A SPECTRAL GAP THEOREM IN $S L_{2}(\mathbb{R})$ AND APPLICATIONS

BACKGROUND:

EXPANSION IN UNITARY GROUPS

$g_{1}, \ldots, g_{k} \in S U(2)$ algebraic and free
$T: L^{2}(G) \rightarrow L^{2}(G)$ Hecke operator

$$
T f(x)=\sum\left(f\left(g_{j} x\right)+f\left(g_{j}^{-1} x\right)\right)
$$

THEOREM [B-G] There is spectral gap

$$
\lambda_{1}(T)<2 k-\gamma
$$

$\gamma=\gamma\left(g_{1}, \ldots, g_{k}\right)$ controlled by non commutative diophantine property

NON COMMUTATIVE DIOPHANTINE PROPERTY

$$
\mathcal{G}=\left\{g_{1}, \ldots, g_{k}\right\}
$$

$W_{\ell}(\mathcal{G})=$ words of length ℓ
DC: $g \in W_{\ell}(\mathcal{G}) \backslash\{1\} \Rightarrow\|1-g\|>A^{-\ell}$
Satisfied for $\mathcal{G} \subset \operatorname{Mat}_{2 \times 2}(\overline{\mathbb{Q}})$ where A depends on the height

$$
\begin{gathered}
S U(d) \\
g_{1}, \ldots, g_{k} \in S U(d) \cap \operatorname{Mat}_{d \times d}(\overline{\mathbb{Q}})
\end{gathered}
$$

$$
\Gamma=\left\langle g_{1}, \ldots, g_{k}\right\rangle
$$

Assume 「 topologically dense

$$
T f(x)=\sum\left(f\left(g_{j} x\right)+f\left(g_{j}^{-1} x\right)\right)
$$

THEOREM [B-G]

T has spectral gap

A SPECTRAL GAP PROPERTY FOR

 THE PROJECTIVE ACTION OF $S L_{2}(\mathbb{R})$$P_{1}(\mathbb{R}) \simeq \mathbb{T}=\mathbb{R} / \mathbb{Z}$ $\rho=$ projective representation of $S L_{2}(\mathbb{R})$ on $L^{2}(\mathbb{T})$;

$$
\rho_{g} f=\left(\tau_{g^{-1}}^{\prime}\right)^{\frac{1}{2}}\left(f \circ \tau_{g^{-1}}\right)
$$

THEOREM [B-Y] Given $0<c<1$, there is $k_{0} \in \mathbb{Z}_{+}$such that the following holds.
Let $\mathcal{G} \subset S L_{2}(\mathbb{R}),|\mathcal{G}|=k>k_{0}$, generating freely the free group on k generators. Assume moreover
$\|g-1\|<1 / k$ for $g \in \mathcal{G}$
$\|g-1\|>k^{-\ell / c}$ for $g \in W_{\ell}(\mathcal{G}) \backslash\{1\}$ and ℓ arbitrary
Then

$$
\left\|\frac{1}{2 k} \sum_{g \in \mathcal{G}}\left(\rho_{g} f+\rho_{g^{-1}} f\right)\right\|_{2} \leq \frac{1}{2}\|f\|_{2}
$$

provided $f \perp V$, where
$V=[e(n \theta) ;|n|<K] \subset L^{2}(\mathbb{T}), K=K(k)$

MOTIVATIONS

- Theoretical computer science
- Absolute continuity of Furstenberg measures
- The Anderson-Bernoulli model in Physics

DEFINITION A monotone expander is a finite family Ψ of maps ψ from a sub-interval of $[0,1]$ to $[0,1]$ such that

- There is a constant $c>0$ such that for any $A \subset[0,1],|A| \leq \frac{1}{2}$

$$
|\Psi(A)| \geq(1+c)|A| \quad \Psi(A)=\bigcup_{\psi \in \Psi} \psi(A)
$$

- Every $\psi \in \Psi$ is continuous and monotone

THEOREM [B-Y] There exists (explicit) monotone expanders

MAIN INGREDIENT: Projective action of family \mathcal{G} satisfying previous theorem

DIMENSIONAL EXPANDERS

DEFINITION $\mathbb{F}=$ field. A dimension expander over \mathbb{F}^{n} is a constant number of matrices $M_{1}, \ldots M_{k}$ in $\mathbb{F}^{n \times n}$ for which there is a constant $c>0(c, k$ independent of $n)$ such that

$$
\operatorname{dim}\left[M_{1}(V) \cup \cdots \cup M_{k}(V)\right]>(1+c) \operatorname{dim} V
$$

for any subspace V of $\mathbb{F}^{n}, \operatorname{dim} V \leq \frac{n}{2}$
For char $\mathbb{F}=0$, existence proven by Lubotzky-Zelmanov using property τ

Dvir-Shpilka, Dvir-Wigderson monotone expanders \Rightarrow dimensional expanders

COROLLARY Existence of dimension expanders for arbitrary fields

PUSHDOWN GRAPHS AND TURING MACHINES

DEFINITION (Pippenger, Paul-Pippenger-Szemeredi-Trotter)

A d-pushdown graph is a graph on an ordered set of vertices such that when ordered along the spine of a book, the edges can be drawn on d pages and in each page the edges do not touch

Hopcroft-Paul-Valiant Relation to complexity and Turing machines
Dvir-Wigderson Relation to monotone expanders
COROLLARY 4 There exists (explicit) d-pushdown expanders
\Rightarrow no sub-linear size separators

THEOREM (Lipton-Tarjan) Planar graphs have $0(\sqrt{n})$-size separators

FURSTENBERG MEASURES

$\nu=$ probability measure on $S L_{2}(\mathbb{R})$ with proximal and strongly irreducible action.

Furstenberg measure μ is a unique ν-stationary measure on $P_{1}(\mathbb{R})$, i.e.

$$
\int f d \mu=\sum_{g} \nu(g) \int\left(f \circ \tau_{g}\right) d \mu
$$

PROBLEM: (Kaimanovich-Le Prince)
Can the Furstenberg measure of a finitely supported (symmetric) probability measure on $S L_{2}(\mathbb{R})$ be absolutely continuous?

ANSWER: YES

THEOREM There are examples with $\frac{d \mu}{d \sigma}$ arbitrarily smooth

Barany-Pollicott-Simon: Examples of ac-stationary measures for non-symmetric random walks

SPECTRAL THEORY

OF LATTICE SCHRÖDINGER OPERATORS

$$
H=\Delta+\lambda V \text { on } \mathbb{Z}
$$

$\Delta(i, j)=\left\{\begin{array}{ll}1 & \text { if }|i-j|=1 \\ 0 & \text { otherwise }\end{array} \quad\right.$ (lattice Laplacian)
$V=\Sigma V_{i} \delta_{i}$ with V_{i} chosen independently according to distribution μ
$\lambda=$ coupling

Introduced by Anderson to model transport in inhomogenous media

THEOREM (Frohlich-Spencer)

In $1 D$, at any disorder $\lambda \neq 0$, for almost all realization of V, H has pure point spectrum with exponentially decaying eigenfunctions
(Anderson Localization)
CONJECTURES
2D $A L$
3D An $a c$-component in the bulk of the spectrum
($A L$ persists for large λ and at edge of the spectrum)

THEOREM (Simon-Taylor, 85)

Assume V distributed according to measure μ on \mathbb{R}, $\mu \ll$ Lebesgue and $\frac{d \mu}{d x} \in L_{\alpha}^{1}$ for some $\alpha>0$

Then the integrated density of states k of H is C^{∞}

THEOREM (Germinet-Klopp, 2011)
Same assumption on V. Then local eigenvalue statistics of H are Poisson

THEOREM (B, 2011)
Same conclusions hold if $\operatorname{dim} \mu>0 \quad$ (Holder potentials)
PROBLEM What happens in the Bernoulli case for small λ ?

DENSITY OF STATES OF THE ANDERSON-BERNOULLI MODEL

$\mathcal{N}=$ Integrated density of sates (IDS) $\frac{d \mathcal{N}}{d E}=k$
THEOREM \mathcal{N} is Hölder regular

- Carmona-Klein-Martinelli (87) Le Page's method
- Shubin-Vakilian-Wolff (88) Several proofs using harmonic analysis and the uncertainty principle

HALPERIN: \mathcal{N} is not Hölder continuous of any order
$\alpha>\frac{2 \log 2}{\operatorname{Arccosh}(1+\lambda)}$

CONJECTURE For λ sufficiently small, k is bounded and becomes arbitrary smooth for $\lambda \rightarrow 0$

THEOREM [B, 012] $\alpha(\lambda) \rightarrow 1$ for $\lambda \rightarrow 0$

THEOREM [B, 013] Let H_{λ} be the Anderson-Bernoulli Hamiltonian with coupling λ and restrict the energy $|E|<2-\delta$ for some fixed $\delta>0$.

Given a constant $C>0$ and $s \in \mathbb{Z}_{+}$, there is $\lambda_{0}=\lambda_{0}(C, s)$ such that $\mathcal{N}(E)$ is C^{s}-smooth provided λ satisfies the following conditions

- $|\lambda|<\lambda_{0}$
- λ is an algebraic number of degree $d<C$ and minimal polynomial $P_{d}(x) \in \mathbb{Z}[X]$ with coefficients bounded by $\left(\frac{1}{\lambda}\right)^{C}$
- λ has a conjugate λ^{\prime} of modulus $\left|\lambda^{\prime}\right| \geq 1$

RELATION TO $S L_{2}(\mathbb{R})$: SCHRÖDINGER COCYCLES THE TRANSFER MATRIX FORMALISM

Equation $H \xi=E \xi$ equivalent to $\binom{\xi_{n+1}}{\xi_{n}}=M_{N}(E)\binom{\xi_{1}}{\xi_{0}}$

$$
M_{N}(E)=\left(\begin{array}{cc}
E-\lambda V_{N} & -1 \\
1 & 0
\end{array}\right) \ldots\left(\begin{array}{cc}
E-\lambda V_{1} & -1 \\
1 & 0
\end{array}\right)
$$

LYAPOUNOV EXPONENT $\quad L(E)=\lim _{N \rightarrow \infty} \frac{1}{N} \log \left\|M_{N}(E)\right\|$
THOULESS FORMULA $\quad L(E)=\int \log \left|E-E^{\prime}\right| d \mathcal{N}\left(E^{\prime}\right)$

A NEW SPECTRAL GAP

Take λ as above and E arbitrary. Set

$$
\begin{array}{cc}
g_{+}=\left(\begin{array}{cc}
E+\lambda & -1 \\
1 & 0
\end{array}\right) & g_{-}=\left(\begin{array}{cc}
E-\lambda & -1 \\
1 & 0
\end{array}\right) \\
h_{1}=g_{+} g_{-}^{-1}=\left(\begin{array}{cc}
1 & 2 \lambda \\
0 & 1
\end{array}\right) & h_{2}=g_{+}^{-1} g_{-}=\left(\begin{array}{cc}
1 & 0 \\
2 \lambda & 1
\end{array}\right)
\end{array}
$$

$V=[e(n \theta) ;|n|<K]$ with $K=K(\lambda)$ sufficiently large
PROPOSITION $\left\|f-\rho_{h_{1}} f\right\|_{2}+\left\|f-\rho_{h_{2}} f\right\|_{2} \geq \lambda^{\tau}\|f\|_{2}$ for $f \in V^{\perp}$ and where τ can be made arbitrarily small when $\lambda \rightarrow 0$

COROLLARY $\left\|f-\rho_{g_{+}} f\right\|_{2}+\left\|f-\rho_{g_{-}} f\right\|_{2} \geq \frac{1}{2} \lambda^{\tau}\|f\|_{2}$ for $f \in V^{\perp}$

$$
\leftrightarrow\left\|f-\rho_{g_{+}} f\right\|_{2}+\left\|f-\rho_{g_{-}} f\right\|_{2} \geq c \lambda\|f\|_{2} \text { for all } f \in L^{2}(\mathbb{T})
$$

SKETCH OF THE PROOF

LEMMA (Sanov, Brenner) If $|\mu| \geq 2$, then the group generated by
is free

$$
A=\left(\begin{array}{ll}
1 & \mu \\
0 & 1
\end{array}\right) \quad \text { and } B=\left(\begin{array}{ll}
1 & 0 \\
\mu & 1
\end{array}\right)
$$

Since λ has conjugate $\lambda^{\prime},\left|\lambda^{\prime}\right|>1$, it follows that h_{1}, h_{2} generate a free group
Set $k=\lambda^{-\tau}$ and $\mathcal{G}=\left\{h_{1}^{\ell} h_{2}^{\ell} ; 1 \leq \ell \leq k\right\} \subset S L_{2}(\mathbb{R})$
Then \mathcal{G} are free generators of free group F_{k} and satisfies conditions of the expansion theorem (DC follows from height considerations going back to [G-J-S])

Hence for $f \in V^{\perp},\|f\|_{2}=1$

$$
\max _{g \in \mathcal{G}}\left\|f-\rho_{g} f\right\|_{2}>\frac{1}{2} \Rightarrow\left\|f-\rho_{h_{1}} f\right\|_{2}+\left\|f-\rho_{h_{2}} f\right\|_{2}>\frac{1}{2 k}
$$

FREE GROUPS GENERATED BY PAIRS OF PARABOLIC ELEMENTS

$\left\langle\left(\begin{array}{ll}1 & \mu \\ 0 & 1\end{array}\right),\left(\begin{array}{ll}1 & 0 \\ \mu & 1\end{array}\right)\right\rangle \leftrightarrow G_{\lambda}=\left\langle\left(\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right),\left(\begin{array}{ll}1 & 0 \\ \lambda & 1\end{array}\right)\right\rangle$ for $\mu^{2}=2 \lambda$
DEFINITION $\lambda \in \mathbb{C}$ is called FREE if G_{λ} is a free group
THEOREM λ is free in the following cases

- $|\lambda| \geq 2$ (Brenner, 55; Sanov, 47)
- $|\lambda| \geq 1,|\lambda \pm 1| \geq 1 \quad$ (Chang-Jennings-Ree, 58)
- $\lambda \pm \frac{i}{2}\left|\geq \frac{1}{2},|\lambda \pm 1| \geq 1 \quad\right.$ (Lyubich-Suvorov, 69)
- $\lambda \notin$ convhull $(|z|=1, \pm 2)$

- $|\lambda-1|>\frac{1}{2}$ and $1 \leq|\operatorname{Re} \lambda|<\frac{5}{4} \quad$ (Ignatov, 76)
- $|\lambda|>1$ and \mid Im $\lambda \left\lvert\, \geq \frac{1}{2}\right.$
(-, 79)
Algebraic free points are dense in \mathbb{C} (C-J-R, 58)

Known free points in the complex plane (unshaded)

AVERAGING OPERATORS

Set

$$
A=\frac{1}{3}\left(I^{+} \rho_{\left(g_{+}\right)^{-1}}+\rho_{\left(g_{-}\right)^{-1}}\right)
$$

It follows that

$$
\|A f\|_{2} \leq\left(1-\lambda^{2 \tau}\right)\|f\|_{2} \text { for } f \in V^{\perp}
$$

Switch to polar coordinates. Fix $E,|E|<2-\delta$ and set $E=2 \cos \kappa$ ($0<\kappa<\pi$). Conjugate with

$$
\begin{aligned}
S & =\frac{1}{(\sin \kappa)^{\frac{1}{2}}}\left(\begin{array}{cc}
1 & -\cos \kappa \\
0 & \sin \kappa
\end{array}\right) \\
\Rightarrow \tilde{g}_{ \pm}=S g_{ \pm} S^{-1} & =\left(\begin{array}{cc}
\cos \kappa & -\sin \kappa \\
\sin \kappa & \cos \kappa
\end{array}\right) \pm \lambda\left(\begin{array}{cc}
1 & \frac{\cos \kappa}{\sin \kappa} \\
0 & 0
\end{array}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
\|\tilde{A} f\|_{2} & \leq\left(1-\lambda^{2 \tau}\right)\|f\|_{2} \text { for } f \in V_{1}^{\perp} \\
\Rightarrow\left\|\frac{1}{3}\left(f+f \circ \tau_{\tilde{g}_{+}}+f \circ \tau_{\tilde{g}_{-}}\right)\right\|_{2} & \leq\left(1-\lambda^{2 \tau}\right)\|f\|_{2} \text { since } \tau_{\tilde{g}}^{\prime}=1+O(\lambda)
\end{aligned}
$$

SMOOTHING ESTIMATES

Set

$$
\tilde{T} f=\frac{1}{3}\left(f+f \circ \tau_{\tilde{g}_{+}}+f \circ \tau_{\tilde{g}_{-}}\right)
$$

satisfying

$$
\|\tilde{T} g\|_{\infty} \leq\|f\|_{\infty}
$$

and

$$
\|\tilde{T} f\|_{2} \leq\left(1-\lambda^{2 \tau}\right)\|f\|_{2} \text { for } f \in V_{1}^{\perp}
$$

LEMMA For $|\lambda|<\lambda(s)$ and $f \in H^{s}(\mathbb{T})$,

$$
\left\|(\tilde{T})^{m} f\right\|_{H^{s}} \leq C\|f\|_{2}+e^{-c m}\|f\|_{H^{s}}
$$

Since

$$
\left(\tilde{T}\left(f \circ \tau_{S^{-1}}\right)\right) \circ \tau_{S}=T f=\frac{1}{3}\left(f+f \circ \tau_{g_{+}}+f \circ \tau_{g_{-}}\right)
$$

also

$$
\left\|T^{m} f\right\|_{H^{s}} \leq C\|f\|_{2}+e^{-c m}\|f\|_{H^{s}}
$$

USE OF LARGE DEVIATION ESTIMATES

PROPOSITION Let

$$
\mu=\frac{1}{2}\left(\delta_{g_{+}}+\delta_{g_{-}}\right)
$$

Then

$$
\left\|\sum_{g}\left(f \circ \tau_{g}\right) \mu^{(\ell)}(g)-\int f d \nu\right\|_{\infty} \leq C e^{-c \ell}\|f\|_{C^{1}}
$$

COROLLARY

$$
\left\|T^{\ell} f-\int f d \nu\right\|_{\infty} \leq C e^{-c \ell}\|f\|_{C^{1}}
$$

Together with the LEMMA, this implies

COROLLARY

$$
\left\|\left(T^{\ell} f\right)^{\prime}\right\|_{H^{s}} \leq C e^{-c \ell}\|f\|_{H^{s+1}}
$$

SMOOTHNESS OF LYAPOUNOV EXPONENT AND DENSITY OF STATES

Recall that by Thouless' formula, $L(E)$ and the IDS $\mathcal{N}(E)$ are related by the Hilbert transform

Also
$L(E)=\int \underset{ \pm}{A v} \log \left\|\left(\begin{array}{cc}E \pm \lambda & -1 \\ 1 & 0\end{array}\right)\binom{\cos \theta}{\sin \theta}\right\| \mu_{E}(d \theta)=\int \Phi_{E}(\theta) \mu_{E}(d \theta)$
Since

$$
\left(T_{E}\right)^{\ell} \Phi_{E} \rightarrow L(E)
$$

it will suffice to establish bounds on $\partial_{E}^{(\alpha)}\left(T_{E}^{\ell} \Phi_{E}\right)$ which are uniform in ℓ.

Chain rule and $\partial_{E} \tau_{g}=-\sin ^{2} \tau_{g}$ implies

$$
\begin{aligned}
& \partial_{E}\left(T_{E}^{\ell} \Phi_{E}\right)=T^{\ell}\left(\partial_{E} \Phi_{E}\right)-\sum_{m=1}^{\ell} T^{\ell-m+1}\left[\left(T^{m-1} \Phi_{E}\right)^{\prime} \sin ^{2} \theta\right] \\
& \left|\partial_{E}\left(T_{E}^{\ell} \Phi_{E}\right)\right|<C+\sum_{m}\left\|\left(T^{m-1} \Phi_{E}\right)^{\prime}\right\|_{\infty}<\sum e^{-c m}<C
\end{aligned}
$$

Higher order derivatives estimated similarly

LOCAL EIGENVALUE STATISTICS

Assume H has bounded density of states.
Denote H_{N} the restriction of H to $[1, N]$ with Dirichlet $b c$
The following statement improves the GERMINET-KLOPP result in $1 D$

THEOREM Assume

- Furstenberg measures are absolutely continuous with bounded density
- Density of states k is continuous

Fix $E_{0} \in \mathbb{R}$ and $I=\left[E_{0}, E_{0}+\frac{L}{N}\right]$ where we let first $N \rightarrow \infty$ then $L \rightarrow \infty$. The rescaled eigenvalues $\left\{N\left(E-E_{0}\right) 1_{I}(E)\right\}_{E \in S p e c} H_{N}$ obey Poisson statistics

COROLLARY For suitable λ, the local eigenvalue statistics of the Anderson-Bernoulli Hamiltonian H_{λ} are Poisson

WEGNER AND MINAMI ESTIMATES

Assume H satisfies conditions of the Theorem
Let $N \in \mathbb{Z}_{+}$be large, $I=\left[E_{0}-\delta, E_{0}+\delta\right]$ with $\log \frac{1}{\delta}<\sqrt{N}$
PROPOSITION (Wegner type estimate)
$\mathbb{E}\left[\operatorname{Tr} 1_{I}\left(H_{N}\right)\right]=N k\left(E_{0}\right)|I|+O\left(N \delta^{2}+\delta \log ^{2}\left(N+\frac{1}{\delta}\right)\right)$

PROPOSITION (Minami type estimate)
$\mathbb{E}\left[H_{N}\right.$ has at least two eigenvalues in $\left.I\right] \leq$

$$
C N^{2} \delta^{2}+C \delta \log \left(N+\frac{1}{\delta}\right)
$$

POISSON STATISTICS (SKETCH)

3 ingredients

- Anderson localization
- Wegner estimate
- Minami estimate

$$
\begin{aligned}
& \lambda= {[1, N]=\Lambda_{1} \cup \Lambda_{1,1} \cup \Lambda_{2} \cup \Lambda_{2,1} \cup \ldots } \\
&\left.\left.\right|_{1} ^{\Lambda_{1}}{ }_{\Lambda_{1,1}}\right|^{\Lambda_{2}} \mid{ }_{\Lambda_{2,1}} \wedge_{3}^{\Lambda_{3}} \\
& N
\end{aligned}
$$

$$
\begin{aligned}
& \left|\wedge_{\alpha}\right|=M \sim(\log N)^{4} \\
& \left|\wedge_{\alpha, 1}\right|=M_{1} \sim(\log N)^{3}
\end{aligned}
$$

$\mathcal{E}_{\alpha}=$ eigenvalues of H_{\wedge} with center of localization in \wedge_{α}
$\mathcal{E}_{\alpha, 1}=$

$$
\operatorname{Spec} H_{\wedge}=\bigcup_{\alpha} \mathcal{E}_{\alpha} \cup \bigcup_{\alpha} \mathcal{E}_{\alpha, 1}
$$

$\Lambda_{\alpha}^{\prime}=$ neighborhood of Λ_{α} of size $(\log N)^{2}$
$\Lambda_{\alpha, 1}^{\prime}=\quad-\quad \Lambda_{\alpha, 1}^{\prime}$
Anderson localization implies that (with high probability)
$\operatorname{dist}\left(E, \operatorname{Spec} H_{\Lambda_{\alpha}^{\prime}}\right)<\frac{1}{N^{A}}$ for $E \in \mathcal{E}_{\alpha}$
$\operatorname{dist}\left(E, \operatorname{Spec} H_{\Lambda_{\alpha, 1}^{\prime}}\right)<\frac{1}{N^{H}}$ for $E \in \mathcal{E}_{\alpha, 1}$
Set $I=\left[E_{0}, E_{0}+\frac{L}{N}\right]$
Wegner $\Rightarrow \mathbb{E}\left[\left|\bigcup_{\alpha} \mathcal{E}_{\alpha, 1} \cap I\right|\right] \leq \sum_{\alpha} \mathbb{E}\left[\operatorname{Tr} 1_{\tilde{I}}\left(H_{\Lambda_{\alpha, 1}^{\prime}}\right)\right]<C \frac{N}{M} M_{1} \delta<C \frac{L}{\log N}<o(1)$
Minami \Rightarrow
$\sum_{\alpha} \mathbb{E}\left[H_{\wedge_{\alpha}^{\prime}}\right.$ has two eigenvalues in $\left.I\right]$

$$
<C \frac{N}{M}\left(M^{2}\left(\frac{L}{N}\right)^{2}+\frac{L}{N} \log N\right)<C \frac{L}{M} \log N<o(1)
$$

Introduce (partially defined) random variables

$$
E_{\alpha}=\sum_{E \in S \sec H_{\Lambda_{\alpha}^{\prime}}} E 1_{I}(E) \quad \text { provided } \quad\left|\operatorname{spec} H_{\Lambda_{\alpha}^{\prime}} \cap I\right| \leq 1
$$

Then $\left\{E_{\alpha}\right\}$ take values in I, are independent and have the same distribution

Let $J \subset I$ be an interval, $|J| \sim \frac{1}{N}$

$$
\begin{aligned}
\mathbb{E}\left[1_{J}\left(E_{\alpha}\right)\right] & =\mathbb{E}\left[\operatorname{Tr} 1_{J}\left(H_{\wedge_{\alpha}^{\prime}}\right)\right]+O\left(\frac{\log N}{N}\right) \\
& =\left(M+O\left(\log ^{2} N\right)\right)\left(k\left(E_{0}\right)+o(1)\right)|J|+O\left(\frac{\log N}{N}\right) \\
& =M k\left(E_{0}\right)|J|\left(1+O\left(\frac{1}{\log N}\right)\right)
\end{aligned}
$$

