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Discrete spectrum

F number field, A = AF the ring of adeles. G quasi-split classical
groups. XG := ZG (A)G (F )\G (A), finite volume.

L2(XG ) is the space of square-integrable functions φ : XG → C.
L2(XG ) is a G (A)-module by action: g · φ(x) := φ(xg).
L2
d(XG ) = ⊕ irreducible G (A)-submodules in L2(XG ).

φ ∈ L2
d(XG ) is called cuspidal if all constant terms are zero:∫

N(F )\N(A)
φ(n)dn ≡ 0,

where N is the unipotent radical of any proper parabolic subgroup of
G . L2

c(XG ) = {cuspidal functions} - cuspidal spectrum.

L2
d(XG ) = L2

c(XG )⊕ L2
r (XG ). L2

r (XG ) - residual spectrum, consists of
residues of Eisenstein series, by the theory of Eisenstein series of
Langlands.
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Classification of discrete spectrum

GLn: Jacquet (1984), Moeglin-Waldspurger (1989).
L2
d(XGLn) = {∆(τ, b)|τ cuspidal representation of GLa(A), n = ab}.

Quasi-split classical groups: Arthur (Sp2n,SOn), Mok (Un).

Theorem (Arthur 2013)

L2
d(XSp2n) = ⊕

ψ∈Ψ̃2(Sp2n)
⊕
π∈Π̃ψ(εψ)

π.

Ψ̃2(Sp2n) the set of (global) Arthur parameters: ψ = ψ1 � · · ·� ψr .
ψi = (τi , bi ), pairwise different, called simple Arthur parameters, τi
cuspidal representation of GLai (A), bi ∈ Z≥1,

∑r
i=1 aibi = 2n + 1.

Each ψi is of orthogonal type (Ŝp2n = SO2n+1(C) ↪→ GL2n+1(C)):
1 bi even, τi of symplectic type, i.e., L(s, τi ,∧2) has a pole at s = 1;
2 bi odd, τi of orthogonal type, i.e., L(s, τi ,Sym

2) has a pole at s = 1.

Π̃ψ(εψ) is endoscopic lifting to the isobaric sum representation
∆(τ1, b1) � · · ·� ∆(τr , br ) of GL2n+1(A).
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Fourier Coefficients of Automorphic Forms

GLn, Un standard maximal unipotent subgroup, not abelian if n ≥ 3.
Idea of Shalika (1974) and Piatetski-Shapiro (1979): taking Fourier
expansion column-by-column, prove that cuspidal automorphic
representations of GLn(A) are generic, i.e., having nonzero Whittaker
Fourier coefficients.

In general, one can define Fourier coefficients from nilpotent orbits.
In this way, one can measure the size of Fourier coefficients:
n(π) = {all nilpotent orbits providing nonzero FC for π} ⊃ nm(π).

For quasi-split classical groups G ,

nilpotent orbits↔ {(partitions, quadratic forms)}.

p(π) = {all partitions parametrizing orbits in n(π)} ⊃ pm(π).
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Topics related to Arthur classification of discrete spectrum

Fourier coefficients of π ∈ Π̃ψ(εψ)

Shahidi Conjecture: for generic Arthur parameter ψ = �i (τi , 1),
∃π ∈ Π̃ψ(εψ), generic, i.e., has nonzero Whittaker Fourier coefficients
↔ regular orbits ↔ maximal partition.
Proved for quasi-split classical groups, by Ginzburg-Rallis-Soudry,
using the theory of automorphic descent.

Jiang Conjecture (generalization of Shahidi conjecture): for any ψ,
there is a partition p

ψ
(depends on ψ), such that

1 p
ψ

is an upperbound (dominant order) for pm(π), ∀π ∈ Π̃ψ(εψ);

2 there exists π ∈ Π̃ψ(εψ), such that p
ψ
∈ pm(π).

Known result for Sp2n (Jiang-L):

1 p
ψ

is an upperbound (dictionary order) for pm(π), ∀π ∈ Π̃ψ(εψ);

2 for ψ = �i (τi , 1) � (τ, b), b > 1, there exists π ∈ Π̃ψ(εψ), such that
p
ψ
∈ pm(π).
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Topics related to Arthur classification of discrete spectrum

Explicit construction of π ∈ Π̃ψ(εψ)

Construction of residual representations, G quasi-split classical
groups:

1 Moeglin (2008, 2011), makes local/global conjectures towards

existence of residual representations in Π̃ψ(εψ).
2 Jiang-L-Zhang (2013): calculate all possible poles on the right half

plane of the Eisenstein series define from Ind
G(A)
P(A)∆(τ, b)|·|s ⊗ σ, obtain

residual representations in certain Π̃ψ(εψ).

Construction of cuspidal representations:
1 Piatetski-Shapiro (1983), Soudry (1988), construct all cuspidal

representations in non-generic packets of GSp4(A), using the theory of
theta correspondence.

2 Jiang-Zhang (2015), construct cuspdial representations in generic
packets for SOn,Un, using Bessel Fourier coefficients.

Jiang (2014) proposes a general framework which may give explicit
construction of π ∈ Π̃ψ(εψ).

Baiying Liu 9/28/2015 6 / 10



Topics related to Arthur classification of discrete spectrum

Explicit construction of π ∈ Π̃ψ(εψ)

Construction of residual representations, G quasi-split classical
groups:

1 Moeglin (2008, 2011), makes local/global conjectures towards

existence of residual representations in Π̃ψ(εψ).
2 Jiang-L-Zhang (2013): calculate all possible poles on the right half

plane of the Eisenstein series define from Ind
G(A)
P(A)∆(τ, b)|·|s ⊗ σ, obtain

residual representations in certain Π̃ψ(εψ).

Construction of cuspidal representations:
1 Piatetski-Shapiro (1983), Soudry (1988), construct all cuspidal

representations in non-generic packets of GSp4(A), using the theory of
theta correspondence.

2 Jiang-Zhang (2015), construct cuspdial representations in generic
packets for SOn,Un, using Bessel Fourier coefficients.

Jiang (2014) proposes a general framework which may give explicit
construction of π ∈ Π̃ψ(εψ).

Baiying Liu 9/28/2015 6 / 10



Topics related to Arthur classification of discrete spectrum

Explicit construction of π ∈ Π̃ψ(εψ)

Construction of residual representations, G quasi-split classical
groups:

1 Moeglin (2008, 2011), makes local/global conjectures towards

existence of residual representations in Π̃ψ(εψ).
2 Jiang-L-Zhang (2013): calculate all possible poles on the right half

plane of the Eisenstein series define from Ind
G(A)
P(A)∆(τ, b)|·|s ⊗ σ, obtain

residual representations in certain Π̃ψ(εψ).

Construction of cuspidal representations:
1 Piatetski-Shapiro (1983), Soudry (1988), construct all cuspidal

representations in non-generic packets of GSp4(A), using the theory of
theta correspondence.

2 Jiang-Zhang (2015), construct cuspdial representations in generic
packets for SOn,Un, using Bessel Fourier coefficients.

Jiang (2014) proposes a general framework which may give explicit
construction of π ∈ Π̃ψ(εψ).

Baiying Liu 9/28/2015 6 / 10



Topics related to Arthur classification of discrete spectrum

Relations between Π̃ψ(εψ) of different groups

Automorphic descent:
representations of Sp2n(A)→ representations of S̃p2k(A),
representations of SO2n+1(A)→ representations of SO2k(A), etc.

Ginzburg-Jiang-Soudry (2012):

S̃p2n(A)

Sp4n(A)

Ñ2n
⋃̇

Ñ ′2n

↓ D4n
2n,ψ−1

N4n
⋃̇

N ′4n (τ, 2) � (1, 1)

(τ, 1)

τ cuspidal representation of GL2n(A) of symplectic type, L( 1
2 , τ) 6= 0.
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Topics related to Arthur classification of discrete spectrum

Relations between Π̃ψ(εψ) of different groups, continue

L (2013): extend to higher rank cases:

...

S̃p4mn−2n(A)

Sp4mn(A)

S̃p4mn+2n(A)

...

...

↓ D4mn−2n
2n,ψ1

Ñ4mn−2n
⋃̇
Ñ ′4mn−2n

↓ D4mn
2n,ψ−1

N4mn
⋃̇

N ′4mn

↓ D4mn+2n
2n,ψ1

Ñ4mn+2n
⋃̇
Ñ ′4mn+2n

↓ D4mn+4n
2n,ψ−1

...
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Topics related to Arthur classification of discrete spectrum

Non-cuspidality of π ∈ Π̃ψ(εψ)

1 Piatetski-Shapiro (1983), Soudry (1988), there exits ψ for GSp4 such

that there are no cuspidal representations in Π̃ψ(εψ).
2 Paniagua-Taboada (2011), split SO4n, ψ = (τ, 2n), τ cuspidal

representation of GL2(A) of symplectic type, there are no cuspidal

representations in Π̃ψ(εψ) (can be reproved using FC of automorphic
forms).

Jiang-L (2015), if F is totally imaginary, then ∃ many ψ for
symplectic groups, such that there are no cuspidal representations in
Π̃ψ(εψ). Orthogonal analogues are expected.

Examples: F = Q(i), ψ = (1, b1) � (τ, b2) for Spb1+2b2−1, τ cuspidal
representation of GL2(A) of symplectic type, b1 odd, b2 even. Then
Π̃ψ(εψ) may contain cuspidal representation only when

(b1, b2) = (1, 2), (3, 2), (5, 2), or,(1, 4).
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Thank you!
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