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Ergodic Schrodinger operators

(hgW), = AV + \(T0)W,, (0.1)

acting on (?(Z9),
T is an ergodic action of Z? on a probability space (©, 11).
v is a sampling function
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Ergodic Schrodinger operators

(hgW), = AV + \(T0)W,, (0.1)

acting on (?(Z9),
T is an ergodic action of Z? on a probability space (©, 11).
v is a sampling function

Spectrum, and spectral components are the same for a.e. 6.

Quasiperiodic operators:
©="T>,

T;0 = 0 + w;, w incommensurate.
Periodic if w rational.
Anderson model:
v(T"0) i.id.r.v.
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Exotic Spectral properties

Metal-insulator transitions
Dense point spectrum

Unusual absolutely continuous spectrum

Singular continuous spectrum

]
]
"]
o Eigenfunctions decaying at the non-Lyapunov rate
(*]
@ Cantor spectrum

°

Unusual eigenvalue statistics
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Prizes

@ Anderson localization (Nobel, 1977)
o Integer Quantum Hall Effect (Nobel, 1998)
@ Graphene (Nobel, 2010)
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Prizes

Anderson localization (Nobel, 1977)
Integer Quantum Hall Effect (Nobel, 1998)
Graphene (Nobel, 2010)

Fields medal 2014
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Quasiperiodic operators: KAM methods

(Haa,oW)n = Vni1 + Vo1 + Av(TO)V,

v(T"9) = v(0 + na)
0, € T9, Diophantine o
Small coupling
Dinaburg-Sinai (76), Eliasson (91)
@ KAM in the momentum space

@ Reducibility of transfer-matrix cocycles

Large coupling, d =1
Sinai, Frohlich-Spencer-Wittwer (late 80s) cos-type
Eliasson (97), analytic (Gevrey)
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@ KAM in the momentum space

@ Reducibility of transfer-matrix cocycles

Large coupling, d =1
Sinai, Frohlich-Spencer-Wittwer (late 80s) cos-type
Eliasson (97), analytic (Gevrey)
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Bourgain: robust non-KAM methods

Direct estimates of the Green's function in the regime of positive
Lyapunov exponents (large coupling). No multiple scales!
non-perturbative ac spectrum by dual localization
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Bourgain: robust non-KAM methods

Direct estimates of the Green's function in the regime of positive
Lyapunov exponents (large coupling). No multiple scales!
non-perturbative ac spectrum by dual localization

Bourgain (+Goldstein, Schlag, J.) (2000-2005): analytic,
multi-frequency, multidimensional
applications e.g. to random NLS (Bourgain, 2005, Bourgain-Wang,
2008)

o LOOK INSIDE!

)
[

Groen's Function Belimates
for Lattive Schridinger
Oyperalors and Applications
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Other aspects

1. Massiveness of the spectrum (Bourgain, 2005)
Corollary: absolutely continuous spectrum for multi-dimensional
quasiperiodic operators at low coupling
(Bourgain, J., Parnovsky, 2016)
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Other aspects

2. Continuity of the Lyapunov exponent of analytic SL(2,R)
cocycles in frequency at irrational frequencies (Bourgain-J, 2002)
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can be discontinuous in C*°, (Wang-You, 2014)
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Other aspects

2. Continuity of the Lyapunov exponent of analytic SL(2,R)
cocycles in frequency at irrational frequencies (Bourgain-J, 2002)
optimal:
can be discontinuous at rational frequencies
can be discontinuous in C*°, (Wang-You, 2014)
Prequel:

Holder continuity in energy for Diophantine frequencies
(Goldstein-Schlag, 2001)

Sequels:

@ Ten Martini problem (Avila-J, 2009)

@ Auvila's global theory of quasiperiodic cocycles (Avila,
2009-2015)
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Other aspects

2. Continuity of the Lyapunov exponent of analytic SL(2,R)
cocycles in frequency at irrational frequencies (Bourgain-J, 2002)
optimal:
can be discontinuous at rational frequencies
can be discontinuous in C*°, (Wang-You, 2014)
Prequel:

Holder continuity in energy for Diophantine frequencies
(Goldstein-Schlag, 2001)

Sequels:

@ Ten Martini problem (Avila-J, 2009)

@ Auvila's global theory of quasiperiodic cocycles (Avila,
2009-2015)

Bourgain, 2005: the same continuity for multifrequency
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Bernoulli-Anderson model

Large coupling (or bottom of the spectrum for continuous) implies
Anderson localization (pure point spectrum with exponentially
decaying eigenfunctions)
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Klein + coauthors (1989-2004)
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Fractional moments: Aizenman-Molchanov,
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Both rely on continuity of the distribution of randomness
(essentially requiring continuous rank one (compact) perturbations)
Bourgain-Kenig (2005): a.e. localization near the bottom of the
spectrum for continuous operators with Bernoulli potential.
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Bernoulli-Anderson model

Large coupling (or bottom of the spectrum for continuous) implies
Anderson localization (pure point spectrum with exponentially
decaying eigenfunctions)

Multi-scale analysis: Frohlich-Spencer (1983)

Klein + coauthors (1989-2004)

Fractional moments: Aizenman-Molchanov,
Aizenman+-collaborators (1994+)

Both rely on continuity of the distribution of randomness
(essentially requiring continuous rank one (compact) perturbations)
Bourgain-Kenig (2005): a.e. localization near the bottom of the
spectrum for continuous operators with Bernoulli potential.
new powerful combinatorics techniques
Still open in the discrete case!
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Integrated density of states

One of Simon's 15 problems in mathematical physics (1985): prove
continuity of the Integrated density of states for continuum
operators
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Integrated density of states

One of Simon's 15 problems in mathematical physics (1985): prove
continuity of the Integrated density of states for continuum
operators
Bourgain-Klein (2012): proof for d = 2, 3.
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Integrated density of states

One of Simon's 15 problems in mathematical physics (1985): prove
continuity of the Integrated density of states for continuum
operators
Bourgain-Klein (2012): proof for d = 2, 3.

Still open for d > 3...

Jean Bourgain and quasiperiodic (ergodic) Schrédinger operatc



Almost Mathieu operators

(H)\,aﬂw)n = W,,H =+ anl + )\V( T”H)\Un

v(T"0) = 2cos2m(f + na), « irrational,
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Almost Mathieu operators

(H)\,aﬂ\u)n = ‘Un+1 =+ \-Un,]_ + )\V( T”H)\Un

v(T"0) = 2cos2m(f + na), « irrational,
Tight-binding model of 2D Bloch electrons in magnetic fields

s

T

Hofstadter butterfly
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Arithmetic spectral transitions

(Hx0,0V)n = Vi1 + Vo1 +2Xcos 27(0 + na)V,

@ |\ < 1: Hyqp has purely absolutely continuous spectrum for
all a, 6 (Avila, 2008).
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Arithmetic spectral transitions

(Hx0,0V)n = Vi1 + Vo1 +2Xcos 27(0 + na)V,

@ |\ < 1: Hyqp has purely absolutely continuous spectrum for
all a, 6 (Avila, 2008).
@ |A| > 1: arithmetic transitions.

In||na
B(a) = lim sup —M
n—00 ‘n‘
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Arithmetic spectral transitions

(Hx0,0V)n = Vi1 + Vo1 +2Xcos 27(0 + na)V,

@ |\ < 1: Hyqp has purely absolutely continuous spectrum for
all a, 6 (Avila, 2008).
@ |A| > 1: arithmetic transitions.

|n no
(o) = lim sup —- 2 /2
n—o00 ‘n‘
and
In |20 + na
0(a, 0) = limsup — I HR/Z
n—o0o |n’

Diophantine o : (a) =0,
a-Diophantine 6 : §(«a,0) =0
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Sharp transitions

(Hx0,0V)n = Vi1 + Vh1 + Acos2m(0 + na)WV,

J.- Liu (2015-2016):

@ For Diophantine «, there is a sharp transition at A\p = e
Al < edlt) — H 0 has purely singular continuous
spectrum
IA| > (9 — H, .4 has Anderson localization.

d(a,0)

@ For a-Diophantine 6 (any «) there is a sharp transition at
Ao = eb(a)
N < ef®) — H .6 has purely singular continuous
spectrum ( Avila-You-Zhou, 2015),
Al > efle) — Hx .6 has Anderson localization.
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Sharp transitions

(Hx0,0V)n = Vi1 + Vh1 + Acos2m(0 + na)WV,

J.- Liu (2015-2016):

@ For Diophantine «, there is a sharp transition at A\p = e
Al < edlt) — H 0 has purely singular continuous
spectrum
IA| > (9 — H, .4 has Anderson localization.

d(a,0)

@ For a-Diophantine 6 (any «) there is a sharp transition at
Ao = eb(a)
N < ef®) — H .6 has purely singular continuous
spectrum ( Avila-You-Zhou, 2015),
Al > efle) — Hx .6 has Anderson localization.

Ten Martini paper: localization for |\| > 0/95(2),
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Asymptotics

In both cases, throughout the point spectrum regime, suppose E is
an eigenvalue of H) . ¢ and ¢ is the eigenfunction.

Jean Bourgain and quasiperiodic (ergodic) Schrédinger operatc



Asymptotics

Theorem 1

In both cases, throughout the point spectrum regime, suppose E is
an eigenvalue of H) ., ¢ and ¢ is the eigenfunction. Let

U= ity )
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Asymptotics

Theorem 1

In both cases, throughout the point spectrum regime, suppose E is
an eigenvalue of H) ., ¢ and ¢ is the eigenfunction. Let

U(k) = ( gzﬁ(i(ﬁ)l) ) Then for any € > 0, there exists K such
that for any |k| > K, U(k) satisfies
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Asymptotics

Theorem 1

In both cases, throughout the point spectrum regime, suppose E is
an eigenvalue of H) ., ¢ and ¢ is the eigenfunction. Let

U(k) = ( gzﬁ(i(ﬁ)l) ) Then for any € > 0, there exists K such
that for any |k| > K, U(k) satisfies

F(lkDe™ < Ju(k)I| < F(lkl)e"",
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The behavior of

!
!
|
|
|
| !
| |
| |
1 |

D gy (0+1)qn(l+2)gn(f +3)qn(f + 4)gn B2 K
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Wencai Liu:
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Wencai Liu:

oLOOK INSIDE!

Green's Funclion Estimates
for Lattice Schradinger
Oyperalors and Applicalions

Wi
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Mathoverflow

Incidentally, | found the reading of Jean's papers as a graduate student to be simultaneously
extremely frustrating and extremely rewarding. Decoding an offhand remark or a mysterious step in
his paper was often as instructive (and as time-consuming) as reading several pages of arguments
by some other authors. (But his papers do become much easier to read once one has internalised
enough of his "box of tools"...)

edited Jul 1012 at 20:48 ans

Terry Tac
| 43.4k » 14 198 » 262
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Mathoverflow

Incidentally, | found the reading of Jean's papers as a graduate student to be simultaneously
extremely frustrating and extremely rewarding. Decoding an offhand remark or a mysterious step in
his paper was often as instructive (and as time-consuming) as reading several pages of arguments
by some other authors. (But his papers do become much easier to read once one has internalised
enough of his "box of tools"...)

improve this answer edited Jul 10 112 at 20:48 a

Terry Tao
43.4K » 14 198 o 262

12 Well, Terry, | found the reading of Jean's papers as a full professaor to be simultaneously extremely frustrating
and extremely rewarding. — Bill Johnson
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