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Ergodic Schrödinger operators

(hθΨ)n = ∆Ψ + λv(T nθ)Ψn (0.1)

acting on `2(Zd),
T is an ergodic action of Zd on a probability space (Θ, µ).

v is a sampling function

Spectrum, and spectral components are the same for a.e. θ.

Quasiperiodic operators:
Θ = Tb

Tiθ = θ + ωi , ω incommensurate.
Periodic if ω rational.

Anderson model:
v(T nθ) i.i.d.r.v.
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Exotic Spectral properties

Metal-insulator transitions

Dense point spectrum

Unusual absolutely continuous spectrum

Eigenfunctions decaying at the non-Lyapunov rate

Singular continuous spectrum

Cantor spectrum

Unusual eigenvalue statistics
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Prizes

Anderson localization (Nobel, 1977)

Integer Quantum Hall Effect (Nobel, 1998)

Graphene (Nobel, 2010)

Fields medal 2014
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Quasiperiodic operators: KAM methods

(Hλ,α,θΨ)n = Ψn+1 + Ψn−1 + λv(T nθ)Ψn

v(T nθ) = v(θ + nα)
θ, α ∈ Td , Diophantine α

Small coupling
Dinaburg-Sinai (76), Eliasson (91)

KAM in the momentum space

Reducibility of transfer-matrix cocycles

Large coupling, d = 1
Sinai, Fröhlich-Spencer-Wittwer (late 80s) cos-type

Eliasson (97), analytic (Gevrey)
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Bourgain: robust non-KAM methods

Direct estimates of the Green’s function in the regime of positive
Lyapunov exponents (large coupling). No multiple scales!

non-perturbative ac spectrum by dual localization

Bourgain (+Goldstein, Schlag, J.) (2000-2005): analytic,
multi-frequency, multidimensional

applications e.g. to random NLS (Bourgain, 2005, Bourgain-Wang,
2008)
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Other aspects

1. Massiveness of the spectrum (Bourgain, 2005)
Corollary: absolutely continuous spectrum for multi-dimensional

quasiperiodic operators at low coupling
(Bourgain, J., Parnovsky, 2016)
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Other aspects

2. Continuity of the Lyapunov exponent of analytic SL(2,R)
cocycles in frequency at irrational frequencies (Bourgain-J, 2002)

optimal:
can be discontinuous at rational frequencies

can be discontinuous in C∞, (Wang-You, 2014)
Prequel:

Hölder continuity in energy for Diophantine frequencies
(Goldstein-Schlag, 2001)

Sequels:

Ten Martini problem (Avila-J, 2009)

Avila’s global theory of quasiperiodic cocycles (Avila,
2009-2015)

Bourgain, 2005: the same continuity for multifrequency
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Hölder continuity in energy for Diophantine frequencies
(Goldstein-Schlag, 2001)

Sequels:

Ten Martini problem (Avila-J, 2009)

Avila’s global theory of quasiperiodic cocycles (Avila,
2009-2015)

Bourgain, 2005: the same continuity for multifrequency

Jean Bourgain and quasiperiodic (ergodic) Schrödinger operators



Other aspects

2. Continuity of the Lyapunov exponent of analytic SL(2,R)
cocycles in frequency at irrational frequencies (Bourgain-J, 2002)

optimal:
can be discontinuous at rational frequencies

can be discontinuous in C∞, (Wang-You, 2014)
Prequel:
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Bernoulli-Anderson model

Large coupling (or bottom of the spectrum for continuous) implies
Anderson localization (pure point spectrum with exponentially

decaying eigenfunctions)

Multi-scale analysis: Fröhlich-Spencer (1983)
Klein + coauthors (1989-2004)

Fractional moments: Aizenman-Molchanov,
Aizenman+collaborators (1994+)

Both rely on continuity of the distribution of randomness
(essentially requiring continuous rank one (compact) perturbations)

Bourgain-Kenig (2005): a.e. localization near the bottom of the
spectrum for continuous operators with Bernoulli potential.

new powerful combinatorics techniques
Still open in the discrete case!
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Integrated density of states

One of Simon’s 15 problems in mathematical physics (1985): prove
continuity of the Integrated density of states for continuum

operators

Bourgain-Klein (2012): proof for d = 2, 3.
Still open for d > 3...
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Almost Mathieu operators

(Hλ,α,θΨ)n = Ψn+1 + Ψn−1 + λv(T nθ)Ψn

v(T nθ) = 2 cos 2π(θ + nα), α irrational,

Tight-binding model of 2D Bloch electrons in magnetic fields

Hofstadter butterfly
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Arithmetic spectral transitions

(Hλ,α,θΨ)n = Ψn+1 + Ψn−1 + 2λ cos 2π(θ + nα)Ψn

|λ| < 1 : Hλ,α,θ has purely absolutely continuous spectrum for
all α, θ (Avila, 2008).

|λ| > 1 : arithmetic transitions.

β(α) ≡ lim sup
n→∞

−
ln ||nα||R/Z
|n|

and

δ(α, θ) ≡ lim sup
n→∞

−
ln ||2θ + nα||R/Z

|n|

Diophantine α : β(α) = 0,
α-Diophantine θ : δ(α, θ) = 0
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Sharp transitions

(Hλ,α,θΨ)n = Ψn+1 + Ψn−1 + λ cos 2π(θ + nα)Ψn

J.- Liu (2015-2016):

For Diophantine α, there is a sharp transition at λ0 = eδ(α,θ)

|λ| < eδ(α,θ) =⇒ Hλ,α,θ has purely singular continuous
spectrum
|λ| > eδ(α,θ) =⇒ Hλ,α,θ has Anderson localization.

For α-Diophantine θ (any α) there is a sharp transition at
λ0 = eβ(α)

|λ| < eβ(α) =⇒ Hλ,α,θ has purely singular continuous
spectrum ( Avila-You-Zhou, 2015),
|λ| > eβ(α) =⇒ Hλ,α,θ has Anderson localization.

Ten Martini paper: localization for |λ| > e16/9β(α).
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Asymptotics

Theorem 1

In both cases, throughout the point spectrum regime, suppose E is
an eigenvalue of Hλ,α,θ and φ is the eigenfunction.

Let

U(k) =

(
φ(k)

φ(k − 1)

)
. Then for any ε > 0, there exists K such

that for any |k| ≥ K , U(k) satisfies

f (|k |)e−ε|k| ≤ ||U(k)|| ≤ f (|k|)eε|k|,
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The behavior of f (k)

r̄n`

r̄n`+2

r̄n`+4

`qn (`+ 1)qn(`+ 2)qn(`+ 3)qn(`+ 4)qn kqn+1

2
qn
2

f (k)
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