Stanley-Wilf limits are typically exponential

Jacob Fox

Massachusetts Institute of Technology

A permutation π of [n] is called an n-permutation.

A permutation π of [n] is called an n-permutation.

Definition

A permutation $\sigma = \sigma_1 \cdots \sigma_n$ contains another permutation $\pi = \pi_1 \cdots \pi_k$ if there exists indices $i_1 < \ldots < i_k$ such that $\sigma_{i_j} < \sigma_{i_\ell}$ if and only if $\pi_j < \pi_\ell$. Otherwise, σ is said to avoid π .

Example: **7**26**5**3**14** contains 4312

A permutation π of [n] is called an n-permutation.

Definition

A permutation $\sigma = \sigma_1 \cdots \sigma_n$ contains another permutation $\pi = \pi_1 \cdots \pi_k$ if there exists indices $i_1 < \ldots < i_k$ such that $\sigma_{i_j} < \sigma_{i_\ell}$ if and only if $\pi_j < \pi_\ell$. Otherwise, σ is said to avoid π .

Example: **7**26**5**3**14** contains 4312 but avoids 1234.

A permutation π of [n] is called an n-permutation.

Definition

A permutation $\sigma = \sigma_1 \cdots \sigma_n$ contains another permutation $\pi = \pi_1 \cdots \pi_k$ if there exists indices $i_1 < \ldots < i_k$ such that $\sigma_{i_j} < \sigma_{i_\ell}$ if and only if $\pi_j < \pi_\ell$. Otherwise, σ is said to avoid π .

Example: **7**26**5**3**14** contains 4312 but avoids 1234.

Definition

 $S_n(\pi)$ is the number of *n*-permutations avoiding π .

A permutation π of [n] is called an *n*-permutation.

Definition

A permutation $\sigma = \sigma_1 \cdots \sigma_n$ contains another permutation $\pi = \pi_1 \cdots \pi_k$ if there exists indices $i_1 < \ldots < i_k$ such that $\sigma_{i_j} < \sigma_{i_\ell}$ if and only if $\pi_j < \pi_\ell$. Otherwise, σ is said to avoid π .

Example: **7**26**5**3**14** contains 4312 but avoids 1234.

Definition

 $S_n(\pi)$ is the number of *n*-permutations avoiding π .

Theorem: (McMahon 1915, Knuth 1968)

For each 3-permutation π ,

$$S_n(\pi) = \frac{1}{n+1} \binom{2n}{n}.$$

Conjecture: (Stanley-Wilf 1980)

For each π , there is $L(\pi)$ such that $\lim_{n\to\infty} S_n(\pi)^{1/n} = L(\pi)$.

Conjecture: (Stanley-Wilf 1980)

For each π , there is $L(\pi)$ such that $\lim_{n\to\infty} S_n(\pi)^{1/n} = L(\pi)$.

Regev (1981): $L(12\cdots k) = (k-1)^2$.

Conjecture: (Stanley-Wilf 1980)

For each π , there is $L(\pi)$ such that $\lim_{n\to\infty} S_n(\pi)^{1/n} = L(\pi)$.

Regev (1981): $L(12\cdots k) = (k-1)^2$.

Theorem: (Alon-Friedgut 2000)

For each k-permutation π , $S_n(\pi) \leq C(\pi)^{n\gamma(n)}$, where $\gamma(n)$ is a very slow growing function, related to the Ackermann hierarchy.

Conjecture: (Stanley-Wilf 1980)

For each π , there is $L(\pi)$ such that $\lim_{n\to\infty} S_n(\pi)^{1/n} = L(\pi)$.

Regev (1981): $L(12\cdots k) = (k-1)^2$.

Theorem: (Alon-Friedgut 2000)

For each k-permutation π , $S_n(\pi) \leq C(\pi)^{n\gamma(n)}$, where $\gamma(n)$ is a very slow growing function, related to the Ackermann hierarchy.

Theorem: (Marcus-Tardos 2004)

For each k-permutation π , $L(\pi)$ exists and satisfies

$$L(\pi) \leq 15^{2k^4\binom{k^2}{k}}.$$

Problem

How large can $L(\pi)$ be for a k-permutation π ?

Problem

How large can $L(\pi)$ be for a k-permutation π ?

Conjecture: (Arratia 1999 \$100)

$$L(\pi) \leq (k-1)^2$$

Problem

How large can $L(\pi)$ be for a k-permutation π ?

Conjecture: (Arratia 1999 \$100)

$$L(\pi) \leq (k-1)^2$$

Disproved by Albert-Elder-Rechnitzer-Westcott- Zabrocki in 2006: L(4231) > 9.47, but conjectured to be at most 9.

Problem

How large can $L(\pi)$ be for a k-permutation π ?

Conjecture: (Arratia 1999 \$100)

$$L(\pi) \leq (k-1)^2$$

Disproved by Albert-Elder-Rechnitzer-Westcott- Zabrocki in 2006: L(4231) > 9.47, but conjectured to be at most 9.

Conjecture

$$L(\pi) = \Theta(k^2)$$

Conjecture

$$L(\pi) = \Theta(k^2)$$

Definition

A permutation is *layered* if it is a concatenation of decreasing sequences, the letters of each sequence being smaller than the letters in the following sequences.

Conjecture

$$L(\pi) = \Theta(k^2)$$

Definition

A permutation is *layered* if it is a concatenation of decreasing sequences, the letters of each sequence being smaller than the letters in the following sequences.

Conjecture: (Bóna)

Over all k-permutations π , the Stanley-Wilf limit $L(\pi)$ is maximized on some layered permutation.

Conjecture

$$L(\pi) = \Theta(k^2)$$

Definition

A permutation is *layered* if it is a concatenation of decreasing sequences, the letters of each sequence being smaller than the letters in the following sequences.

Conjecture: (Bóna)

Over all k-permutations π , the Stanley-Wilf limit $L(\pi)$ is maximized on some layered permutation.

Theorem: (Claesson-Jelínek-Steingrímsson 2012)

Every layered k-permutation π satisfies $L(\pi) \leq 4k^2$.

Stanley-Wilf limits are typically exponential

Stanley-Wilf limits are typically exponential

Theorem (F.)

There is a k-permutation π with

$$L(\pi) = 2^{\Omega(k^{1/4})}.$$

All matrices we consider are binary, with all entries are 0 or 1.

All matrices we consider are binary, with all entries are 0 or 1.

The mass of a matrix is the number of one-entries.

All matrices we consider are binary, with all entries are 0 or 1.

The mass of a matrix is the number of one-entries.

Matrix A contains a $k \times \ell$ matrix $P = (p_{ij})$ if there is a $k \times \ell$ submatrix $D = (d_{ij})$ of A such that if $p_{ij} = 1$, then $d_{ij} = 1$. Otherwise, A avoids P.

All matrices we consider are binary, with all entries are 0 or 1.

The mass of a matrix is the number of one-entries.

Matrix A contains a $k \times \ell$ matrix $P = (p_{ij})$ if there is a $k \times \ell$ submatrix $D = (d_{ij})$ of A such that if $p_{ij} = 1$, then $d_{ij} = 1$. Otherwise, A avoids P.

Definition

ex(n, P) is the maximum mass of an $n \times n$ matrix which avoids P.

All matrices we consider are binary, with all entries are 0 or 1.

The mass of a matrix is the number of one-entries.

Matrix A contains a $k \times \ell$ matrix $P = (p_{ij})$ if there is a $k \times \ell$ submatrix $D = (d_{ij})$ of A such that if $p_{ij} = 1$, then $d_{ij} = 1$. Otherwise, A avoids P.

Definition

ex(n, P) is the maximum mass of an $n \times n$ matrix which avoids P. $ex(n, \pi) := ex(n, P)$, where P is the permutation matrix of π .

All matrices we consider are binary, with all entries are 0 or 1.

The mass of a matrix is the number of one-entries.

Matrix A contains a $k \times \ell$ matrix $P = (p_{ij})$ if there is a $k \times \ell$ submatrix $D = (d_{ij})$ of A such that if $p_{ij} = 1$, then $d_{ij} = 1$. Otherwise, A avoids P.

Definition

 $\operatorname{ex}(n,P)$ is the maximum mass of an $n\times n$ matrix which avoids P. $\operatorname{ex}(n,\pi):=\operatorname{ex}(n,P)$, where P is the permutation matrix of π .

Conjecture: (Füredi-Hajnal 1992)

For every permutation π , $ex(n, \pi) = O(n)$.

All matrices we consider are binary, with all entries are 0 or 1.

The mass of a matrix is the number of one-entries.

Matrix A contains a $k \times \ell$ matrix $P = (p_{ij})$ if there is a $k \times \ell$ submatrix $D = (d_{ij})$ of A such that if $p_{ij} = 1$, then $d_{ij} = 1$. Otherwise, A avoids P.

Definition

 $\operatorname{ex}(n,P)$ is the maximum mass of an $n\times n$ matrix which avoids P. $\operatorname{ex}(n,\pi):=\operatorname{ex}(n,P)$, where P is the permutation matrix of π .

Conjecture: (Füredi-Hajnal 1992)

For every permutation π , $ex(n, \pi) = O(n)$.

Equivalent to $c(\pi) := \lim_{n \to \infty} \frac{\operatorname{ex}(n,\pi)}{n}$ exists.

Klazar proved $L(\pi) \leq 15^{c(\pi)}$.

Theorem: (Marcus-Tardos 2004)

$$c(\pi) \leq 2k^4 \binom{k^2}{k}.$$

Klazar proved $L(\pi) \leq 15^{c(\pi)}$.

Theorem: (Marcus-Tardos 2004)

$$c(\pi) \leq 2k^4 \binom{k^2}{k}.$$

Klazar proved $L(\pi) \leq 15^{c(\pi)}$.

Theorem: (Marcus-Tardos 2004)

$$c(\pi) \leq 2k^4 \binom{k^2}{k}.$$

Theorem: (Cibulka 2009)

For every permutation π , $L(\pi) = O(c(\pi)^2)$ and $c(\pi) = O(L(\pi)^{4.5})$.

Klazar proved $L(\pi) \leq 15^{c(\pi)}$.

Theorem: (Marcus-Tardos 2004)

$$c(\pi) \leq 2k^4 \binom{k^2}{k}.$$

Theorem: (Cibulka 2009)

For every permutation π , $L(\pi) = O(c(\pi)^2)$ and $c(\pi) = O(L(\pi)^{4.5})$.

Hence $L(\pi) = 2^{O(k \log k)}$.

Klazar proved $L(\pi) \leq 15^{c(\pi)}$.

Theorem: (Marcus-Tardos 2004)

$$c(\pi) \leq 2k^4 \binom{k^2}{k}.$$

Theorem: (Cibulka 2009)

For every permutation π , $L(\pi) = O(c(\pi)^2)$ and $c(\pi) = O(L(\pi)^{4.5})$.

Hence $L(\pi) = 2^{O(k \log k)}$.

Theorem: (F.)

$$L(\pi)=2^{O(k)}.$$

Klazar proved $L(\pi) \leq 15^{c(\pi)}$.

Theorem: (Marcus-Tardos 2004)

$$c(\pi) \leq 2k^4 \binom{k^2}{k}.$$

Theorem: (Cibulka 2009)

For every permutation π , $L(\pi) = O(c(\pi)^2)$ and $c(\pi) = O(L(\pi)^{4.5})$.

Hence $L(\pi) = 2^{O(k \log k)}$.

Theorem: (F.)

$$L(\pi)=2^{O(k)}.$$

Interval Minors

Definition: Contraction

The *contraction* of two consecutive rows of a matrix replaces the two rows by a single row, with a one in an entry of the new row if at least one of the two entries in the original two rows is a one. Contraction of columns is defined similarly.

Interval Minors

Definition: Contraction

The contraction of two consecutive rows of a matrix replaces the two rows by a single row, with a one in an entry of the new row if at least one of the two entries in the original two rows is a one. Contraction of columns is defined similarly.

Definition: Interval Minor

P is an *interval minor* of A if P is contained in a matrix obtained from A by contraction of consecutive rows or columns.

Interval Minors

Definition: Contraction

The contraction of two consecutive rows of a matrix replaces the two rows by a single row, with a one in an entry of the new row if at least one of the two entries in the original two rows is a one. Contraction of columns is defined similarly.

Definition: Interval Minor

P is an *interval minor* of A if P is contained in a matrix obtained from A by contraction of consecutive rows or columns.

 J_ℓ is the $\ell imes \ell$ all ones matrix. J_ℓ contains all ℓ -permutations.

Interval Minors

Definition: Contraction

The contraction of two consecutive rows of a matrix replaces the two rows by a single row, with a one in an entry of the new row if at least one of the two entries in the original two rows is a one. Contraction of columns is defined similarly.

Definition: Interval Minor

P is an *interval minor* of A if P is contained in a matrix obtained from A by contraction of consecutive rows or columns.

 J_ℓ is the $\ell imes \ell$ all ones matrix. J_ℓ contains all ℓ -permutations.

Lemma

 $\exists \ \ell^2$ -permutation π whose matrix contains J_ℓ as an interval minor.

Interval Minors

Definition: Contraction

The *contraction* of two consecutive rows of a matrix replaces the two rows by a single row, with a one in an entry of the new row if at least one of the two entries in the original two rows is a one. Contraction of columns is defined similarly.

Definition: Interval Minor

P is an *interval minor* of A if P is contained in a matrix obtained from A by contraction of consecutive rows or columns.

 J_ℓ is the $\ell imes \ell$ all ones matrix. J_ℓ contains all ℓ -permutations.

Lemma

 \exists ℓ^2 -permutation π whose matrix contains J_ℓ as an interval minor.

$$\pi$$
 is given by $\pi(a\ell+b+1)=b\ell+a+1$ for $0\leq a,b\leq \ell-1$.

THEOREM: (F.)

Let $r=\frac{1}{8}\ell^{1/2}$ and $N=2^r$. There is an $N\times N$ matrix M with mass at least $N^{3/2}$ which avoids J_ℓ as an interval minor.

THEOREM: (F.)

Let $r=\frac{1}{8}\ell^{1/2}$ and $N=2^r$. There is an $N\times N$ matrix M with mass at least $N^{3/2}$ which avoids J_ℓ as an interval minor.

Proof: Let q = 1/(8r) and N' = 2N - 1.

THEOREM: (F.)

Let $r=\frac{1}{8}\ell^{1/2}$ and $N=2^r$. There is an $N\times N$ matrix M with mass at least $N^{3/2}$ which avoids J_ℓ as an interval minor.

Proof: Let q=1/(8r) and N'=2N-1. Let $B=(b_{IJ})$ be the $N'\times N'$ matrix with a row for each $I\in V(T_R)$ and a column for each $J\in V(T_C)$ and each entry is one with probability 1-q independently of the other entries.

THEOREM: (F.)

Let $r=\frac{1}{8}\ell^{1/2}$ and $N=2^r$. There is an $N\times N$ matrix M with mass at least $N^{3/2}$ which avoids J_ℓ as an interval minor.

Proof: Let q=1/(8r) and N'=2N-1. Let $B=(b_{IJ})$ be the $N'\times N'$ matrix with a row for each $I\in V(T_R)$ and a column for each $J\in V(T_C)$ and each entry is one with probability 1-q independently of the other entries. Let $M=(m_{ij})$ be the $N\times N$ matrix with $m_{ij}=1$ iff $b_{IJ}=1$ for every ancestor I of $\{i\}$ in T_R and every ancestor J of $\{j\}$ in T_C .

THEOREM: (F.)

Let $r=\frac{1}{8}\ell^{1/2}$ and $N=2^r$. There is an $N\times N$ matrix M with mass at least $N^{3/2}$ which avoids J_ℓ as an interval minor.

Proof: Let q=1/(8r) and N'=2N-1. Let $B=(b_{IJ})$ be the $N'\times N'$ matrix with a row for each $I\in V(T_R)$ and a column for each $J\in V(T_C)$ and each entry is one with probability 1-q independently of the other entries. Let $M=(m_{ij})$ be the $N\times N$ matrix with $m_{ij}=1$ iff $b_{IJ}=1$ for every ancestor I of $\{i\}$ in T_R and every ancestor J of $\{j\}$ in T_C . There is a choice of B that is J_ℓ -free and M has mass at least $N^{3/2}$.

THEOREM: (F.)

Let $r=\frac{1}{8}\ell^{1/2}$ and $N=2^r$. There is an $N\times N$ matrix M with mass at least $N^{3/2}$ which avoids J_ℓ as an interval minor.

Proof: Let q=1/(8r) and N'=2N-1. Let $B=(b_{IJ})$ be the $N'\times N'$ matrix with a row for each $I\in V(T_R)$ and a column for each $J\in V(T_C)$ and each entry is one with probability 1-q independently of the other entries. Let $M=(m_{ij})$ be the $N\times N$ matrix with $m_{ij}=1$ iff $b_{IJ}=1$ for every ancestor I of $\{i\}$ in T_R and every ancestor J of $\{j\}$ in T_C . There is a choice of B that is J_ℓ -free and M has mass at least $N^{3/2}$. Suppose for contradiction that, in M, I_1,\ldots,I_ℓ are intervals of rows and L_1,\ldots,L_ℓ are intervals of columns which contract to make J_ℓ .

THEOREM: (F.)

Let $r=\frac{1}{8}\ell^{1/2}$ and $N=2^r$. There is an $N\times N$ matrix M with mass at least $N^{3/2}$ which avoids J_ℓ as an interval minor.

Proof: Let q = 1/(8r) and N' = 2N - 1. Let $B = (b_{II})$ be the $N' \times N'$ matrix with a row for each $I \in V(T_R)$ and a column for each $J \in V(T_C)$ and each entry is one with probability 1-q independently of the other entries. Let $M=(m_{ii})$ be the $N\times N$ matrix with $m_{ij}=1$ iff $b_{IJ}=1$ for every ancestor I of $\{i\}$ in T_R and every ancestor J of $\{j\}$ in T_C . There is a choice of B that is J_{ℓ} -free and M has mass at least $N^{3/2}$. Suppose for contradiction that, in M, I_1, \ldots, I_ℓ are intervals of rows and L_1, \ldots, L_ℓ are intervals of columns which contract to make J_ℓ . Assign each I_a a vertex v_a of T_R of largest height which contains I_a . Similarly assign each L_b a vertex u_b of T_C .

THEOREM: (F.)

Let $r=\frac{1}{8}\ell^{1/2}$ and $N=2^r$. There is an $N\times N$ matrix M with mass at least $N^{3/2}$ which avoids J_ℓ as an interval minor.

Proof: Let q = 1/(8r) and N' = 2N - 1. Let $B = (b_{IJ})$ be the $N' \times N'$ matrix with a row for each $I \in V(T_R)$ and a column for each $J \in V(T_C)$ and each entry is one with probability 1-q independently of the other entries. Let $M=(m_{ii})$ be the $N\times N$ matrix with $m_{ij}=1$ iff $b_{IJ}=1$ for every ancestor I of $\{i\}$ in T_R and every ancestor J of $\{j\}$ in T_C . There is a choice of B that is J_{ℓ} -free and M has mass at least $N^{3/2}$. Suppose for contradiction that, in M, I_1, \ldots, I_ℓ are intervals of rows and L_1, \ldots, L_ℓ are intervals of columns which contract to make J_ℓ . Assign each I_a a vertex v_a of T_R of largest height which contains I_a . Similarly assign each L_b a vertex u_b of T_C .

 v_1, \ldots, v_ℓ are distinct and u_1, \ldots, u_ℓ are distinct.

THEOREM: (F.)

Let $r = \frac{1}{8}\ell^{1/2}$ and $N = 2^r$. There is an $N \times N$ matrix M with mass at least $N^{3/2}$ which avoids J_ℓ as an interval minor.

Proof: Let q = 1/(8r) and N' = 2N - 1. Let $B = (b_{IJ})$ be the $N' \times N'$ matrix with a row for each $I \in V(T_R)$ and a column for each $J \in V(T_C)$ and each entry is one with probability 1-q independently of the other entries. Let $M=(m_{ii})$ be the $N\times N$ matrix with $m_{ij}=1$ iff $b_{IJ}=1$ for every ancestor I of $\{i\}$ in T_R and every ancestor J of $\{i\}$ in T_C . There is a choice of B that is J_{ℓ} -free and M has mass at least $N^{3/2}$. Suppose for contradiction that, in M, I_1, \ldots, I_ℓ are intervals of rows and L_1, \ldots, L_ℓ are intervals of columns which contract to make J_ℓ . Assign each I_a a vertex v_a of T_R of largest height which contains I_a . Similarly assign each L_b a vertex u_b of T_C .

 v_1, \ldots, v_ℓ are distinct and u_1, \ldots, u_ℓ are distinct.

Each v_a and u_b must be adjacent in B, contradicting B is J_{ℓ} -free.

THEOREM: (F.)

Let $r = \frac{1}{8}\ell^{1/2}$ and $N = 2^r$. There is an $N \times N$ matrix M with mass at least $N^{3/2}$ and avoids J_ℓ as an interval minor.

THEOREM: (F.)

Let $r = \frac{1}{8}\ell^{1/2}$ and $N = 2^r$. There is an $N \times N$ matrix M with mass at least $N^{3/2}$ and avoids J_{ℓ} as an interval minor.

Let $k = \ell^2$.

THEOREM: (F.)

Let $r = \frac{1}{8}\ell^{1/2}$ and $N = 2^r$. There is an $N \times N$ matrix M with mass at least $N^{3/2}$ and avoids J_{ℓ} as an interval minor.

Let $k = \ell^2$.

As there exists a k-permutation π whose matrix contains J_ℓ as an interval minor, then M avoids π .

THEOREM: (F.)

Let $r = \frac{1}{8}\ell^{1/2}$ and $N = 2^r$. There is an $N \times N$ matrix M with mass at least $N^{3/2}$ and avoids J_{ℓ} as an interval minor.

Let $k = \ell^2$.

As there exists a k-permutation π whose matrix contains J_ℓ as an interval minor, then M avoids π .

Hence,

$$\operatorname{ex}(N,\pi) \geq N^{3/2}$$
.

THEOREM: (F.)

Let $r = \frac{1}{8}\ell^{1/2}$ and $N = 2^r$. There is an $N \times N$ matrix M with mass at least $N^{3/2}$ and avoids J_ℓ as an interval minor.

Let $k = \ell^2$.

As there exists a k-permutation π whose matrix contains J_ℓ as an interval minor, then M avoids π .

Hence,

$$\operatorname{ex}(N,\pi) \geq N^{3/2}$$
.

Since $ex(n, \pi)$ is super-additive, $c(\pi) \ge N^{1/2}$.

THEOREM: (F.)

Let $r = \frac{1}{8}\ell^{1/2}$ and $N = 2^r$. There is an $N \times N$ matrix M with mass at least $N^{3/2}$ and avoids J_{ℓ} as an interval minor.

Let $k = \ell^2$.

As there exists a k-permutation π whose matrix contains J_ℓ as an interval minor, then M avoids π .

Hence,

$$ex(N,\pi) \geq N^{3/2}$$
.

Since $ex(n, \pi)$ is super-additive, $c(\pi) \ge N^{1/2}$.

As $L(\pi)$ and $c(\pi)$ are polynomially related,

$$L(\pi) = c(\pi)^{\Omega(1)} = 2^{\Omega(k^{1/4})}.$$

Let $T_n(\pi)$ be the number of $n \times n$ matrices which avoid π .

Let $T_n(\pi)$ be the number of $n \times n$ matrices which avoid π .

Lemma: (Klazar 2000)

$$T_n(\pi) = 2^{\Theta(\operatorname{ex}(n,\pi))}$$

Let $T_n(\pi)$ be the number of $n \times n$ matrices which avoid π .

Lemma: (Klazar 2000)

$$T_n(\pi) = 2^{\Theta(\operatorname{ex}(n,\pi))}$$

This follows by induction from

Upper bound

Let $T_n(\pi)$ be the number of $n \times n$ matrices which avoid π .

Lemma: (Klazar 2000)

$$T_n(\pi) = 2^{\Theta(\operatorname{ex}(n,\pi))}$$

This follows by induction from

$$T_{2n}(\pi) \leq T_n(\pi) 15^{\operatorname{ex}(n,\pi)}$$

Upper bound

Let $T_n(\pi)$ be the number of $n \times n$ matrices which avoid π .

Lemma: (Klazar 2000)

$$T_n(\pi) = 2^{\Theta(\operatorname{ex}(n,\pi))}$$

This follows by induction from

$$T_{2n}(\pi) \leq T_n(\pi) 15^{\operatorname{ex}(n,\pi)}$$

Theorem: (Cibulka)

$$L(\pi) = O(c(\pi)^2)$$

Let $T_n(\pi)$ be the number of $n \times n$ matrices which avoid π .

Lemma: (Klazar 2000)

$$T_n(\pi) = 2^{\Theta(\operatorname{ex}(n,\pi))}$$

This follows by induction from

$$T_{2n}(\pi) \leq T_n(\pi) 15^{\operatorname{ex}(n,\pi)}$$

Theorem: (Cibulka)

$$L(\pi) = O(c(\pi)^2)$$

New simple proof:

Let $T_n(\pi)$ be the number of $n \times n$ matrices which avoid π .

Lemma: (Klazar 2000)

$$T_n(\pi) = 2^{\Theta(\operatorname{ex}(n,\pi))}$$

This follows by induction from

$$T_{2n}(\pi) \leq T_n(\pi) 15^{\operatorname{ex}(n,\pi)}$$

Theorem: (Cibulka)

$$L(\pi) = O(c(\pi)^2)$$

New simple proof: For N = tn, we have

$$S_N(\pi) \leq T_n(\pi)t^{2N}$$
.

Upper bound

Let $T_n(\pi)$ be the number of $n \times n$ matrices which avoid π .

Lemma: (Klazar 2000)

$$T_n(\pi) = 2^{\Theta(\operatorname{ex}(n,\pi))}$$

This follows by induction from

$$T_{2n}(\pi) \leq T_n(\pi) 15^{\operatorname{ex}(n,\pi)}$$

Theorem: (Cibulka)

$$L(\pi) = O(c(\pi)^2)$$

New simple proof: For N = tn, we have

$$S_N(\pi) \leq T_n(\pi)t^{2N}$$
.

For $t = c(\pi)$, this is $S_N(\pi) \le 2^{O(N)} c(\pi)^{2N}$ and we are done.

Theorem: (Marcus-Tardos 2004)

$$\operatorname{ex}(n,\pi) \leq 2k^4 \binom{k^2}{k} n.$$

Theorem: (Marcus-Tardos 2004)

$$\operatorname{ex}(n,\pi) \leq 2k^4 \binom{k^2}{k} n.$$

Proof: This follows by induction from

$$\operatorname{ex}(n,\pi) \leq (k-1)^2 \operatorname{ex}\left(\frac{n}{k^2},\pi\right) + 2k^3 \binom{k^2}{k} n.$$

Theorem: (Marcus-Tardos 2004)

$$\operatorname{ex}(n,\pi) \leq 2k^4 \binom{k^2}{k} n.$$

Proof: This follows by induction from

$$\operatorname{ex}(n,\pi) \leq (k-1)^2 \operatorname{ex}\left(\frac{n}{k^2},\pi\right) + 2k^3 \binom{k^2}{k} n.$$

Partition $n \times n$ matrix A which avoids π into $k^2 \times k^2$ blocks.

Theorem: (Marcus-Tardos 2004)

$$\operatorname{ex}(n,\pi) \leq 2k^4 \binom{k^2}{k} n.$$

Proof: This follows by induction from

$$\operatorname{ex}(n,\pi) \leq (k-1)^2 \operatorname{ex}\left(\frac{n}{k^2},\pi\right) + 2k^3 \binom{k^2}{k} n.$$

Partition $n \times n$ matrix A which avoids π into $k^2 \times k^2$ blocks. Define a block to be *wide* (*tall*) if it contains 1-entries in at least k different columns (rows).

Theorem: (Marcus-Tardos 2004)

$$\operatorname{ex}(n,\pi) \leq 2k^4 \binom{k^2}{k} n.$$

Proof: This follows by induction from

$$\operatorname{ex}(n,\pi) \leq (k-1)^2 \operatorname{ex}\left(\frac{n}{k^2},\pi\right) + 2k^3 \binom{k^2}{k} n.$$

Partition $n \times n$ matrix A which avoids π into $k^2 \times k^2$ blocks.

Define a block to be wide (tall) if it contains 1-entries in at least k different columns (rows).

Form $\frac{n}{k^2} \times \frac{n}{k^2}$ matrix B from A by contracting intervals of size k^2 .

Theorem: (Marcus-Tardos 2004)

$$\operatorname{ex}(n,\pi) \leq 2k^4 \binom{k^2}{k} n.$$

Proof: This follows by induction from

$$\operatorname{ex}(n,\pi) \leq (k-1)^2 \operatorname{ex}\left(\frac{n}{k^2},\pi\right) + 2k^3 \binom{k^2}{k} n.$$

Partition $n \times n$ matrix A which avoids π into $k^2 \times k^2$ blocks.

Define a block to be wide (tall) if it contains 1-entries in at least k different columns (rows).

Form $\frac{n}{k^2} \times \frac{n}{k^2}$ matrix B from A by contracting intervals of size k^2 .

Each column of B has less than $k\binom{k^2}{k}$ ones from wide blocks.

Theorem: (Marcus-Tardos 2004)

$$\operatorname{ex}(n,\pi) \leq 2k^4 \binom{k^2}{k} n.$$

Proof: This follows by induction from

$$\operatorname{ex}(n,\pi) \leq (k-1)^2 \operatorname{ex}\left(\frac{n}{k^2},\pi\right) + 2k^3 \binom{k^2}{k} n.$$

Partition $n \times n$ matrix A which avoids π into $k^2 \times k^2$ blocks.

Define a block to be wide (tall) if it contains 1-entries in at least k different columns (rows).

Form $\frac{n}{k^2} \times \frac{n}{k^2}$ matrix B from A by contracting intervals of size k^2 .

Each column of B has less than $k\binom{k^2}{k}$ ones from wide blocks.

Hence, mass of A in wide or tall blocks is at most $2 \cdot \frac{n}{k^2} \cdot k^4 \cdot k {k \choose k}$.

Theorem: (Marcus-Tardos 2004)

$$\operatorname{ex}(n,\pi) \leq 2k^4 \binom{k^2}{k} n.$$

Proof: This follows by induction from

$$\operatorname{ex}(n,\pi) \leq (k-1)^2 \operatorname{ex}\left(\frac{n}{k^2},\pi\right) + 2k^3 \binom{k^2}{k} n.$$

Partition $n \times n$ matrix A which avoids π into $k^2 \times k^2$ blocks.

Define a block to be wide (tall) if it contains 1-entries in at least k different columns (rows).

Form $\frac{n}{k^2} \times \frac{n}{k^2}$ matrix B from A by contracting intervals of size k^2 .

Each column of B has less than $k\binom{k^2}{k}$ ones from wide blocks.

Hence, mass of A in wide or tall blocks is at most $2 \cdot \frac{n}{k^2} \cdot k^4 \cdot k \binom{k^2}{k}$. B avoids π and hence has mass at most $\exp\left(\frac{n}{k^2}, \pi\right)$.

Theorem: (Marcus-Tardos 2004)

$$\operatorname{ex}(n,\pi) \leq 2k^4 \binom{k^2}{k} n.$$

Proof: This follows by induction from

$$\operatorname{ex}(n,\pi) \leq (k-1)^2 \operatorname{ex}\left(\frac{n}{k^2},\pi\right) + 2k^3 \binom{k^2}{k} n.$$

Partition $n \times n$ matrix A which avoids π into $k^2 \times k^2$ blocks.

Define a block to be wide (tall) if it contains 1-entries in at least k different columns (rows).

Form $\frac{n}{k^2} \times \frac{n}{k^2}$ matrix *B* from *A* by contracting intervals of size k^2 .

Each column of B has less than $k\binom{k^2}{k}$ ones from wide blocks.

Hence, mass of A in wide or tall blocks is at most $2 \cdot \frac{n}{k^2} \cdot k^4 \cdot k \binom{k^2}{k}$. B avoids π and hence has mass at most $\exp\left(\frac{n}{k^2}, \pi\right)$.

The blocks which are neither wide nor tall each have at most $(k-1)^2$ ones, and the desired inequality follows.