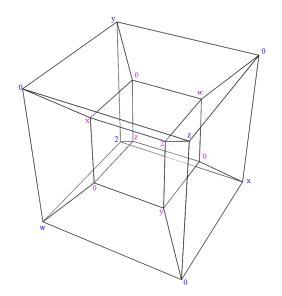
The values of C_t above are illustrated in the previous slide, suggesting an exponential decay in t.

(Almost) THE END

Hurwitz: $x_1^2 + \ldots + x_4^2 - x_1 x_2 x_3 x_4 = k$

- ▶ No congruence obstructions. k = 7 is a Hasse failure.
- ▶ If k-1 is admissible for Markoff, then k allows integral solutions of Hurwitz. Hence almost all of the $\frac{7}{12}$ values of k allow solutions.
- Suppose $k \ge 7$ and k is generic (here k is generic means k is not a sum of three squares and k-1 is not Markoff admissible). Hence those k's of the form $k=4^{a+1}(8b+7)$, or k=24b+7 with $3 \nmid (b+1)$.
 - Then, if there are solutions, then there is descent and using Δ one can determine a fundamental set.
- ▶ One can use $\Delta = \prod (2 \pm x_1 \pm x_2 \pm x_3 \pm x_4)$, even number of minus signs. Alternatively, one can use an invariant derived from a $2 \times 2 \times 2 \times 2$ hypercube.

$2 \times 2 \times 2 \times 2$ hypercube



$$\Delta(\mathbf{x}) = 256 - 256w^2 + 96w^4 - 16w^6 + w^8 - 256x^2 + 64w^2x^2 \\ + 16w^4x^2 - 4w^6x^2 + 96x^4 + 16w^2x^4 + 6w^4x^4 - 16x^6 \\ - 4w^2x^6 + x^8 - 256y^2 + 64w^2y^2 + 16w^4y^2 - 4w^6y^2 \\ + 64x^2y^2 - 96w^2x^2y^2 + 4w^4x^2y^2 + 16x^4y^2 + 4w^2x^4y^2 \\ - 4x^6y^2 + 96y^4 + 16w^2y^4 + 6w^4y^4 + 16x^2y^4 + 4w^2x^2y^4 \\ + 6x^4y^4 - 16y^6 - 4w^2y^6 - 4x^2y^6 + y^8 - 768wxyz + 192w^3xyz \\ + 192wx^3yz + 192wxy^3z - 256z^2 + 64w^2z^2 + 16w^4z^2 - 4w^6z^2 \\ + 64x^2z^2 - 96w^2x^2z^2 + 4w^4x^2z^2 + 16x^4z^2 + 4w^2x^4z^2 \\ - 4x^6z^2 + 64y^2z^2 - 96w^2y^2z^2 + 4w^4y^2z^2 - 96x^2y^2z^2 \\ + 216w^2x^2y^2z^2 + 4x^4y^2z^2 + 16y^4z^2 + 4w^2y^4z^2 + 4x^2y^4z^2 \\ - 4y^6z^2 + 192wxyz^3 + 96z^4 + 16w^2z^4 + 6w^4z^4 + 16x^2z^4 \\ + 4w^2x^2z^4 + 6x^4z^4 + 16y^2z^4 + 4w^2y^2z^4 + 4x^2y^2z^4 + 6y^4z^4 \\ - 16z^6 - 4w^2z^6 - 4x^2z^6 - 4y^2z^6 + z^8.$$

$$\Delta \circ V_1(\mathbf{x}) - \Delta(\mathbf{x}) = xyz(2w + xyz)$$

$$\times (512 - 48w^4 + 4w^6 - 128x^2 + 32w^2x^2 - 12w^4x^2 + 16x^4$$

$$+ 12w^2x^4 - 4x^6 - 128y^2 + 32w^2y^2 - 12w^4y^2 - 96x^2y^2 + 8w^2x^2y^2$$

$$+ 4x^4y^2 + 16y^4 + 12w^2y^4 + 4x^2y^4 - 4y^6 - 96w^3xyz + 12w^5xyz$$

$$+ 32wx^3yz - 24w^3x^3yz + 12wx^5yz + 32wxy^3z - 24w^3xy^3z$$

$$+ 8wx^3y^3z + 12wxy^5z - 128z^2 + 32w^2z^2 - 12w^4z^2 - 96x^2z^2$$

$$+ 8w^2x^2z^2 + 4x^4z^2 - 96y^2z^2 + 8w^2y^2z^2 + 120x^2y^2z^2$$

$$- 112w^2x^2y^2z^2 + 22w^4x^2y^2z^2 + 16x^4y^2z^2 - 28w^2x^4y^2z^2$$

$$+ 6x^6y^2z^2 + 4y^4z^2 + 16x^2y^4z^2 - 28w^2x^2y^4z^2 + 4x^4y^4z^2$$

$$+ 6x^2y^6z^2 + 32wxyz^3 - 24w^3xyz^3 + 8wx^3yz^3 + 8wxy^3z^3$$

$$- 64wx^3y^3z^3 + 24w^3x^3y^3z^3 - 16wx^5y^3z^3 - 16wx^3y^5z^3 + 16z^4$$

$$+ 12w^2z^4 + 4x^2z^4 + 4y^2z^4 + 16x^2y^2z^4 - 28w^2x^2y^2z^4 + 4x^4y^2z^4$$

$$+ 4x^2y^4z^4 - 16x^4y^4z^4 + 16w^2x^4y^4z^4 - 4x^6y^4z^4 - 4x^4y^6z^4 + 12wxyz^5$$

$$- 16wx^3y^3z^5 + 6wx^5y^5z^5 - 4z^6 + 6y^2y^2z^6 - 4x^4y^4z^6 + x^6y^6z^6)$$