
A SPECTRAL GAP THEOREM IN SL2(R)

AND APPLICATIONS



BACKGROUND:
EXPANSION IN UNITARY GROUPS

g1, . . . , gk ∈ SU(2) algebraic and free

T : L2(G)→ L2(G) Hecke operator

Tf(x) =
∑(

f(gjx) + f(g−1
j x)

)

THEOREM [B-G] There is spectral gap

λ1(T ) < 2k − γ
γ = γ(g1, . . . , gk) controlled by non commutative
diophantine property

Applications to tilings (Conway-Radin) and
quantum computation (Solovay-Kitaev)



NON COMMUTATIVE
DIOPHANTINE PROPERTY

G = {g1, . . . , gk}

W`(G) = words of length `

DC: g ∈W`(G)\{1} ⇒ ‖1− g‖ > A−`

Satisfied for G ⊂ Mat2×2(Q) where A depends on
the height

(Gamburd-Jakobson-Sarnak)



SU(d)
g1, . . . , gk ∈ SU(d) ∩ Matd×d(Q)

Γ = 〈g1, . . . , gk〉

Assume Γ topologically dense

Tf(x) =
∑(

f(gjx) + f(g−1
j x)

)

THEOREM [B-G]
T has spectral gap

Generalized to compact simple Lie groups
(Benoist–De Saxe)
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A SPECTRAL GAP PROPERTY FOR
THE PROJECTIVE ACTION OF SL2(R)

P1 (R) ' T = R / Z

ρ = projective representation ofSL2(R) onL2(T)

ρgf =
(
τ ′g -1

)1
2
(
f ◦ τg -1

)

τg = projective action of g
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THEOREM [B-Y] Given 0 < c < 1, there is
k0 ∈ Z+ such that the following holds.
Let G ⊂ SL2(R), |G| = k > k0, generating freely
the free group on k generators. Assume moreover

‖g − 1‖ < 1/k for g ∈ G

‖g − 1‖ > k−`/c for g ∈W`(G)\{1} and ` arbitrary

Then ∥∥∥∥∥ 1

2k

∑
g∈G

(ρgf + ρg−1f)
∥∥∥∥∥2 ≤

1

2
‖f‖2

provided f⊥V , where

V = [e(nθ); |n| < K] ⊂ L2(T),K = K(k)



MOTIVATIONS

• Theoretical computer science

• Absolute continuity of Furstenberg measures

• The Anderson-Bernoulli model in Physics
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DEFINITION A monotone expander is a finite family Ψ of

maps ψ from a sub-interval of [0,1] to [0,1] such that

• There is a constant c > 0 such that for any A ⊂ [0,1], |A| ≤ 1
2

|Ψ(A)| ≥ (1 + c)|A| Ψ(A) =
⋃

ψ∈Ψ
ψ(A)

• Every ψ ∈ Ψ is continuous and monotone

THEOREM [B-Y] There exists (explicit) monotone expanders

MAIN INGREDIENT: Projective action of family G satisfying

previous theorem 8



DIMENSIONAL EXPANDERS
DEFINITION F = field. A dimension expander over Fn is a

constant number of matrices M1, . . .Mk in Fn×n for which

there is a constant c > 0 (c, k independent of n) such that

dim[M1(V )
⋃
· · ·

⋃
Mk(V )] > (1 + c) dimV

for any subspace V of Fn, dimV ≤ n
2

For char F = 0, existence proven by Lubotzky-Zelmanov
using property τ

Dvir-Shpilka, Dvir-Wigderson monotone expanders ⇒
dimensional expanders

COROLLARY Existence of dimension expanders for

arbitrary fields



PUSHDOWN GRAPHS AND TURING MACHINES

DEFINITION (Pippenger, Paul-Pippenger-Szemeredi-Trotter)

A d-pushdown graph is a graph on an ordered set of vertices

such that when ordered along the spine of a book, the edges

can be drawn on d pages and in each page the edges do not touch

Hopcroft-Paul-Valiant Relation to complexity and Turing machines

Dvir-Wigderson Relation to monotone expanders

COROLLARY 4 There exists (explicit) d-pushdown expanders

⇒ no sub-linear size separators

←→
THEOREM (Lipton-Tarjan) Planar graphs have 0(

√
n)-size

separators



FURSTENBERG MEASURES

ν = probability measure on SL2(R) with proximal
and strongly irreducible action.

Furstenberg measure µ is a unique ν -stationary

measure on P1(R), i.e.
∫
fdµ =

∑
g
ν(g)

∫
(f ◦ τg)dµ
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PROBLEM (Kaimanovich-Le Prince)
Can the Furstenberg measure of a finitely supported
(symmetric) probability measure on SL2(R) be
absolutely continuous?

ANSWER YES

THEOREM There are examples with dµ
dσ

arbitrarily smooth

Barany-Pollicott-Simon: Examples of ac-stationary
measures for non-symmetric random walks



SPECTRAL THEORY

OF LATTICE SCHRÖDINGER OPERATORS

H = ∆ + λV on Z

∆(i, j) =

1 if |i− j| = 1

0 otherwise
(lattice Laplacian)

V =
∑
Viδi with Vi chosen independently according to distribution µ

λ = coupling

Introduced by Anderson to model transport in inhomogenous media



THEOREM (Frohlich-Spencer)

In 1D, at any disorder λ 6= 0, for almost all realization
of V , H has pure point spectrum with exponentially
decaying eigenfunctions

(Anderson Localization)

CONJECTURES

2D AL

3D An ac-component in the bulk of the spectrum

(AL persists for large λ and at edge of the spectrum)



THEOREM (Simon-Taylor, 85)

Assume V distributed according to measure µ on R,

µ� Lebesgue and dµdx ∈ L
1
α for some α > 0

Then the integrated density of states k of H is C∞

THEOREM (Germinet-Klopp, 2011)

Same assumption on V . Then local eigenvalue statistics of

H are Poisson

THEOREM (B, 2011)

Same conclusions hold if dimµ > 0 (Holder potentials)

PROBLEM What happens in the Bernoulli case for small λ?



DENSITY OF STATES
OF THE ANDERSON-BERNOULLI MODEL

N = Integrated density of sates (IDS) dN
dE = k

THEOREM N is Hölder regular

• Carmona-Klein-Martinelli (87) Le Page’s method

• Shubin-Vakilian-Wolff (88) Several proofs using harmonic analysis
and the uncertainty principle
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HALPERIN: N is not Hölder continuous of any order

α > 2 log 2
Arccosh(1+λ)

CONJECTURE For λ sufficiently small, k is bounded

and becomes arbitrary smooth for λ→ 0

THEOREM [B, 012] α(λ)→ 1 for λ→ 0
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THEOREM [B, 013] Let Hλ be the Anderson-Bernoulli

Hamiltonian with coupling λ and restrict the energy |E| < 2−δ
for some fixed δ > 0.

Given a constant C > 0 and s ∈ Z+, there is λ0 = λ0(C, s)

such thatN (E) is Cs-smooth provided λ satisfies the following

conditions

• |λ| < λ0

• λ is an algebraic number of degree d < C and minimal

polynomial Pd(x) ∈ Z[X] with coefficients bounded by
(

1
λ

)C
• λ has a conjugate λ′ of modulus |λ′| ≥ 1 18



RELATION TO SL2(R): SCHRÖDINGER COCYCLES

THE TRANSFER MATRIX FORMALISM

Equation Hξ = Eξ equivalent to
ξn+1
ξn

 = MN(E)

ξ1
ξ0



MN(E) =

E − λVN −1
1 0

 · · ·
E − λV1 −1

1 0



LYAPOUNOV EXPONENT L(E) = lim
N→∞

1
N log ‖MN(E)‖

THOULESS FORMULA L(E) =
∫

log |E − E′|dN (E′)

Role of Furstenberg’s theory of random matrix products



A NEW SPECTRAL GAP
Take λ as above and E arbitrary. Set

g+ =

E + λ −1
1 0

 g− =

E − λ −1
1 0



h1 = g+g
−1

− =

1 2λ
0 1

 h2 = g
−1

+
g− =

 1 0
2λ 1


V = [e(nθ); |n| < K] with K = K(λ) sufficiently large

PROPOSITION ‖f − ρh1
f‖2 + ‖f − ρh2

f‖2 ≥ λτ‖f‖2 for

f ∈ V ⊥ and where τ can be made arbitrarily small when λ→ 0

COROLLARY ‖f − ρg+f‖2 + ‖f − ρg−f‖2 ≥ 1
2λ

τ‖f‖2
for f ∈ V ⊥

↔ ‖f−ρg+f‖2+‖f−ρg−f‖2 ≥ cλ‖f‖2 for all f ∈ L2(T)



SKETCH OF THE PROOF

LEMMA (Sanov, Brenner ) If |µ| ≥ 2, then the group generated by

A =

1 µ
0 1

 and B =

1 0
µ 1


is free

Since λ has conjugate λ′, |λ′| > 1, it follows that h1, h2 generate a free group

Set k = λ−τ and G = {h`1h`2; 1 ≤ ` ≤ k} ⊂ SL2(R)

Then G are free generators of free group Fk and satisfies conditions of the
expansion theorem (DC follows from height considerations going back to
[G-J-S])

Hence for f ∈ V ⊥, ‖f‖2 = 1

max
g∈G
‖f − ρgf‖2 >

1

2
⇒ ‖f − ρh1

f‖2 + ‖f − ρh2
f‖2 >

1

2k



FREE GROUPS GENERATED BY PAIRS

OF PARABOLIC ELEMENTS

〈 1 µ
0 1

 ,
1 0
µ 1

 〉↔ Gλ =
〈 1 2

0 1

 ,
1 0
λ 1

 〉 for µ2 = 2λ

DEFINITION λ ∈ C is called FREE if Gλ is a free group

THEOREM λ is free in the following cases

• |λ| ≥ 2 (Brenner, 55; Sanov, 47)

• |λ| ≥ 1, |λ± 1| ≥ 1 (Chang-Jennings-Ree, 58)

• λ± i
2| ≥

1
2, |λ± 1| ≥ 1 (Lyubich-Suvorov, 69)

• λ 6∈ convhull (|z| = 1,±2) (——)

• |λ− 1| > 1
2 and 1 ≤ |Re λ| < 5

4 (Ignatov, 76)

• |λ| > 1 and |Im λ| ≥ 1
2 (——, 79)

Algebraic free points are dense in C (C-J-R, 58)



Known free points in the complex plane (unshaded)
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AVERAGING OPERATORS

AND SMOOTHING ESTIMATES
Set

Tf =
1

3
(f + f ◦ τg+ + f ◦ τg−)

Using the spectral gap, one proves the following

LEMMA For |λ| < λ(s) and λ satisfying the conditions of the

spectral gap statement, T has the following smoothing

property (s > 0)

‖Tmf‖Hs ≤ C‖f‖2 + Ce−cm‖f‖Hs

‖Tmf‖2 ≤ C‖f‖H−s + Ce−cm‖f‖2

COROLLARY Furstenberg measures µE are a.c. with smooth density



USE OF LARGE DEVIATION ESTIMATES

PROPOSITION Let

ν =
1

2
(δg+ + δg−)

Then ∥∥∥∥∑
g

(f ◦ τg)ν(`)(g)−
∫
fdµ

∥∥∥∥
∞
≤ Ce−c`‖f‖C1

COROLLARY
‖T `f −

∫
fdµ‖∞ ≤ Ce−c`‖f‖C1

Together with the LEMMA, this implies

COROLLARY

‖(T `f)′‖Hs ≤ Ce−c`‖f‖Hs+1



SMOOTHNESS OF LYAPOUNOV EXPONENT
AND DENSITY OF STATES

Recall that by Thouless’ formula, L(E) and the IDS N (E)

are related by the Hilbert transform

Also

L(E) =
∫
Av
±

log
∥∥∥∥
E ± λ −1

1 0

cos θ
sin θ

 ∥∥∥∥µE(dθ) =
∫

ΦE(θ)µE(dθ)

Since

(TE)`ΦE → L(E)

it will suffice to establish bounds on ∂
(α)
E (T `EΦE) which are

uniform in `.



Chain rule and ∂Eτg = − sin2 τg implies

∂E(T `EΦE) = T `(∂EΦE)−
∑̀
m=1

T `−m+1[(Tm−1ΦE)′ sin2 θ]

|∂E(T `EΦE)| < C +
∑
m
‖(Tm−1ΦE)′‖∞ <

∑
e−cm < C

Higher order derivatives estimated similarly
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LOCAL EIGENVALUE STATISTICS

Assume H has bounded density of states.

Denote HN the restriction of H to [1, N ] with Dirichlet bc

The following statement improves the GERMINET-KLOPP result in 1D

THEOREM Assume

• Furstenberg measures are absolutely continuous with bounded density

• Density of states k is continuous

Fix E0 ∈ R and I =
[
E0, E0 + L

N

]
where we let first N → ∞ then

L→∞. The rescaled eigenvalues {N(E−E0)1I(E)}E∈ SpecHN obey

Poisson statistics

COROLLARY For suitable λ, the local eigenvalue statistics of the

Anderson-Bernoulli Hamiltonian Hλ are Poisson



WEGNER AND MINAMI ESTIMATES

Assume H satisfies conditions of the Theorem

Let N ∈ Z+ be large, I = [E0− δ, E0 + δ] with log 1
δ <
√
N

PROPOSITION (Wegner type estimate)

E[Tr1I(HN)] = Nk(E0)|I|+O
(
Nδ2 + δ log2

(
N +

1

δ

))

PROPOSITION (Minami type estimate)

E[HN has at least two eigenvalues in I] ≤

CN2δ2 + Cδ log
(
N +

1

δ

)



POISSON STATISTICS (SKETCH)

3 ingredients

• Anderson localization
• Wegner estimate

• Minami estimate

Λ = [1, N ] = Λ1 ∪ Λ1,1 ∪ Λ2 ∪ Λ2,1 ∪ . . .

Λ1

Λ1,1

Λ2

Λ2,1

Λ3

N1

|Λα| = M ∼ (logN)4

|Λα,1| = M1 ∼ (logN)3

Eα = eigenvalues of HΛ with center of localization in Λα

Eα,1 = ——————— Λα,1

SpecHΛ =
⋃
α
Eα ∪

⋃
α
Eα,1



Λ′α = neighborhood of Λα of size (logN)2

Λ′α,1 = ——– Λ′α,1 ——

Anderson localization implies that (with high probability)

dist (E, Spec HΛ′α
) < 1

NA for E ∈ Eα

dist (E, Spec HΛ′α,1
) < 1

NA for E ∈ Eα,1

Set I = [E0, E0 + L
N ] fixed interval, k(E0) > 0

Wegner ⇒ E[|
⋃
α
Eα,1 ∩ I|] ≤

∑
α

E[Tr1Ĩ(HΛ′α,1
)] < C

N

M
M1δ < C

L

logN
< o(1)

Minami⇒
∑
α

E[HΛ′α
has two eigenvalues in I]

< C
N

M

(
M2

(
L

N

)2
+
L

N
logN

)
< C

L

M
logN < o(1)



Introduce (partially defined) random variables

Eα = E 1I(E) provided |SpecHΛ′α
∩ I| ≤ 1

Then {Eα} take values in I , are independent and have the

same distribution

Let J ⊂ I be an interval, |J | ∼ 1
N

E[1J(Eα)] = E[Tr1J(HΛ′α
)] +O

(logN

N

)

=
(
M +O(log2N)

)(
k(E0) + o(1)

)
|J |+O

(logN

N

)

= Mk(E0)|J |
(
1 +O

( 1

logN

))


