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Eigenvalue Algorithms

In earlier work [2012]1, P.D. and G.M., together with C. Pfrang, considered the
problem of computing the eigenvalues of real n× n random symmetric matrices
M = (Mij).

They considered matrices chosen from different ensembles E using a variety of
different algorithms A.

Let Sn = {M = MT : M ∈ Rn×n}

Standard algorithms utilize isospectral maps:
I ϕ = ϕA : SN → SN

specϕA(M) = spec M
I Given M ∈ Sn, Mk+1 ≡ ϕA(Mk), k ≥ 0, M0 = M
I As k→∞, Mk → diag(λ1, . . . , λn)

I Necessarily, the λi’s are the desired eigenvalues of M.

1Pfrang, CW, P Deift, and G Menon. How long does it take to compute the eigenvalues of a random
symmetric matrix? arXiv Prepr. arXiv1203.4635, 2012
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Universal Fluctuations
In their paper, the authors discovered the following phenomenon:

For a given accuracy ε, a given matrix size n (ε small, n large) and a given algorithm
A, the fluctuations in the time to compute the eigenvalues to accuracy ε with the
given algorithm A, were universal, independent of the choice of ensemble E. More
precisely, they considered fluctuations in the deflation time T .

Recall that if an n× n matrix has block form

M =

(
M11 M12

M21 M22

)
where M11 is k × k and M22 is (n− k)× (n− k) for some 1 ≤ k ≤ n− 1 then one
says that the block diagonal matrix

M̂ =

(
M11 0

0 M22

)
is obtained from M by deflation.

If ‖M12‖ = ‖M21‖ ≤ ε, then the eigenvalues {λi} of M differ from the eigenvalues
{λ̂i} of M̂ by O(ε).
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Universal Fluctuations

Let T = Tε,n,A,E(M) be the time (= # of steps = # iterations of ϕA) it takes to deflate
a random matrix M, chosen from an ensemble E, to order ε, using algorithm A, i.e. T
is the smallest time such that for some k, 1 ≤ k ≤ n− 1,

‖(ϕ(T)
A (M))12‖ = ‖(ϕ(T)

A (M))21‖ ≤ ε.

The fluctuations τε,n,A,E(M) of T are defined by

τε,n,A,E(M) =
Tε,n,A,E(M)− 〈Tε,n,A,E〉

σε,n,A,E
,

where 〈Tε,n,A,E〉 is the sample average of Tε,n,A,E(M) taken over matrices M from E,
and σ2

ε,n,A,E is the sample variance.

For a given E, a typical sample size in [2012] was of order 5,000 to 10,000 matrices
M, and the output of the calculations in [2012] was recorded in the form of a
histogram for τε,n,A,E.
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Universal Fluctuations
A sample of the histograms from [2012] when A = QR is given below: For M = QR,
Q orthogonal, R upper triangular, Rii > 0,

ϕA(M) = ϕQR(M) ≡ RQ = QT MQ.

Two-component universality is evident.
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Figure : The observation of two-component universality for τε,n,A,E when A = QR. This figure
is taken from [2012]. Overlayed histograms demonstrate the collapse of the histogram of
τε,n,A,E to single curve. In the left figure, E = GOE, and 40 histograms for τε,ε,A,E , are plotted
one on top of the other for ε = 10−k , k = 2,4,6,8 and n = 10,30, . . . ,190. The histograms are
created with ≈ 10,000 samples. The middle figure displays the same information as that in the
left position, but now for E = BE. In the right figure, all 40 + 40 histograms are overlayed and
universality is evident: the data appears to follow a universal law for the fluctuations.
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The Gaussian Orthogonal Ensemble (GOE) is given by (X + XT)/
√

4n where X is an
n× n matrix of iid Gaussian variables with mean zero and variance one.

The Bernoulli Ensemble (BE) is given by an n× n matrix X consisting of iid random
variables that take the values ±1/

√
n with equal probability subject only to the

constraint XT = X.
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Universal Fluctuations
A sample of the histograms from [2012] when A = QR is given below: For M = QR,
Q orthogonal, R upper triangular, Rii > 0,

ϕA(M) = ϕQR(M) ≡ RQ = QT MQ.

Two-component universality is evident.
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Figure : The observation of two-component universality for τε,n,A,E when A = QR. This figure
is taken from [2012]. Overlayed histograms demonstrate the collapse of the histogram of
τε,n,A,E to single curve. In the left figure, E = GOE, and 40 histograms for τε,ε,A,E , are plotted
one on top of the other for ε = 10−k , k = 2,4,6,8 and n = 10,30, . . . ,190. The histograms are
created with ≈ 10,000 samples. The middle figure displays the same information as that in the
left position, but now for E = BE. In the right figure, all 40 + 40 histograms are overlayed and
universality is evident: the data appears to follow a universal law for the fluctuations.
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In recent work, the authors have extended the results of [2012] in various ways as
follows:

1. Jacobi algorithm

2. Ensembles with dependent entries

3. Conjugate gradient algorithm

4. GMRES (generalized minimal residual) algorithm

5. Discretization of a random PDE

6. Genetic algorithm

7. Curie–Weiss decision making model
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The Jacobi Algorithm
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Givens Rotations

For M ∈ Sn, choose i < j such that |Mij| ≥ max1≤i′<j′≤n |Mi′j′ |, and let G(ij) be the
Givens rotation matrix,

G(ij) =



1 · · · 0 · · · 0 · · · 0
...

. . .
...

...
...

0 · · · c · · · −s · · · 0
...

...
. . .

...
...

... · · · s · · · c · · · 0

...
...

...
. . .

...
0 · · · 0 · · · 0 · · · 1


.

Here “−s” is in position (i, j), etc., and c = cos θ, s = sin θ. The angle θ is chosen so
that (G(ij)(θ)T MG(ij)(θ))ij = 0 and then

ϕJacobi(M) ≡ (G(ij)(θ))T MG(ij)(θ).

The Jacobi algorithm is very different from QR-type algorithms...
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The Jacobi Algorithm

In place of Tε,n,A,E, we record the halting time kε,n,A,E: the number of iterations it
takes for the Jacobi algorithm to reduce the Frobenius norm (the square-root of the
sum of the squares) of the off-diagonal elements to be less than a given ε. This is
sufficient to conclude that at least one element on the diagonal of the transformed
matrix is within ε of an exact eigenvalue of the original matrix.

Histograms are produced for the fluctuations τε,n,A,E:

τε,n,A,E(M) =
kε,n,A,E(M)− 〈kε,n,A,E〉

σε,n,A,E
.
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Jacobi Fluctuations
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Figure : The observation of two-component universality for τε,n,A,E when A = Jacobi,
E = GOE, BE and ε =

√
n 10−10. The left figure displays two histograms, one on top of the

other, one for GOE and one for BE, when n = 30. The right figure displays the same
information for n = 90. All histograms are produced with 16,000 samples. Again, we see
two-component universality emerge for n sufficiently large: the histograms follow a universal
(independent of E) law.
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The Gaussian Orthogonal Ensemble (GOE) is given by (X + XT)/
√

4n where X is an
n× n matrix of iid Gaussian variables with mean zero and variance one.

The Bernoulli Ensemble (BE) is given by an n× n matrix X consisting of iid random
variables that take the values ±1/

√
n with equal probability subject only to the

constraint XT = X.
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Jacobi Fluctuations
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Figure : The observation of two-component universality for τε,n,A,E when A = Jacobi,
E = GOE, BE and ε =

√
n 10−10. The left figure displays two histograms, one on top of the

other, one for GOE and one for BE, when n = 30. The right figure displays the same
information for n = 90. All histograms are produced with 16,000 samples. Again, we see
two-component universality emerge for n sufficiently large: the histograms follow a universal
(independent of E) law.
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Ensembles with Dependent Entries

P. Deift Universality in Numerical Computations



In all the above calculations, M is real and symmetric with independent entries. In
the following calculations we consider n× n Hermitian M = M∗ from various
unitary invariant ensembles with distributions proportional to

e−ntrV(M)dM

where V(x) : R→ R grows sufficiently rapidly. The entries are independent iff V is
proportional to x2: non-trivial matter to sample ensembles for general V (see Olver,
Nadakuditi and Trogdon (2014)).

Histograms for the deflation time fluctuations are given below.
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Dependent QR Fluctuations
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Figure : The observation of two-component universality for τε,n,A,E when A = QR,
E = QUE, COSH, GUE and ε = 10−10. Here we are using deflation time ( = halting time), as
in [2012]. The left figure displays three histograms, one each for GUE, COSH and QUE, when
n = 70. The right figure displays the same information for n = 150. All histograms are
produced with 16,000 samples. Again, we see that two-component universality emerges for n
sufficiently large: the histograms follow a universal (independent of E) law. This is surprising
because COSH and QUE have eigenvalue distributions that differ significantly from GUE in
that they do not follow the so-called semi-circle law.
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The Gaussian Unitary Ensemble (GUE) is a complex, unitary invariant ensemble
with probability distribution proportional to e−ntrM2

dM.

The Quartic Unitary Ensemble (QUE) is a complex, unitary invariant ensemble with
probability distribution proportional to e−ntrM4

dM.

The Cosh Unitary Ensemble (COSH) has its distribution proportional to e−tr cosh MdM.

Both QUE and COSH do not follow the semi-circle law for the global distribution of
the eigenvalues.
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Dependent QR Fluctuations
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Figure : The observation of two-component universality for τε,n,A,E when A = QR,
E = QUE, COSH, GUE and ε = 10−10. Here we are using deflation time ( = halting time), as
in [2012]. The left figure displays three histograms, one each for GUE, COSH and QUE, when
n = 70. The right figure displays the same information for n = 150. All histograms are
produced with 16,000 samples. Again, we see that two-component universality emerges for n
sufficiently large: the histograms follow a universal (independent of E) law. This is surprising
because COSH and QUE have eigenvalue distributions that differ significantly from GUE in
that they do not follow the so-called semi-circle law.
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The Conjugate Gradient Algorithm
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Here the authors start to address the question of whether two-component universality
is just a feature of eigenvalue computation, or is present more generally in numerical
computation. In particular, the authors consider the solution of the linear system of
equations Wx = b where W is a real and positive definite, using the conjugate
gradient (CG) method.

The method is iterative and at iteration k of the algorithm an approximate solution xk

of Wx = b is found and the residual rk = Wxk − b is computed. For any given ε > 0,
the method is halted when ‖rk‖2 < ε, and the halting time kε(W, b) recorded.

Here the authors consider n× n matrices A chosen from two different positive
definite ensembles E and vectors b = (bj) chosen independently with iid entries {bj}.
Given ε (small) and n (large), and (W, b) ∈ E, the authors record the halting time
kε,n,A,E, A = CG, and compute the fluctuations τε,n,A,E(W, b). The histograms for
τε,n,A,E are given below, and again, two-component universality is evident.
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Conjugate Gradient Fluctuations
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Figure : The observation of two-component universality for τε,n,A,E when A = CG and
E = cLOE, cPBE. The left figure displays two histograms, one for cLOE and one for cPBE,
when n = 100. The right figure displays the same information for n = 500. All histograms are
produced with 16,000 samples. Again, we see two-component universality emerges for n
sufficiently large: the histograms follow a universal (independent of E) law. With the chosen
scaling, we see two-component universality emerge for n sufficiently large: the histograms
follow a universal (independent of E) law.
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The critically-scaled Laguerre Orthogonal Ensemble (cLOE) is given by XXT/m
where X is an n× m matrix with iid Gaussian (mean zero, variance one) entries. The
critically-scaled positive definite Bernoulli ensemble (cPBE) is given by XXT/m
where X is an n× m matrix consisting of iid Bernoulli variables taking the values ±1
with equal probability.

The critical scaling refers to the choice m = n + 2b
√

nc.
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Conjugate Gradient Fluctuations
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Figure : The observation of two-component universality for τε,n,A,E when A = CG and
E = cLOE, cPBE. The left figure displays two histograms, one for cLOE and one for cPBE,
when n = 100. The right figure displays the same information for n = 500. All histograms are
produced with 16,000 samples. Again, we see two-component universality emerges for n
sufficiently large: the histograms follow a universal (independent of E) law. With the chosen
scaling, we see two-component universality emerge for n sufficiently large: the histograms
follow a universal (independent of E) law.
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The GMRES Algorithm
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The GMRES Algorithm

The authors again consider the solution of Wx = b but here W has the form I + X and
X ≡ Xn is a random, real non-symmetric matrix and b = (bj) is independent with
uniform iid entries {bj}. As W = I + X is (almost surely) no longer positive definite
the conjugate gradient algorithm breaks down, and the authors solve (I + X)x = b
using the Generalized Minimal Residual (GMRES) algorithm.

Again, the algorithm is iterative and at iteration k of the algorithm an approximate
solution xk of (I + X)x = b is found and the residual rk = (I + X)xk − b is
computed. As before, for any given ε > 0, the method is halted when ‖rk‖2 < ε and
kε,n,A,E(X, b) is recorded. For these computations X is chosen from two distinct
ensembles. As in the conjugate gradient problem, the authors compute the
histograms for the fluctuations of the halting time τε,n,A,E for two ensembles E, where
now A = GMRES. The results are given below, where again two component
universality is evident.

P. Deift Universality in Numerical Computations



GMRES Fluctuations
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Figure : The observation of two-component universality for τε,n,A,E when A = GMRES,
E = cSGE, cSBE and ε = 10−8. The left figure displays two histograms, one for cSGE and
one for cSBE, when n = 100. The right figure displays the same information for n = 500. All
histograms are produced with 16,000 samples. We see two-component universality emerge for
n sufficiently large: the histograms follow a universal (independent of E) law.
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The critically-scaled shifted Bernoulli Ensemble (cSBE) is given by I + X/
√

n where
X is an n× n matrix consisting of iid Bernoulli variables taking the values ±1 with
equal probability. The critically-scaled shifted Ginibre Ensemble (cSGE) is given by
I + X/

√
n where X is an n× n matrix of iid Gaussian variables with mean zero and

variance one.

The scaling is chosen so that P(|‖X/
√

n‖ − 2| > ε) tends to zero as n→∞.

P. Deift Universality in Numerical Computations



GMRES Fluctuations
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Figure : The observation of two-component universality for τε,n,A,E when A = GMRES,
E = cSGE, cSBE and ε = 10−8. The left figure displays two histograms, one for cSGE and
one for cSBE, when n = 100. The right figure displays the same information for n = 500. All
histograms are produced with 16,000 samples. We see two-component universality emerge for
n sufficiently large: the histograms follow a universal (independent of E) law.
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Discretization of a Random PDE
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Here the authors raise the issue of whether two-component universality is just a
feature of finite-dimensional computation, or is also present in problems which are
intrinsically infinite dimensional.

What about PDEs?

In particular, is the universality present in numerical computations for PDEs? As a
case study, the authors consider the numerical solution of the Dirichlet problem
∆u = 0 in a star-shaped region Ω ⊂ R2 with u = f on ∂Ω. In this case, the boundary
is described by a periodic function of the angle θ, r = r(θ), and similarly f = f (θ),
0 ≤ θ ≤ 2π.

Two ensembles, BDE and UDE (described below), are derived from a discretization
of the problem with specific choices for r, defined by a random Fourier series. The
boundary condition f is chosen randomly by letting {f ( 2πj

n )}n−1
j=0 be iid uniform on

[−1, 1]. Histograms for the halting time τε,n,A,E from these computations are given
below and again, two-component universality is evident.
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Let Ω be the star-shaped region interior to the curve
(x, y) = (r(θ) cos(θ), r(θ) sin(θ)) where r(θ) is given by

r(θ) = 1 +
m∑

j=1

(Xj cos(jθ) + Yj sin(jθ)), 0 ≤ θ < 2π

and Xj and Yj are iid random variables taking values in [−1/(2m), 1/(2m)]. Dividing
by 2m eliminates the possibility that r vanishes. The double-layer potential
formulation of the boundary integral equation

πu(P)−
∫
∂Ω

u(P)
∂

∂nQ
log |P− Q|dSQ = −f (P), P ∈ ∂Ω,

is solved by discretizing in θ with n points and applying the trapezoidal rule choosing
n = 2m.

The Bernoulli Dirichlet Ensemble (BDE) is the case where Xm and Ym are Bernoulli
variables taking values ±1/(2m) with equal probability. The Uniform Dirichlet
Ensemble (UDE) is is the case where Xm and Ym are uniform variables on
[−1/(2m), 1/(2m)].
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More GMRES Fluctuations
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Figure : The observation of two-component universality for τε,n,A,E when A = GMRES,
E = UDE, BDE and ε = 10−8. The left figure displays two histograms, one for UDE and
BDE, when n = 100. The right figure displays the same information for n = 500. All
histograms are produced with 16,000 samples. We see two-component universality emerge for
n sufficiently large: the histograms follow a universal (independent of E) law.
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The following figure conflates the previous computations from GMRES applied to
the shifted ensembles and GMRES applied to the Dirichlet problem given above.
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Figure : This figure consists of four histograms, two taken GMRES applied to the previous
shifted ensembles and two taken from GMRES applied to the Dirichlet problem.
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What is surprising, and quite remarkable, about these computations is that the
histograms in the case of the Dirichlet problem are the same as the histograms for the
shifted ensembles. In other words, UDE and BDE are structured with random
components, whereas cSGE and cSBE have no structure, yet they produce the same
statistics.
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This brings to mind the situation in the 1950s when Wigner introduced random
matrices as a model for scattering resonances of neutrons off heavy nuclei: the
neutron-nucleus system has a well-defined and structured Hamiltonian, but
nevertheless the resonances for neutron scattering are well-described statistically by
the eigenvalues of an (unstructured) random matrix.
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A Genetic Algorithm
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In all the computations discussed so far, the randomness in the computations resides
in the initial data. In the sixth set of computations, the authors consider an algorithm
which is intrinsically stochastic. In particular, they consider a genetic algorithm,
which they use to compute Fekete points. Such points P∗ = (P∗1 ,P

∗
2 , . . . ,P

∗
N) ∈ RN

are the global minimizers of the objective function

H(P) =
2

N(N − 1)

∑
1≤i6=j≤N

log |Pi − Pj|−1 +
1
N

N∑
i=1

V(Pi)

for real-valued functions V = V(x) which grow sufficiently rapidly as |x| → ∞. It is
well-known that as N →∞, the counting measures δP∗ = 1

N

∑N
i=1 δP∗i

converge to
the so-called equilibrium measure µV which plays a key role in the asymptotic theory
of the orthogonal polynomials generated by the measure e−NV(x)dx on R. Genetic
algorithms are particularly useful for large scale optimization problems, such as those
that occur, for example, in the financial industry, and involve two basic components ,
“mutation” and “crossover”. The authors implement the genetic algorithm in the
following way.
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Fix a distribution D on R. Draw an initial population P0 = P = {Pi}n
i=1 consisting

of n = 100 vectors in RN , N large, with elements that are iid uniform on [−4, 4]. The
random map FD(P) : (RN)n → (RN)n is defined by one of the following two
procedures:
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Mutation

Pick one individual P ∈ P at random (uniformly). Then pick two integers n1, n2

from {1, 2, . . . ,N} at random (uniformly and independent). Three new individuals
are created.

I P̃1 — draw n1 iid numbers {x1, . . . , xn1} from D and perturb the first n1

elements : (P̃1)i = (P)i + xi, i = 1, . . . , n1, and (P̃1)i = (P)i for i > n1.
I P̃2 — draw N − n2 iid numbers {yn2+1, . . . , yN} from D and perturb the last

N − n2 elements of P: (P̃2)i = (P)i + yi, i = n2 + 1, . . . ,N, and (P̃2)i = (P)i

for i ≤ n2.
I P̃3 — draw |n1 − n2| iid numbers {z1, . . . , z|n1−n2|} from D and perturb

elements n∗1 = 1 + min(n1, n2) through n∗2 = max(n1, n2):
(P̃3)i = (P)i + zi−n∗1 +1, i = n∗1 , . . . , n

∗
2 , and (P̃3)i = (P)i for i 6∈ {n∗1 , . . . , n∗2}.
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Crossover

Pick two individuals P, Q from P at random (independent and uniformly). Then
pick two numbers n1, n2 from {1, 2, . . . ,N} (independent and uniformly). Two new
individuals are created.

I P̃4 — Replace the n1th element of P with the n2th element of Q and perturb it
(additively) with a sample of D.

I P̃5 — Replace the n1th element of Q with the n2th element of T and perturb it
(additively) with a sample of D.
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At each step, the application of either crossover or mutation is chosen with equal
probability.

The new individuals are appended to P (after mutation we have
P̃ = P ∪ {P̃1, P̃2, P̃3} and after crossover we have P̃ = P ∪ {P̃4, P̃5}) and
P 7→ P ′ = FD(P) ∈ (RN)n is constructed by choosing the 100 Pi’s in P̃ which
yield the smallest values of H(P). The algorithm produces a sequence of populations
P1,P2, . . . ,Pk, . . . in (RN)n, Pk+1 = FD(Pk), n = 100, and halts, with halting time
recorded, for a given ε, when minP∈Pk H(P)− infP∈RN H(P) < ε.

The histograms for the fluctuations τε,N,A,E, with A = Genetic are given below, for
two choices of V , V(x) = x2 and V(x) = x4 − 3x2, and different choices of E ' D.
Again, two-component universality is evident.

P. Deift Universality in Numerical Computations



!2 0 2 4
0.0

0.1

0.2

0.3

0.4

0.5

0.6

Halting Time Fluctuations

F
re
q
u
en
cy

Dimension " 10

!2 0 2 4
0.0

0.1

0.2

0.3

0.4

0.5

0.6

Halting Time Fluctuations

F
re
q
u
en
cy

Dimension " 40

!2 0 2 4
0.0

0.1

0.2

0.3

0.4

0.5

0.6

Halting Time Fluctuations

F
re
q
u
en
cy

Dimension " 10

!2 0 2 4
0.0

0.1

0.2

0.3

0.4

0.5

0.6

Halting Time Fluctuations

F
re
q
u
en
cy

Dimension " 40

Figure : The observation of two-component universality for τε,N,A,E when A = Genetic,
ε = 10−2 and E ' D where D is chosen to be either uniform on [−1/(10N), 1/(10N)] or
taking values ±1/(10N) with equal probability. The top row is created with the choice
V(x) = x2 and the bottom row with V(x) = x4 − 3x2. Each of the plots in the left column
displays two histograms, one for each choice of D when N = 10. The right column displays the
same information for N = 40. All histograms are produced with 16,000 samples. The
equilibrium measure for V(x) = x2 is supported on one interval whereas the equilibrium
measure for V(x) = x4 − 3x2 is supported on two intervals. It is evident that the histograms
collapse onto a universal curve, one for each V .
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Curie–Weiss Decision Making Model
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In the final set of computations, the authors pick up on a common notion in
neuroscience that the human brain is a computer with software and hardware. If this
is indeed so, then one may speculate that two-component universality should be
present certainly in some cognitive actions.

The authors focus on recent work of Bakhtin and Correll (2012), who have
conducted and analyzed the data obtained from experiments with 45 human
participants. The participants are shown 200 pairs of images. The images in each pair
consist of nine black disks of variable size. The disks in the images within each pair
have approximately the same area so that there is no a priori bias. The participants
are then asked to decide which of the two images covers larger (black) area. Bakhtin
and Correll then record the time T that it takes for each participant to make a
decision. For each participant, the decision times for the 200 pairs are collected and
the fluctuation histogram is tabulated. They then compare their experimental results
with a dynamical Curie–Weiss model frequently used in describing decision
processes, resulting in good agreement.
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At its essence the model is Glauber dynamics on the hypercube {−1, 1}N with a
microscopic approximation of a drift-diffusion process. Consider N variables
{Xi(t)}N

i=1, Xi(t) ∈ {−1, 1}. The state of the system at time t is
X(t) = (X1(t),X2(t), . . . ,XN(t)). The transition probabilities are given through the
expressions

P(Xi(t + ∆t) 6= Xi(t)|X(t) = x) = ci(x)∆t + o(∆t),

where ci(x) is the spin flip intensity. The observable considered is

M(X(t)) =
1
N

N∑
i=1

Xi(t) ∈ [−1, 1],

and the initial state of the system is chosen so that M(X(0)) = 0, a state with no a
priori bias, as in the case of the experimental setup.

Given ε ∈ (0, 1), which may not be small, the halting (or decision) time for this
model is k = inf{t : |M(X(t))| ≥ ε}, the time at which the system makes a decision.
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Following standard procedures, this model is simulated by first sampling an
exponential random variable with mean(∑

i

ci(X(t))

)−1

to find the time increment ∆t at which the system changes state. With probability
one, just a single spin flipped.

One determines which spin flips by sampling a random variable Y with distribution

P(Y = i) =
ci(X(t))∑

i ci(X(t))
, i = 1, 2, . . . ,N,

so producing an integer j. Define

Xi(t + s) ≡ Xi(t) if s ∈ [0,∆t) for i = 1, 2, . . . ,N,

Xi(t + ∆t) ≡ Xi(t), if i 6= j,

Xj(t + ∆t) ≡ −Xj(t).

This procedure is repeated with t replaced by t + ∆t to evolve the system.
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Central to the application of the model is the assumption on the statistics of the spin
flip intensity ci(x). The authors in the present paper raise the following question.

If one changes the basic statistics of the ci’s, will the limiting histograms for the
fluctuations of k be affected as N becomes large?

In response to this question the authors consider the following choices for E ' ci(x)
(β = 1.3):

1. ci(x) = oi(x) = e−βxiM(x) (the case studied by Bakhtin and Correll (2012)),

2. ci(x) = ui(x) = e−βxi(M(x)−M3(x)/5),

3. ci(x) = vi(x) = e−βxi(M(x)+M8(x)).

P. Deift Universality in Numerical Computations



A generic sample path of the observable M(X(t)) with ci = oi is displayed below.
Here for ε = 0.5, k ≈ 4.
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The histograms for the fluctuations τε,N,A,E of k are given below for all three choices
of ci. Once again, two-component universality is evident. Thus these computations
demonstrate two-component universality for a range of decision process models.

P. Deift Universality in Numerical Computations



!2 !1 0 1 2 3 4 5
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Halting Time Fluctuations

F
re
q
u
en
cy

Dimension " 50

!2 !1 0 1 2 3 4 5
0.0

0.1

0.2

0.3

0.4

0.5

0.6

Halting Time Fluctuations

F
re
q
u
en
cy

Dimension " 200

Figure : The observation of two-component universality for τε,N,A,E when A = Curie–Weiss,
E ' oi, ui, vi, ε = .5 and β = 1.3. The left figure displays three histograms, one for each
choice of E when N = 50. The right figure displays the same information for N = 200. All
histograms are produced with 16,000 samples. The histogram for E = oi corresponds to the
case studied by Bakhtin and Correll (2012). It is clear from these computations that the
fluctuations collapse on to the universal curve for E = oi. Thus, reasonable changes in the spin
flip intensity do not appear to change the limiting histogram. This indicates why the specific
choice made in Bakhtin and Correll (2012) of E = oi is perhaps enough to capture the behavior
of many individuals.
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