On certain topics related to Arthur classification of discrete spectrum

Baiying Liu

9/28/2015

Baiying Liu 9/28/2015 1 / 10

• F number field, $\mathbb{A} = \mathbb{A}_F$ the ring of adeles. G quasi-split classical groups. $X_G := Z_G(\mathbb{A})G(F) \setminus G(\mathbb{A})$, finite volume.

Baiying Liu 9/28/2015 2 / 10

- F number field, $\mathbb{A} = \mathbb{A}_F$ the ring of adeles. G quasi-split classical groups. $X_G := Z_G(\mathbb{A})G(F)\backslash G(\mathbb{A})$, finite volume.
- $L^2(X_G)$ is the space of square-integrable functions $\phi: X_G \to \mathbb{C}$. • $L^2(X_G)$ is a $G(\mathbb{A})$ -module by action: $g \cdot \phi(x) := \phi(xg)$. • $L^2_d(X_G) = \oplus$ irreducible $G(\mathbb{A})$ -submodules in $L^2(X_G)$.

(□ > ◀圖 > ◀불 > ◀불 > 불 - 釣٩@

Baiying Liu 9/28/2015 2 / 10

- F number field, $\mathbb{A} = \mathbb{A}_F$ the ring of adeles. G quasi-split classical groups. $X_G := Z_G(\mathbb{A})G(F)\backslash G(\mathbb{A})$, finite volume.
- $L^2(X_G)$ is the space of square-integrable functions $\phi: X_G \to \mathbb{C}$. • $L^2(X_G)$ is a $G(\mathbb{A})$ -module by action: $g \cdot \phi(x) := \phi(xg)$. • $L^2_d(X_G) = \oplus$ irreducible $G(\mathbb{A})$ -submodules in $L^2(X_G)$.
- $\phi \in L^2_d(X_G)$ is called cuspidal if all constant terms are zero:

$$\int_{N(F)\backslash N(\mathbb{A})} \phi(n) dn \equiv 0,$$

where N is the unipotent radical of any proper parabolic subgroup of G. $L_c^2(X_G) = \{\text{cuspidal functions}\}$ - cuspidal spectrum.

- F number field, $\mathbb{A} = \mathbb{A}_F$ the ring of adeles. G quasi-split classical groups. $X_G := Z_G(\mathbb{A})G(F)\backslash G(\mathbb{A})$, finite volume.
- $L^2(X_G)$ is the space of square-integrable functions $\phi: X_G \to \mathbb{C}$. • $L^2(X_G)$ is a $G(\mathbb{A})$ -module by action: $g \cdot \phi(x) := \phi(xg)$. • $L^2_d(X_G) = \oplus$ irreducible $G(\mathbb{A})$ -submodules in $L^2(X_G)$.
- $\phi \in L^2_d(X_G)$ is called cuspidal if all constant terms are zero:

$$\int_{N(F)\setminus N(\mathbb{A})}\phi(n)dn\equiv 0,$$

where N is the unipotent radical of any proper parabolic subgroup of G. $L_c^2(X_G) = \{\text{cuspidal functions}\}\$ - cuspidal spectrum.

• $L_d^2(X_G) = L_c^2(X_G) \oplus L_r^2(X_G)$. $L_r^2(X_G)$ - residual spectrum, consists of residues of Eisenstein series, by the theory of Eisenstein series of Langlands.

 4□ > 4∄ > 4½ > 4½ > ½
 5
 €
 9/28/2015
 2 / 10

• GL_n : Jacquet (1984), Moeglin-Waldspurger (1989). $L_d^2(X_{GL_n}) = \{\Delta(\tau, b) | \tau \text{ cuspidal representation of } GL_a(\mathbb{A}), n = ab\}.$

3 / 10

Baiying Liu 9/28/2015

- GL_n : Jacquet (1984), Moeglin-Waldspurger (1989). $L_d^2(X_{GL_n}) = \{\Delta(\tau, b) | \tau \text{ cuspidal representation of } GL_a(\mathbb{A}), n = ab\}.$
- Quasi-split classical groups: Arthur (Sp_{2n}, SO_n) , Mok (U_n) .

Theorem (Arthur 2013)

$$L^2_d(X_{Sp_{2n}}) = \oplus_{\psi \in \widetilde{\Psi}_2(Sp_{2n})} \oplus_{\pi \in \widetilde{\Pi}_{\psi}(\varepsilon_{\psi})} \pi.$$

 $\widetilde{\Psi}_2(Sp_{2n})$ the set of (global) Arthur parameters: $\psi = \psi_1 \boxplus \cdots \boxplus \psi_r$. $\psi_i = (\tau_i, b_i)$, pairwise different, called simple Arthur parameters, τ_i cuspidal representation of $GL_{a_i}(\mathbb{A})$, $b_i \in \mathbb{Z}_{\geq 1}$, $\sum_{i=1}^r a_i b_i = 2n+1$.

Baiying Liu 9/28/2015 3 / 10

- GL_n : Jacquet (1984), Moeglin-Waldspurger (1989). $L_d^2(X_{GL_n}) = \{\Delta(\tau, b) | \tau \text{ cuspidal representation of } GL_a(\mathbb{A}), n = ab\}.$
- Quasi-split classical groups: Arthur (Sp_{2n}, SO_n) , Mok (U_n) .

Theorem (Arthur 2013)

$$L^2_d(X_{Sp_{2n}}) = \oplus_{\psi \in \widetilde{\Psi}_2(Sp_{2n})} \oplus_{\pi \in \widetilde{\Pi}_{\psi}(\varepsilon_{\psi})} \pi.$$

 $\widetilde{\Psi}_2(Sp_{2n})$ the set of (global) Arthur parameters: $\psi = \psi_1 \boxplus \cdots \boxplus \psi_r$. $\psi_i = (\tau_i, b_i)$, pairwise different, called simple Arthur parameters, τ_i cuspidal representation of $GL_{a_i}(\mathbb{A})$, $b_i \in \mathbb{Z}_{\geq 1}$, $\sum_{i=1}^r a_i b_i = 2n+1$.

- Each ψ_i is of orthogonal type $(\widehat{Sp_{2n}} = SO_{2n+1}(\mathbb{C}) \hookrightarrow GL_{2n+1}(\mathbb{C}))$:
 - **1** b_i even, τ_i of symplectic type, i.e., $L(s, \tau_i, \wedge^2)$ has a pole at s = 1;
 - ② b_i odd, τ_i of orthogonal type, i.e., $L(s, \tau_i, Sym^2)$ has a pole at s = 1.

Baiying Liu 9/28/2015 3 / 10

- GL_n : Jacquet (1984), Moeglin-Waldspurger (1989). $L_d^2(X_{GL_n}) = \{\Delta(\tau, b) | \tau \text{ cuspidal representation of } GL_a(\mathbb{A}), n = ab\}.$
- Quasi-split classical groups: Arthur (Sp_{2n}, SO_n) , Mok (U_n) .

Theorem (Arthur 2013)

$$L^2_d(X_{Sp_{2n}}) = \bigoplus_{\psi \in \widetilde{\Psi}_2(Sp_{2n})} \bigoplus_{\pi \in \widetilde{\Pi}_{\psi}(\varepsilon_{\psi})} \pi.$$

 $\widetilde{\Psi}_2(Sp_{2n})$ the set of (global) Arthur parameters: $\psi = \psi_1 \boxplus \cdots \boxplus \psi_r$. $\psi_i = (\tau_i, b_i)$, pairwise different, called simple Arthur parameters, τ_i cuspidal representation of $GL_{a_i}(\mathbb{A})$, $b_i \in \mathbb{Z}_{\geq 1}$, $\sum_{i=1}^r a_i b_i = 2n+1$.

- Each ψ_i is of orthogonal type $(\widehat{Sp_{2n}} = SO_{2n+1}(\mathbb{C}) \hookrightarrow GL_{2n+1}(\mathbb{C}))$:
 - **1** b_i even, τ_i of symplectic type, i.e., $L(s, \tau_i, \wedge^2)$ has a pole at s = 1;
 - ② b_i odd, τ_i of orthogonal type, i.e., $L(s, \tau_i, Sym^2)$ has a pole at s = 1.
- $\Pi_{\psi}(\varepsilon_{\psi})$ is endoscopic lifting to the isobaric sum representation $\Delta(\tau_1, b_1) \boxplus \cdots \boxplus \Delta(\tau_r, b_r)$ of $GL_{2n+1}(\mathbb{A})$.

Baiying Liu 9/28/2015 3 / 10

Fourier Coefficients of Automorphic Forms

• GL_n , U_n standard maximal unipotent subgroup, not abelian if $n \geq 3$. Idea of Shalika (1974) and Piatetski-Shapiro (1979): taking Fourier expansion column-by-column, prove that cuspidal automorphic representations of $GL_n(\mathbb{A})$ are generic, i.e., having nonzero Whittaker Fourier coefficients.

<ロ > < 回 > < 回 > < 巨 > くき > しき > しき の < ○

4 / 10

Baiying Liu 9/28/2015

Fourier Coefficients of Automorphic Forms

- GL_n , U_n standard maximal unipotent subgroup, not abelian if $n \geq 3$. Idea of Shalika (1974) and Piatetski-Shapiro (1979): taking Fourier expansion column-by-column, prove that cuspidal automorphic representations of $GL_n(\mathbb{A})$ are generic, i.e., having nonzero Whittaker Fourier coefficients.
- In general, one can define Fourier coefficients from nilpotent orbits. In this way, one can measure the size of Fourier coefficients: $\mathfrak{n}(\pi) = \{\text{all nilpotent orbits providing nonzero FC for } \pi\} \supset \mathfrak{n}^m(\pi).$

Baiying Liu 9/28/2015 4 / 10

Fourier Coefficients of Automorphic Forms

- GL_n , U_n standard maximal unipotent subgroup, not abelian if $n \geq 3$. Idea of Shalika (1974) and Piatetski-Shapiro (1979): taking Fourier expansion column-by-column, prove that cuspidal automorphic representations of $GL_n(\mathbb{A})$ are generic, i.e., having nonzero Whittaker Fourier coefficients.
- In general, one can define Fourier coefficients from nilpotent orbits. In this way, one can measure the size of Fourier coefficients: $\mathfrak{n}(\pi) = \{\text{all nilpotent orbits providing nonzero FC for } \pi\} \supset \mathfrak{n}^m(\pi).$
- For quasi-split classical groups G,

nilpotent orbits \leftrightarrow {(partitions, quadratic forms)}.

 $\mathfrak{p}(\pi) = \{\text{all partitions parametrizing orbits in } \mathfrak{n}(\pi)\} \supset \mathfrak{p}^m(\pi).$

Fourier coefficients of $\pi \in \widetilde{\Pi}_{\psi}(\varepsilon_{\psi})$

• Shahidi Conjecture: for generic Arthur parameter $\psi = \boxplus_i(\tau_i, 1)$, $\exists \pi \in \widetilde{\Pi}_{\psi}(\varepsilon_{\psi})$, generic, i.e., has nonzero Whittaker Fourier coefficients \leftrightarrow regular orbits \leftrightarrow maximal partition. Proved for quasi-split classical groups, by Ginzburg-Rallis-Soudry, using the theory of automorphic descent.

<ロ > < 回 > < 回 > < 巨 > < 巨 > 三 の < @

Baiying Liu 9/28/2015 5 / 10

Fourier coefficients of $\pi \in \widetilde{\Pi}_{\psi}(\varepsilon_{\psi})$

- Shahidi Conjecture: for generic Arthur parameter $\psi = \boxplus_i(\tau_i, 1)$, $\exists \pi \in \widetilde{\Pi}_{\psi}(\varepsilon_{\psi})$, generic, i.e., has nonzero Whittaker Fourier coefficients \leftrightarrow regular orbits \leftrightarrow maximal partition. Proved for quasi-split classical groups, by Ginzburg-Rallis-Soudry, using the theory of automorphic descent.
- Jiang Conjecture (generalization of Shahidi conjecture): for any ψ , there is a partition \underline{p}_{ψ} (depends on ψ), such that
 - **1** \underline{p}_{ψ} is an upperbound (dominant order) for $\mathfrak{p}^m(\pi)$, $\forall \pi \in \widetilde{\Pi}_{\psi}(\varepsilon_{\psi})$;
 - 2 there exists $\pi \in \widetilde{\Pi}_{\psi}(\varepsilon_{\psi})$, such that $\underline{p}_{\psi} \in \mathfrak{p}^{m}(\pi)$.

Baiying Liu 9/28/2015 5 / 10

Fourier coefficients of $\pi \in \widetilde{\Pi}_{\psi}(\varepsilon_{\psi})$

- Shahidi Conjecture: for generic Arthur parameter $\psi = \boxplus_i(\tau_i, 1)$, $\exists \pi \in \widetilde{\Pi}_{\psi}(\varepsilon_{\psi})$, generic, i.e., has nonzero Whittaker Fourier coefficients \leftrightarrow regular orbits \leftrightarrow maximal partition. Proved for quasi-split classical groups, by Ginzburg-Rallis-Soudry, using the theory of automorphic descent.
- Jiang Conjecture (generalization of Shahidi conjecture): for any ψ , there is a partition p_{ψ} (depends on ψ), such that
 - **1** \underline{p}_{ψ} is an upperbound (dominant order) for $\mathfrak{p}^m(\pi)$, $\forall \pi \in \widetilde{\Pi}_{\psi}(\varepsilon_{\psi})$;
 - ② there exists $\pi \in \widetilde{\Pi}_{\psi}(\varepsilon_{\psi})$, such that $\underline{p}_{\psi} \in \mathfrak{p}^{m}(\pi)$.
- Known result for Sp_{2n} (Jiang-L):
 - **①** \underline{p}_{ψ} is an upperbound (dictionary order) for $\mathfrak{p}^m(\pi)$, $\forall \pi \in \Pi_{\psi}(\varepsilon_{\psi})$;
 - ② for $\psi = \boxplus_i(\tau_i, 1) \boxplus (\tau, b)$, b > 1, there exists $\pi \in \widetilde{\Pi}_{\psi}(\varepsilon_{\psi})$, such that $p_{\omega} \in \mathfrak{p}^m(\pi)$.

Baiying Liu 9/28/2015 5 / 10

Explicit construction of $\pi \in \widetilde{\Pi}_{\psi}(\varepsilon_{\psi})$

- Construction of residual representations, *G* quasi-split classical groups:
 - **1** Moeglin (2008, 2011), makes local/global conjectures towards existence of residual representations in $\widetilde{\Pi}_{\psi}(\varepsilon_{\psi})$.
 - ② Jiang-L-Zhang (2013): calculate all possible poles on the right half plane of the Eisenstein series define from $\operatorname{Ind}_{P(\mathbb{A})}^{G(\mathbb{A})}\Delta(\tau,b)|\cdot|^s\otimes\sigma$, obtain residual representations in certain $\widetilde{\Pi}_{\psi}(\varepsilon_{\psi})$.

6 / 10

Baiying Liu 9/28/2015

Explicit construction of $\pi \in \widetilde{\Pi}_{\psi}(\varepsilon_{\psi})$

- Construction of residual representations, *G* quasi-split classical groups:
 - **1** Moeglin (2008, 2011), makes local/global conjectures towards existence of residual representations in $\widetilde{\Pi}_{\psi}(\varepsilon_{\psi})$.
 - ② Jiang-L-Zhang (2013): calculate all possible poles on the right half plane of the Eisenstein series define from $\operatorname{Ind}_{P(\mathbb{A})}^{G(\mathbb{A})}\Delta(\tau,b)|\cdot|^s\otimes\sigma$, obtain residual representations in certain $\widetilde{\Pi}_{\psi}(\varepsilon_{\psi})$.
- Construction of cuspidal representations:
 - **1** Piatetski-Shapiro (1983), Soudry (1988), construct all cuspidal representations in non-generic packets of $GSp_4(\mathbb{A})$, using the theory of theta correspondence.
 - ② Jiang-Zhang (2015), construct cuspdial representations in generic packets for SO_n , U_n , using Bessel Fourier coefficients.

↓□▶ ↓□▶ ↓□▶ ↓□▶ □ ♥♀○

Baiying Liu 9/28/2015 6 / 10

Explicit construction of $\pi \in \Pi_{\psi}(\varepsilon_{\psi})$

- Construction of residual representations, G quasi-split classical groups:
 - Moeglin (2008, 2011), makes local/global conjectures towards existence of residual representations in $\Pi_{u}(\varepsilon_{u})$.
 - 2 Jiang-L-Zhang (2013): calculate all possible poles on the right half plane of the Eisenstein series define from $\operatorname{Ind}_{\mathcal{P}(\mathbb{A})}^{G(\mathbb{A})}\Delta(\tau,b)|\cdot|^s\otimes\sigma$, obtain residual representations in certain $\Pi_{\eta l}(\varepsilon_{\eta l})$.
- Construction of cuspidal representations:
 - Piatetski-Shapiro (1983), Soudry (1988), construct all cuspidal representations in non-generic packets of $GSp_4(\mathbb{A})$, using the theory of theta correspondence.
 - 2 Jiang-Zhang (2015), construct cuspdial representations in generic packets for SO_n , U_n , using Bessel Fourier coefficients.
- Jiang (2014) proposes a general framework which may give explicit construction of $\pi \in \widetilde{\Pi}_{\psi}(\varepsilon_{\psi})$.

Baiying Liu 9/28/2015 6 / 10

Relations between $\widetilde{\Pi}_{\psi}(arepsilon_{\psi})$ of different groups

• Automorphic descent: representations of $\widetilde{Sp}_{2k}(\mathbb{A})$, representations of $SO_{2n+1}(\mathbb{A}) \to \text{representations of } SO_{2k}(\mathbb{A})$, etc.

Baiying Liu 9/28/2015 7 / 10

Relations between $\widetilde{\Pi}_{\psi}(arepsilon_{\psi})$ of different groups

- Automorphic descent: representations of $\widetilde{Sp}_{2k}(\mathbb{A})$, representations of $SO_{2n+1}(\mathbb{A}) \to \text{representations of } SO_{2k}(\mathbb{A})$, etc.
- Ginzburg-Jiang-Soudry (2012):

 τ cuspidal representation of $GL_{2n}(\mathbb{A})$ of symplectic type, $L(\frac{1}{2},\tau)\neq 0$.

Baiying Liu 9/28/2015 7 / 10

Relations between $\widetilde{\Pi}_{\psi}(arepsilon_{\psi})$ of different groups, continue

• L (2013): extend to higher rank cases:

Baiying Liu

8 / 10

Non-cuspidality of $\pi \in \widetilde{\mathsf{\Pi}}_{\psi}(arepsilon_{\psi})$

- 1 Piatetski-Shapiro (1983), Soudry (1988), there exits ψ for GSp_4 such that there are no cuspidal representations in $\widetilde{\Pi}_{\psi}(\varepsilon_{\psi})$.
 - ② Paniagua-Taboada (2011), split SO_{4n} , $\psi=(\tau,2n)$, τ cuspidal representation of $GL_2(\mathbb{A})$ of symplectic type, there are no cuspidal representations in $\widetilde{\Pi}_{\psi}(\varepsilon_{\psi})$ (can be reproved using FC of automorphic forms).

Baiying Liu 9/28/2015 9 / 10

Non-cuspidality of $\pi \in \widetilde{\mathsf{\Pi}}_{\psi}(arepsilon_{\psi})$

- 1 Piatetski-Shapiro (1983), Soudry (1988), there exits ψ for GSp_4 such that there are no cuspidal representations in $\widetilde{\Pi}_{\psi}(\varepsilon_{\psi})$.
 - ② Paniagua-Taboada (2011), split SO_{4n} , $\psi=(\tau,2n)$, τ cuspidal representation of $GL_2(\mathbb{A})$ of symplectic type, there are no cuspidal representations in $\widetilde{\Pi}_{\psi}(\varepsilon_{\psi})$ (can be reproved using FC of automorphic forms).
- Jiang-L (2015), if F is totally imaginary, then \exists many ψ for symplectic groups, such that there are no cuspidal representations in $\widetilde{\Pi}_{\psi}(\varepsilon_{\psi})$. Orthogonal analogues are expected.

(ㅁㅏㅓ@ㅏㅓㅌㅏㅓㅌㅏ = - 쒸٩안

Baiying Liu 9/28/2015 9 / 10

Non-cuspidality of $\pi \in \widetilde{\Pi}_{\psi}(\varepsilon_{\psi})$

- 1 Piatetski-Shapiro (1983), Soudry (1988), there exits ψ for GSp_4 such that there are no cuspidal representations in $\widetilde{\Pi}_{\psi}(\varepsilon_{\psi})$.
 - ② Paniagua-Taboada (2011), split SO_{4n} , $\psi=(\tau,2n)$, τ cuspidal representation of $GL_2(\mathbb{A})$ of symplectic type, there are no cuspidal representations in $\widetilde{\Pi}_{\psi}(\varepsilon_{\psi})$ (can be reproved using FC of automorphic forms).
- Jiang-L (2015), if F is totally imaginary, then \exists many ψ for symplectic groups, such that there are no cuspidal representations in $\widetilde{\Pi}_{\psi}(\varepsilon_{\psi})$. Orthogonal analogues are expected.
- Examples: $F = \mathbb{Q}(i)$, $\psi = (1, b_1) \boxplus (\tau, b_2)$ for $Sp_{b_1+2b_2-1}$, τ cuspidal representation of $GL_2(\mathbb{A})$ of symplectic type, b_1 odd, b_2 even. Then $\widetilde{\Pi}_{\psi}(\varepsilon_{\psi})$ may contain cuspidal representation only when

$$(b_1, b_2) = (1, 2), (3, 2), (5, 2), \text{ or,} (1, 4).$$

 • Thank you!

Baiying Liu 9/28/2015 10 / 10