A SPECTRAL GAP THEOREM IN $SL_2(\mathbb{R})$ AND APPLICATIONS

BACKGROUND: EXPANSION IN UNITARY GROUPS $g_1, \ldots, g_k \in SU(2)$ algebraic and free $T: L^2(G) \to L^2(G)$ Hecke operator $Tf(x) = \sum \left(f(g_j x) + f(g_j^{-1} x) \right)$ **THEOREM** [**B-G**] *There is spectral gap*

 $\lambda_1(T) < 2k - \gamma$

 $\gamma = \gamma(g_1, \dots, g_k)$ controlled by non commutative diophantine property

Applications to tilings (Conway-Radin) and quantum computation (Solovay-Kitaev)

NON COMMUTATIVE DIOPHANTINE PROPERTY

 $\mathcal{G} = \{g_1, \ldots, g_k\}$

 $W_{\ell}(\mathcal{G}) = \text{ words of length } \ell$

DC:
$$g \in W_{\ell}(\mathcal{G}) \setminus \{1\} \Rightarrow ||1 - g|| > A^{-\ell}$$

Satisfied for $\mathcal{G} \subset \operatorname{Mat}_{2 \times 2}(\overline{\mathbb{Q}})$ where A depends on the height

(Gamburd-Jakobson-Sarnak)

SU(d) $g_1, \ldots, g_k \in SU(d) \cap \operatorname{Mat}_{d \times d}(\overline{\mathbb{Q}})$

$$\Gamma = \langle g_1, \dots, g_k \rangle$$

Assume Γ topologically dense

$$Tf(x) = \sum \left(f(g_j x) + f(g_j^{-1} x) \right)$$

4

THEOREM [B-G]

T has spectral gap

Generalized to compact simple Lie groups (**Benoist–De Saxe**)

A SPECTRAL GAP PROPERTY FOR THE PROJECTIVE ACTION OF $SL_2(\mathbb{R})$

$P_1 (\mathbb{R}) \simeq \mathbb{T} = \mathbb{R} / \mathbb{Z}$

 ρ = projective representation of $SL_2(\mathbb{R})$ on $L^2(\mathbb{T})$ $\rho_g f = (\tau'_{g^{\text{-1}}})^{\frac{1}{2}} (f \circ \tau_{g^{\text{-1}}})$

 τ_g = projective action of g

5

THEOREM [B-Y] Given 0 < c < 1, there is $k_0 \in \mathbb{Z}_+$ such that the following holds. Let $\mathcal{G} \subset SL_2(\mathbb{R})$, $|\mathcal{G}| = k > k_0$, generating freely the free group on k generators. Assume moreover $\|g-1\| < 1/k$ for $g \in \mathcal{G}$ $||g-1|| > k^{-\ell/c}$ for $g \in W_{\ell}(\mathcal{G}) \setminus \{1\}$ and ℓ arbitrary Then $\left\| \frac{1}{2k} \sum_{g \in \mathcal{G}} (\rho_g f + \rho_{g^{-1}} f) \right\|_2 \le \frac{1}{2} \|f\|_2$

provided $f \perp V$, where

$$V = [e(n\theta); |n| < K] \subset L^2(\mathbb{T}), K = K(k)$$

MOTIVATIONS

• Theoretical computer science

• Absolute continuity of Furstenberg measures

• The Anderson-Bernoulli model in Physics

DEFINITION A monotone expander is a finite family Ψ of maps ψ from a sub-interval of [0, 1] to [0, 1] such that

• There is a constant c > 0 such that for any $A \subset [0, 1], |A| \leq \frac{1}{2}$

$$|\Psi(A)| \ge (1+c)|A| \qquad \Psi(A) = \bigcup_{\psi \in \Psi} \psi(A)$$

- Every $\psi \in \Psi$ is continuous and monotone
- **THEOREM** [B-Y] *There exists (explicit) monotone expanders*

MAIN INGREDIENT: Projective action of family \mathcal{G} satisfying previous theorem

DIMENSIONAL EXPANDERS

DEFINITION \mathbb{F} = field. A dimension expander over \mathbb{F}^n is a constant number of matrices $M_1, \ldots M_k$ in $\mathbb{F}^{n \times n}$ for which there is a constant c > 0 (c, k independent of n) such that

 $\dim[M_1(V) \bigcup \cdots \bigcup M_k(V)] > (1+c) \dim V$

for any subspace V of \mathbb{F}^n , dim $V \leq \frac{n}{2}$

For char $\mathbb{F}=0,$ existence proven by Lubotzky-Zelmanov using property τ

Dvir-Shpilka, Dvir-Wigderson monotone expanders \Rightarrow dimensional expanders

COROLLARY Existence of dimension expanders for arbitrary fields

PUSHDOWN GRAPHS AND TURING MACHINES

DEFINITION (Pippenger, Paul-Pippenger-Szemeredi-Trotter)

A d-pushdown graph is a graph on an ordered set of vertices such that when ordered along the spine of a book, the edges can be drawn on d pages and in each page the edges do not touch

Hopcroft-Paul-Valiant Relation to complexity and Turing machines Dvir-Wigderson Relation to monotone expanders

COROLLARY 4 There exists (explicit) *d*-pushdown expanders

 \Rightarrow no sub-linear size separators

 \longleftrightarrow

THEOREM (Lipton-Tarjan) Planar graphs have $0(\sqrt{n})$ -size separators

FURSTENBERG MEASURES

 $\nu = \text{probability measure on } SL_2(\mathbb{R})$ with proximal and strongly irreducible action.

Furstenberg measure μ is a unique ν -stationary measure on $P_1(\mathbb{R})$, i.e.

$$\int f d\mu = \sum_{g} \nu(g) \int (f \circ \tau_g) d\mu$$

11

PROBLEM (Kaimanovich-Le Prince)

Can the Furstenberg measure of a finitely supported (symmetric) probability measure on $SL_2(\mathbb{R})$ be absolutely continuous?

ANSWER YES

THEOREM There are examples with $\frac{d\mu}{d\sigma}$ arbitrarily smooth

Barany-Pollicott-Simon: Examples of ac-stationary measures for **non-symmetric** random walks

SPECTRAL THEORY OF LATTICE SCHRÖDINGER OPERATORS

$$H = \Delta + \lambda V$$
 on \mathbb{Z}

$$\Delta(i,j) = \begin{cases} 1 & \text{if } |i-j| = 1 \\ 0 & \text{otherwise} \end{cases} \quad \text{(lattice Laplacian)}$$

 $V = \sum V_i \delta_i$ with V_i chosen independently according to distribution μ

 λ = coupling

Introduced by Anderson to model transport in inhomogenous media

THEOREM (Frohlich-Spencer)

In 1*D*, at any disorder $\lambda \neq 0$, for almost all realization of *V*, *H* has pure point spectrum with exponentially decaying eigenfunctions

(Anderson Localization)

CONJECTURES

- **2D** *AL*
- 3D An ac-component in the bulk of the spectrum
 - (AL persists for large λ and at edge of the spectrum)

THEOREM (Simon-Taylor, 85)

Assume V distributed according to measure μ on \mathbb{R} , $\mu \ll$ Lebesgue and $\frac{d\mu}{dx} \in L^1_{\alpha}$ for some $\alpha > 0$

Then the integrated density of states k of H is C^{∞}

THEOREM (Germinet-Klopp, 2011)

Same assumption on V. Then local eigenvalue statistics of H are Poisson

THEOREM (**B**, 2011)

Same conclusions hold if dim $\mu > 0$ (Holder potentials)

PROBLEM What happens in the Bernoulli case for small λ ?

DENSITY OF STATES OF THE ANDERSON-BERNOULLI MODEL

 \mathcal{N} = Integrated density of sates (IDS) $\frac{d\mathcal{N}}{dE} = k$

THEOREM \mathcal{N} is Hölder regular

- Carmona-Klein-Martinelli (87) Le Page's method
- Shubin-Vakilian-Wolff (88)

Several proofs using harmonic analysis and the uncertainty principle

HALPERIN: \mathcal{N} is not Hölder continuous of any order $\alpha > \frac{2\log 2}{\operatorname{Arccosh}(1+\lambda)}$

CONJECTURE For λ sufficiently small, k is bounded and becomes arbitrary smooth for $\lambda \to 0$

THEOREM [B, 012] $\alpha(\lambda) \rightarrow 1$ for $\lambda \rightarrow 0$

THEOREM [B, 013] Let H_{λ} be the Anderson-Bernoulli Hamiltonian with coupling λ and restrict the energy $|E| < 2-\delta$ for some fixed $\delta > 0$.

Given a constant C > 0 and $s \in \mathbb{Z}_+$, there is $\lambda_0 = \lambda_0(C, s)$ such that $\mathcal{N}(E)$ is C^s -smooth provided λ satisfies the following conditions

• $|\lambda| < \lambda_0$

• λ is an algebraic number of degree d < C and minimal polynomial $P_d(x) \in \mathbb{Z}[X]$ with coefficients bounded by $\left(\frac{1}{\lambda}\right)^C$

• λ has a conjugate λ' of modulus $|\lambda'| \ge 1$

RELATION TO $SL_2(\mathbb{R})$: SCHRÖDINGER COCYCLES THE TRANSFER MATRIX FORMALISM

Equation
$$H\xi = E\xi$$
 equivalent to $\begin{pmatrix} \xi_{n+1} \\ \xi_n \end{pmatrix} = M_N(E) \begin{pmatrix} \xi_1 \\ \xi_0 \end{pmatrix}$
$$M_N(E) = \begin{pmatrix} E - \lambda V_N & -1 \\ 1 & 0 \end{pmatrix} \cdots \begin{pmatrix} E - \lambda V_1 & -1 \\ 1 & 0 \end{pmatrix}$$

LYAPOUNOV EXPONENT $L(E) = \lim_{N \to \infty} \frac{1}{N} \log ||M_N(E)||$

THOULESS FORMULA $L(E) = \int \log |E - E'| d\mathcal{N}(E')$

Role of Furstenberg's theory of random matrix products

A NEW SPECTRAL GAP

Take λ as above and E arbitrary. Set

$$g_{+} = \begin{pmatrix} E + \lambda & -1 \\ 1 & 0 \end{pmatrix} \qquad g_{-} = \begin{pmatrix} E - \lambda & -1 \\ 1 & 0 \end{pmatrix}$$
$$h_{1} = g_{+}g_{-}^{-1} = \begin{pmatrix} 1 & 2\lambda \\ 0 & 1 \end{pmatrix} \qquad h_{2} = g_{+}^{-1}g_{-} = \begin{pmatrix} 1 & 0 \\ 2\lambda & 1 \end{pmatrix}$$
$$V = [e(n\theta); |n| < K] \text{ with } K = K(\lambda) \text{ sufficiently large}$$

PROPOSITION $||f - \rho_{h_1}f||_2 + ||f - \rho_{h_2}f||_2 \ge \lambda^{\tau}||f||_2$ for $f \in V^{\perp}$ and where τ can be made arbitrarily small when $\lambda \to 0$

COROLLARY $||f - \rho_{g_+}f||_2 + ||f - \rho_{g_-}f||_2 \ge \frac{1}{2}\lambda^{\tau}||f||_2$ for $f \in V^{\perp}$

 $\leftrightarrow \|f - \rho_{g_+} f\|_2 + \|f - \rho_{g_-} f\|_2 \ge c\lambda \|f\|_2 \text{ for all } f \in L^2(\mathbb{T})$

SKETCH OF THE PROOF

LEMMA (Sanov, Brenner) If $|\mu| \ge 2$, then the group generated by

free
$$A = \begin{pmatrix} 1 & \mu \\ 0 & 1 \end{pmatrix}$$
 and $B = \begin{pmatrix} 1 & 0 \\ \mu & 1 \end{pmatrix}$

is

Since λ has conjugate $\lambda', |\lambda'| > 1$, it follows that h_1, h_2 generate a free group

Set
$$k = \lambda^{-\tau}$$
 and $\mathcal{G} = \{h_1^{\ell} h_2^{\ell}; 1 \leq \ell \leq k\} \subset SL_2(\mathbb{R})$

Then G are free generators of free group F_k and satisfies conditions of the expansion theorem (DC follows from height considerations going back to [G-J-S])

Hence for $f \in V^{\perp}, ||f||_2 = 1$ $\max_{g \in \mathcal{G}} ||f - \rho_g f||_2 > \frac{1}{2} \Rightarrow ||f - \rho_{h_1} f||_2 + ||f - \rho_{h_2} f||_2 > \frac{1}{2k}$

FREE GROUPS GENERATED BY PAIRS OF PARABOLIC ELEMENTS

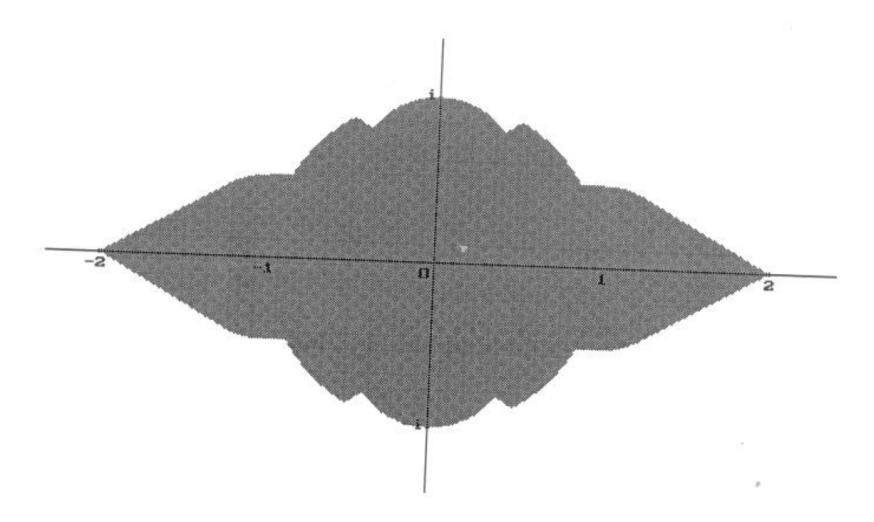
$$\left\langle \begin{pmatrix} 1 & \mu \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ \mu & 1 \end{pmatrix} \right\rangle \leftrightarrow G_{\lambda} = \left\langle \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ \lambda & 1 \end{pmatrix} \right\rangle$$
 for $\mu^2 = 2\lambda$

DEFINITION $\lambda \in \mathbb{C}$ is called **FREE** if G_{λ} is a free group

THEOREM λ is free in the following cases

- $|\lambda| \ge 2$ (Brenner, 55; Sanov, 47)
- $|\lambda| \ge 1, |\lambda \pm 1| \ge 1$ (Chang-Jennings-Ree, 58)
- $\lambda \pm \frac{i}{2} \ge \frac{1}{2}, |\lambda \pm 1| \ge 1$ (Lyubich-Suvorov, 69)
- $\lambda \not\in \text{convhull } (|z| = 1, \pm 2)$ (——)
- $|\lambda 1| > \frac{1}{2}$ and $1 \le |\operatorname{Re} \lambda| < \frac{5}{4}$ (Ignatov, 76)
- $|\lambda| > 1$ and $|\operatorname{Im} \lambda| \ge \frac{1}{2}$ (----, 79)

Algebraic free points are dense in \mathbb{C} (C-J-R, 58)



Known free points in the complex plane (unshaded)

23

AVERAGING OPERATORS AND SMOOTHING ESTIMATES

Set

$$Tf = \frac{1}{3}(f + f \circ \tau_{g_+} + f \circ \tau_{g_-})$$

Using the spectral gap, one proves the following

LEMMA For $|\lambda| < \lambda(s)$ and λ satisfying the conditions of the spectral gap statement, *T* has the following smoothing property (s > 0)

$$||T^m f||_{H^s} \le C||f||_2 + Ce^{-cm}||f||_{H^s}$$
$$||T^m f||_2 \le C||f||_{H^{-s}} + Ce^{-cm}||f||_2$$

COROLLARY Furstenberg measures μ_E are a.c. with smooth density

USE OF LARGE DEVIATION ESTIMATES

PROPOSITION Let

$$\nu = \frac{1}{2}(\delta_{g_+} + \delta_{g_-})$$

Then

$$\left\|\sum_{g} (f \circ \tau_g) \nu^{(\ell)}(g) - \int f d\mu\right\|_{\infty} \le C e^{-c\ell} \|f\|_{C^1}$$

COROLLARY

$$\|T^{\ell}f - \int f d\mu\|_{\infty} \le C e^{-c\ell} \|f\|_{C^1}$$

Together with the LEMMA, this implies

COROLLARY

$$\|(T^{\ell}f)'\|_{H^s} \le Ce^{-c\ell} \|f\|_{H^{s+1}}$$

SMOOTHNESS OF LYAPOUNOV EXPONENT AND DENSITY OF STATES

Recall that by Thouless' formula, L(E) and the IDS $\mathcal{N}(E)$ are related by the Hilbert transform

Also

$$L(E) = \int Av \log \left\| \begin{pmatrix} E \pm \lambda & -1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} \cos \theta \\ \sin \theta \end{pmatrix} \right\| \mu_E(d\theta) = \int \Phi_E(\theta) \mu_E(d\theta)$$

Since

$$(T_E)^{\ell} \Phi_E \to L(E)$$

it will suffice to establish bounds on $\partial_E^{(\alpha)}(T_E^{\ell}\Phi_E)$ which are uniform in ℓ .

Chain rule and
$$\partial_E \tau_g = -\sin^2 \tau_g$$
 implies
 $\partial_E (T_E^{\ell} \Phi_E) = T^{\ell} (\partial_E \Phi_E) - \sum_{m=1}^{\ell} T^{\ell-m+1} [(T^{m-1} \Phi_E)' \sin^2 \theta]$
 $|\partial_E (T_E^{\ell} \Phi_E)| < C + \sum_m ||(T^{m-1} \Phi_E)'||_{\infty} < \sum e^{-cm} < C$

Higher order derivatives estimated similarly

LOCAL EIGENVALUE STATISTICS

Assume H has bounded density of states.

Denote H_N the restriction of H to [1, N] with Dirichlet bc

The following statement improves the **GERMINET-KLOPP** result in 1D

THEOREM Assume

- Furstenberg measures are absolutely continuous with bounded density
- Density of states k is continuous

Fix $E_0 \in \mathbb{R}$ and $I = [E_0, E_0 + \frac{L}{N}]$ where we let first $N \to \infty$ then $L \to \infty$. The rescaled eigenvalues $\{N(E - E_0)\mathbf{1}_I(E)\}_{E \in Spec H_N}$ obey Poisson statistics

COROLLARY For suitable λ , the local eigenvalue statistics of the Anderson-Bernoulli Hamiltonian H_{λ} are Poisson

WEGNER AND MINAMI ESTIMATES

Assume *H* satisfies conditions of the Theorem Let $N \in \mathbb{Z}_+$ be large, $I = [E_0 - \delta, E_0 + \delta]$ with $\log \frac{1}{\delta} < \sqrt{N}$

PROPOSITION (Wegner type estimate)

$$\mathbb{E}[Tr1_{I}(H_{N})] = Nk(E_{0})|I| + O\left(N\delta^{2} + \delta\log^{2}\left(N + \frac{1}{\delta}\right)\right)$$

PROPOSITION (Minami type estimate)

 $\mathbb{E}[H_N \text{ has at least two eigenvalues in } I] \leq CN^2 \delta^2 + C\delta \log \left(N + \frac{1}{\delta}\right)$

POISSON STATISTICS (SKETCH)

3 ingredients

- Anderson localization
- Wegner estimate
- Minami estimate

Spec
$$H_{\Lambda} = \bigcup_{\alpha} \mathcal{E}_{\alpha} \cup \bigcup_{\alpha} \mathcal{E}_{\alpha,1}$$

$$\begin{split} &\Lambda'_{\alpha} = \text{neighborhood of } \Lambda_{\alpha} \text{ of size } (\log N)^2 \\ &\Lambda'_{\alpha,1} = - - - \Lambda'_{\alpha,1} - - - \\ &\text{Anderson localization implies that (with high probability)} \\ &\text{dist } (E, \text{ Spec } H_{\Lambda'_{\alpha}}) < \frac{1}{N^A} \text{ for } E \in \mathcal{E}_{\alpha} \\ &\text{dist } (E, \text{ Spec } H_{\Lambda'_{\alpha,1}}) < \frac{1}{N^A} \text{ for } E \in \mathcal{E}_{\alpha,1} \end{split}$$

Set $I = [E_0, E_0 + \frac{L}{N}]$ fixed interval, $k(E_0) > 0$

Wegner
$$\Rightarrow \mathbb{E}[|\bigcup_{\alpha} \mathcal{E}_{\alpha,1} \cap I|] \leq \sum_{\alpha} \mathbb{E}[Tr1_{\tilde{I}}(H_{\Lambda'_{\alpha,1}})] < C\frac{N}{M}M_1\delta < C\frac{L}{\log N} < o(1)$$

 $Minami \Rightarrow$

 $\sum_{lpha} \mathbb{E}[H_{\mathcal{N}_{lpha}'} \text{ has two eigenvalues in } I]$

$$< C \frac{N}{M} \left(M^2 \left(\frac{L}{N} \right)^2 + \frac{L}{N} \log N \right) < C \frac{L}{M} \log N < o(1)$$

Introduce (partially defined) random variables

$$E_{\alpha} = E \mathbf{1}_{I}(E) \quad \text{provided} \quad |\text{Spec } H_{\Lambda'_{\alpha}} \cap I| \leq 1$$

Then $\{E_{\alpha}\}$ take values in *I*, are independent and have the same distribution

Let
$$J \subset I$$
 be an interval, $|J| \sim \frac{1}{N}$

$$\mathbb{E}[\mathbf{1}_J(E_\alpha)] = \mathbb{E}[Tr\mathbf{1}_J(H_{\Lambda'_\alpha})] + O\left(\frac{\log N}{N}\right)$$

$$= (M + O(\log^2 N))\left(k(E_0) + o(1)\right)|J| + O\left(\frac{\log N}{N}\right)$$

$$= Mk(E_0)|J|\left(1 + O\left(\frac{1}{\log N}\right)\right)$$