A SPECTRAL GAP THEOREM IN $SL_2(\mathbb{R})$ AND APPLICATIONS

BACKGROUND: EXPANSION IN UNITARY GROUPS

 $g_1, \ldots, g_k \in SU(2)$ algebraic and free

 $T:L^2(G)\to L^2(G)$ Hecke operator

$$Tf(x) = \sum (f(g_j x) + f(g_j^{-1} x))$$

THEOREM [B-G] There is spectral gap

$$\lambda_1(T) < 2k - \gamma$$

 $\gamma = \gamma(g_1, \dots, g_k)$ controlled by non commutative diophantine property

NON COMMUTATIVE DIOPHANTINE PROPERTY

$$\mathcal{G} = \{g_1, \dots, g_k\}$$

 $W_{\ell}(\mathcal{G}) = \text{words of length } \ell$

DC:
$$g \in W_{\ell}(\mathcal{G}) \setminus \{1\} \Rightarrow \|1 - g\| > A^{-\ell}$$

Satisfied for $\mathcal{G}\subset \operatorname{Mat}_{2\times 2}(\overline{\mathbb{Q}})$ where A depends on the height

$$g_1, \ldots, g_k \in SU(d) \cap \mathsf{Mat}_{d \times d}(\overline{\mathbb{Q}})$$

$$\Gamma = \langle g_1, \dots, g_k \rangle$$

Assume Γ topologically dense

$$Tf(x) = \sum (f(g_j x) + f(g_j^{-1} x))$$

THEOREM [B-G]

T has spectral gap

A SPECTRAL GAP PROPERTY FOR THE PROJECTIVE ACTION OF $SL_2(\mathbb{R})$

$$P_1(\mathbb{R}) \simeq \mathbb{T} = \mathbb{R} / \mathbb{Z}$$

 ρ = projective representation of $SL_2(\mathbb{R})$ on $L^2(\mathbb{T})$;

$$ho_g f = (au'_{g^{-1}})^{rac{1}{2}} (f \circ au_{g^{-1}})$$

THEOREM [B-Y] Given 0 < c < 1, there is

 $k_0 \in \mathbb{Z}_+$ such that the following holds.

Let $\mathcal{G} \subset SL_2(\mathbb{R})$, $|\mathcal{G}| = k > k_0$, generating freely the free group on k generators. Assume moreover

$$\|g-1\|<1/k$$
 for $g\in\mathcal{G}$

 $\|g-1\|>k^{-\ell/c}$ for $g\in W_\ell(\mathcal{G})\setminus\{1\}$ and ℓ arbitrary

Then

$$\left\| \frac{1}{2k} \sum_{g \in \mathcal{G}} (\rho_g f + \rho_{g-1} f) \right\|_2 \le \frac{1}{2} \|f\|_2$$

provided $f \perp V$, where

$$V = [e(n\theta); |n| < K] \subset L^2(\mathbb{T}), K = K(k)$$

MOTIVATIONS

Theoretical computer science

Absolute continuity of Furstenberg measures

The Anderson-Bernoulli model in Physics

DEFINITION A monotone expander is a finite family Ψ of maps ψ from a sub-interval of [0,1] to [0,1] such that

• There is a constant c>0 such that for any $A\subset [0,1],\ |A|\leq \frac{1}{2}$

$$|\Psi(A)| \ge (1+c)|A|$$
 $\Psi(A) = \bigcup_{\psi \in \Psi} \psi(A)$

ullet Every $\psi \in \Psi$ is continuous and monotone

THEOREM [B-Y] There exists (explicit) monotone expanders

MAIN INGREDIENT: Projective action of family \mathcal{G} satisfying previous theorem

DIMENSIONAL EXPANDERS

DEFINITION \mathbb{F} = field. A dimension expander over \mathbb{F}^n is a constant number of matrices $M_1, \ldots M_k$ in $\mathbb{F}^{n \times n}$ for which there is a constant c > 0 (c, k) independent of n) such that

$$\dim[M_1(V) \cup \cdots \cup M_k(V)] > (1+c) \dim V$$

for any subspace V of \mathbb{F}^n , $\dim V \leq \frac{n}{2}$

For char $\mathbb{F}=0$, existence proven by **Lubotzky-Zelmanov** using property τ

Dvir-Shpilka, Dvir-Wigderson monotone expanders ⇒ dimensional expanders

COROLLARY Existence of dimension expanders for arbitrary fields

PUSHDOWN GRAPHS AND TURING MACHINES

DEFINITION (Pippenger, Paul-Pippenger-Szemeredi-Trotter)

A d-pushdown graph is a graph on an ordered set of vertices such that when ordered along the spine of a book, the edges can be drawn on d pages and in each page the edges do not touch

Hopcroft-Paul-Valiant Relation to complexity and Turing machines

Dvir-Wigderson Relation to monotone expanders

COROLLARY 4 There exists (explicit) d-pushdown expanders

⇒ no sub-linear size separators

THEOREM (Lipton-Tarjan) Planar graphs have $0(\sqrt{n})$ -size separators

FURSTENBERG MEASURES

 $\nu =$ probability measure on $SL_2(\mathbb{R})$ with proximal and strongly irreducible action.

Furstenberg measure μ is a unique ν -stationary measure on $P_1(\mathbb{R})$, i.e.

$$\int f d\mu = \sum_{g} \nu(g) \int (f \circ \tau_g) d\mu$$

PROBLEM: (Kaimanovich-Le Prince)

Can the Furstenberg measure of a finitely supported (symmetric) probability measure on $SL_2(\mathbb{R})$ be absolutely continuous?

ANSWER: YES

THEOREM There are examples with $\frac{d\mu}{d\sigma}$ arbitrarily smooth

Barany-Pollicott-Simon: Examples of ac-stationary measures for **non-symmetric** random walks

SPECTRAL THEORY OF LATTICE SCHRÖDINGER OPERATORS

$$H = \Delta + \lambda V$$
 on \mathbb{Z}

$$\Delta(i,j) = \begin{cases} 1 & \text{if } |i-j| = 1 \\ 0 & \text{otherwise} \end{cases}$$
 (lattice Laplacian)

 $V = \sum V_i \delta_i$ with V_i chosen independently according to distribution μ

 λ = coupling

Introduced by **Anderson** to model transport in inhomogenous media

THEOREM (Frohlich-Spencer)

In 1D, at any disorder $\lambda \neq 0$, for almost all realization of V, H has pure point spectrum with exponentially decaying eigenfunctions

(Anderson Localization)

CONJECTURES

2D AL

3D An ac-component in the bulk of the spectrum (AL persists for large λ and at edge of the spectrum)

THEOREM (Simon-Taylor, 85)

Assume V distributed according to measure μ on \mathbb{R} , $\mu\ll$ Lebesgue and $\frac{d\mu}{dx}\in L^1_{\alpha}$ for some $\alpha>0$

Then the integrated density of states k of H is C^{∞}

THEOREM (Germinet-Klopp, 2011)

Same assumption on V. Then local eigenvalue statistics of H are Poisson

THEOREM (B, 2011)

Same conclusions hold if dim $\mu > 0$ (Holder potentials)

PROBLEM What happens in the Bernoulli case for small λ ?

DENSITY OF STATES OF THE ANDERSON-BERNOULLI MODEL

 \mathcal{N} = Integrated density of sates (IDS) $\frac{d\mathcal{N}}{dE} = k$

THEOREM \mathcal{N} is Hölder regular

- Carmona-Klein-Martinelli (87) Le Page's method
- Shubin-Vakilian-Wolff (88) Several proofs using harmonic analysis and the uncertainty principle

HALPERIN: \mathcal{N} is not Hölder continuous of any order

$$\alpha > \frac{2 \log 2}{Arccosh(1+\lambda)}$$

CONJECTURE For λ sufficiently small, k is bounded and becomes arbitrary smooth for $\lambda \to 0$

THEOREM [B, 012] $\alpha(\lambda) \rightarrow 1$ for $\lambda \rightarrow 0$

THEOREM [B, 013] Let H_{λ} be the Anderson-Bernoulli Hamiltonian with coupling λ and restrict the energy $|E| < 2-\delta$ for some fixed $\delta > 0$.

Given a constant C > 0 and $s \in \mathbb{Z}_+$, there is $\lambda_0 = \lambda_0(C, s)$ such that $\mathcal{N}(E)$ is C^s -smooth provided λ satisfies the following conditions

- $|\lambda| < \lambda_0$
- λ is an algebraic number of degree d < C and minimal polynomial $P_d(x) \in \mathbb{Z}[X]$ with coefficients bounded by $\left(\frac{1}{\lambda}\right)^C$
- λ has a conjugate λ' of modulus $|\lambda'| \geq 1$

RELATION TO $SL_2(\mathbb{R})$: SCHRÖDINGER COCYCLES THE TRANSFER MATRIX FORMALISM

Equation
$$H\xi=E\xi$$
 equivalent to $\begin{pmatrix} \xi_{n+1} \\ \xi_{n} \end{pmatrix}=M_{N}(E) \begin{pmatrix} \xi_{1} \\ \xi_{0} \end{pmatrix}$

$$M_N(E) = \begin{pmatrix} E - \lambda V_N & -1 \\ 1 & 0 \end{pmatrix} \cdots \begin{pmatrix} E - \lambda V_1 & -1 \\ 1 & 0 \end{pmatrix}$$

LYAPOUNOV EXPONENT $L(E) = \lim_{N \to \infty} \frac{1}{N} \log \|M_N(E)\|$

THOULESS FORMULA $L(E) = \int \log |E - E'| d\mathcal{N}(E')$

A NEW SPECTRAL GAP

Take λ as above and E arbitrary. Set

$$g_{+} = \begin{pmatrix} E + \lambda & -1 \\ 1 & 0 \end{pmatrix} \qquad g_{-} = \begin{pmatrix} E - \lambda & -1 \\ 1 & 0 \end{pmatrix}$$

$$h_1 = g_+ g_-^{-1} = \begin{pmatrix} 1 & 2\lambda \\ 0 & 1 \end{pmatrix}$$
 $h_2 = g_+^{-1} g_- = \begin{pmatrix} 1 & 0 \\ 2\lambda & 1 \end{pmatrix}$

 $V = [e(n\theta); |n| < K]$ with $K = K(\lambda)$ sufficiently large

PROPOSITION $||f - \rho_{h_1} f||_2 + ||f - \rho_{h_2} f||_2 \ge \lambda^{\tau} ||f||_2$ for $f \in V^{\perp}$ and where τ can be made arbitrarily small when $\lambda \to 0$

COROLLARY $||f - \rho_{g_+} f||_2 + ||f - \rho_{g_-} f||_2 \ge \frac{1}{2} \lambda^{\tau} ||f||_2$ for $f \in V^{\perp}$

$$\leftrightarrow \|f - \rho_{g_+} f\|_2 + \|f - \rho_{g_-} f\|_2 \ge c\lambda \|f\|_2 \text{ for all } f \in L^2(\mathbb{T})$$

SKETCH OF THE PROOF

LEMMA (Sanov, Brenner) If $|\mu| \geq 2$, then the group generated by

is free
$$A=\begin{pmatrix}1&\mu\\0&1\end{pmatrix} \ \ \text{and} \ \ B=\begin{pmatrix}1&0\\\mu&1\end{pmatrix}$$

Since λ has conjugate λ' , $|\lambda'| > 1$, it follows that h_1, h_2 generate a free group

Set
$$k = \lambda^{-\tau}$$
 and $\mathcal{G} = \{h_1^{\ell} h_2^{\ell}; 1 \leq \ell \leq k\} \subset SL_2(\mathbb{R})$

Then $\mathcal G$ are free generators of free group F_k and satisfies conditions of the expansion theorem (DC follows from height considerations going back to [G-J-S])

Hence for $f \in V^{\perp}$, $||f||_2 = 1$

$$\max_{g \in \mathcal{G}} \|f - \rho_g f\|_2 > \frac{1}{2} \Rightarrow \|f - \rho_{h_1} f\|_2 + \|f - \rho_{h_2} f\|_2 > \frac{1}{2k}$$

FREE GROUPS GENERATED BY PAIRS OF PARABOLIC ELEMENTS

$$\left\langle \begin{pmatrix} 1 & \mu \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ \mu & 1 \end{pmatrix} \right\rangle \leftrightarrow G_{\lambda} = \left\langle \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ \lambda & 1 \end{pmatrix} \right\rangle \text{ for } \mu^2 = 2\lambda$$

DEFINITION $\lambda \in \mathbb{C}$ is called **FREE** if G_{λ} is a free group

THEOREM λ *is free in the following cases*

- $|\lambda| \geq 2$ (Brenner, 55; Sanov, 47)
- $|\lambda| \ge 1, |\lambda \pm 1| \ge 1$ (Chang-Jennings-Ree, 58)
- $\lambda \pm \frac{i}{2} | \geq \frac{1}{2}, |\lambda \pm 1| \geq 1$ (Lyubich-Suvorov, 69)
- $\lambda \notin \text{convhull } (|z| = 1, \pm 2)$ (----)
- $|\lambda 1| > \frac{1}{2}$ and $1 \le |\text{Re }\lambda| < \frac{5}{4}$ (Ignatov, 76)
- $|\lambda| > 1$ and $|\operatorname{Im} \lambda| \geq \frac{1}{2}$ (——, 79)

Algebraic free points are dense in ℂ (C-J-R, 58)

Known free points in the complex plane (unshaded)

AVERAGING OPERATORS

Set

$$A = \frac{1}{3} (I + \rho_{(g_+)^{-1}} + \rho_{(g_-)^{-1}})$$

It follows that

$$||Af||_2 \le (1 - \lambda^{2\tau})||f||_2 \text{ for } f \in V^{\perp}$$

Switch to polar coordinates. Fix $E, |E| < 2 - \delta$ and set $E = 2 \cos \kappa$ (0 < κ < π). Conjugate with

$$S = \frac{1}{(\sin \kappa)^{\frac{1}{2}}} \begin{pmatrix} 1 & -\cos \kappa \\ 0 & \sin \kappa \end{pmatrix}$$

$$\Rightarrow \tilde{g}_{\pm} = Sg_{\pm}S^{-1} = \begin{pmatrix} \cos \kappa & -\sin \kappa \\ \sin \kappa & \cos \kappa \end{pmatrix} \pm \lambda \begin{pmatrix} 1 & \frac{\cos \kappa}{\sin \kappa} \\ 0 & 0 \end{pmatrix}$$

and

$$\begin{split} \|\widetilde{A}f\|_2 &\leq (1-\lambda^{2\tau})\|f\|_2 \text{ for } f \in V_1^\perp \\ \Rightarrow \left\|\frac{1}{3} \left(f+f \circ \tau_{\widetilde{g}_+} + f \circ \tau_{\widetilde{g}_-}\right)\right\|_2 &\leq (1-\lambda^{2\tau})\|f\|_2 \text{ since } \tau_{\widetilde{g}}' = 1 + O(\lambda) \end{split}$$

SMOOTHING ESTIMATES

Set

$$\tilde{T}f = \frac{1}{3} \left(f + f \circ \tau_{\tilde{g}_{+}} + f \circ \tau_{\tilde{g}_{-}} \right)$$

satisfying

$$\|\tilde{T}g\|_{\infty} \le \|f\|_{\infty}$$

and

$$\|\tilde{T}f\|_2 \le (1 - \lambda^{2\tau})\|f\|_2 \text{ for } f \in V_1^{\perp}$$

LEMMA For $|\lambda| < \lambda(s)$ and $f \in H^s(\mathbb{T})$,

$$\|(\tilde{T})^m f\|_{H^s} \le C\|f\|_2 + e^{-cm}\|f\|_{H^s}$$

Since

$$\left(\tilde{T}(f \circ \tau_{S^{-1}})\right) \circ \tau_S = Tf = \frac{1}{3}(f + f \circ \tau_{g_+} + f \circ \tau_{g_-})$$

also

$$||T^m f||_{H^s} \le C||f||_2 + e^{-cm}||f||_{H^s}$$

USE OF LARGE DEVIATION ESTIMATES

PROPOSITION Let

$$\mu = \frac{1}{2}(\delta_{g_+} + \delta_{g_-})$$

Then

$$\left\| \sum_{g} (f \circ \tau_g) \mu^{(\ell)}(g) - \int f d\nu \right\|_{\infty} \le C e^{-c\ell} \|f\|_{C^1}$$

COROLLARY

$$||T^{\ell}f - \int f d\nu||_{\infty} \le Ce^{-c\ell}||f||_{C^{1}}$$

Together with the LEMMA, this implies

COROLLARY

$$||(T^{\ell}f)'||_{H^s} \le Ce^{-c\ell}||f||_{H^{s+1}}$$

SMOOTHNESS OF LYAPOUNOV EXPONENT AND DENSITY OF STATES

Recall that by Thouless' formula, L(E) and the IDS $\mathcal{N}(E)$ are related by the Hilbert transform

Also

$$L(E) = \int \underset{\pm}{Av} \log \left\| \begin{pmatrix} E \pm \lambda & -1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} \cos \theta \\ \sin \theta \end{pmatrix} \right\| \mu_E(d\theta) = \int \Phi_E(\theta) \mu_E(d\theta)$$

Since

$$(T_E)^{\ell} \Phi_E \to L(E)$$

it will suffice to establish bounds on $\partial_E^{(\alpha)}(T_E^\ell \Phi_E)$ which are uniform in ℓ .

Chain rule and $\partial_E \tau_g = -\sin^2 \tau_g$ implies

$$\partial_E(T_E^{\ell}\Phi_E) = T^{\ell}(\partial_E\Phi_E) - \sum_{m=1}^{\ell} T^{\ell-m+1}[(T^{m-1}\Phi_E)'\sin^2\theta]$$

$$|\partial_E (T_E^{\ell} \Phi_E)| < C + \sum_m ||(T^{m-1} \Phi_E)'||_{\infty} < \sum_E e^{-cm} < C$$

Higher order derivatives estimated similarly

LOCAL EIGENVALUE STATISTICS

Assume H has bounded density of states.

Denote H_N the restriction of H to [1, N] with Dirichlet bc

The following statement improves the **GERMINET-KLOPP** result in 1D

THEOREM Assume

- Furstenberg measures are absolutely continuous with bounded density
- Density of states k is continuous

Fix $E_0 \in \mathbb{R}$ and $I = \left[E_0, E_0 + \frac{L}{N}\right]$ where we let first $N \to \infty$ then $L \to \infty$. The rescaled eigenvalues $\{N(E - E_0)\mathbf{1}_I(E)\}_{E \in Spec H_N}$ obey Poisson statistics

COROLLARY For suitable λ , the local eigenvalue statistics of the Anderson-Bernoulli Hamiltonian H_{λ} are Poisson

WEGNER AND MINAMI ESTIMATES

Assume H satisfies conditions of the Theorem

Let
$$N \in \mathbb{Z}_+$$
 be large, $I = [E_0 - \delta, E_0 + \delta]$ with $\log \frac{1}{\delta} < \sqrt{N}$

PROPOSITION (Wegner type estimate)

$$\mathbb{E}[Tr1_I(H_N)] = Nk(E_0)|I| + O\left(N\delta^2 + \delta \log^2\left(N + \frac{1}{\delta}\right)\right)$$

PROPOSITION (Minami type estimate)

 $\mathbb{E}[H_N \text{ has at least two eigenvalues in } I] \leq$

$$CN^2\delta^2 + C\delta\log\left(N + \frac{1}{\delta}\right)$$

POISSON STATISTICS (SKETCH)

3 ingredients

- Anderson localization
- Wegner estimate
- Minami estimate

$$\lambda = [1, N] = \Lambda_1 \cup \Lambda_{1,1} \cup \Lambda_2 \cup \Lambda_{2,1} \cup \dots$$

$$|\Lambda_{\alpha}| = M \sim (\log N)^4$$

 $|\Lambda_{\alpha,1}| = M_1 \sim (\log N)^3$

 $\mathcal{E}_{\alpha} = \text{eigenvalues of } H_{\Lambda} \text{ with center of localization in } \Lambda_{\alpha}$

$$\operatorname{Spec} H_{\Lambda} = \bigcup_{\alpha} \mathcal{E}_{\alpha} \cup \bigcup_{\alpha} \mathcal{E}_{\alpha,1}$$

 Λ'_{α} = neighborhood of Λ_{α} of size $(\log N)^2$

Anderson localization implies that (with high probability)

$$\operatorname{dist}\left(E,\;\operatorname{Spec}\,H_{\mathsf{\Lambda}'_{\alpha}}\right)<\tfrac{1}{N^A}\;\mathrm{for}\;\;E\in\mathcal{E}_{\alpha}$$

dist
$$(E, \operatorname{Spec} H_{\Lambda'_{\alpha,1}}) < \frac{1}{N^A} \text{ for } E \in \mathcal{E}_{\alpha,1}$$

Set
$$I = [E_0, E_0 + \frac{L}{N}]$$

Wegner
$$\Rightarrow \mathbb{E}[|\bigcup_{\alpha} \mathcal{E}_{\alpha,1} \cap I|] \leq \sum_{\alpha} \mathbb{E}[Tr1_{\tilde{I}}(H_{\Lambda'_{\alpha,1}})] < C\frac{N}{M}M_1\delta < C\frac{L}{\log N} < o(1)$$

$$Minami \Rightarrow$$

$$\sum_{\alpha} \mathbb{E}[H_{\Lambda'_{\alpha}}]$$
 has two eigenvalues in I]

$$< C\frac{N}{M} \left(M^2 \left(\frac{L}{N} \right)^2 + \frac{L}{N} \log N \right) < C\frac{L}{M} \log N < o(1)$$

Introduce (partially defined) random variables

$$E_{\alpha} = \sum_{E \in \operatorname{Spec} H_{\Lambda'_{\alpha}}} E \, \mathbf{1}_I(E) \quad \operatorname{provided} \quad |\operatorname{Spec} H_{\Lambda'_{\alpha}} \cap I| \leq 1$$

Then $\{E_{\alpha}\}$ take values in I, are independent and have the same distribution

Let $J \subset I$ be an interval, $|J| \sim \frac{1}{N}$

$$\mathbb{E}[1_J(E_\alpha)] = \mathbb{E}[Tr1_J(H_{\Lambda'_\alpha})] + O\left(\frac{\log N}{N}\right)$$

$$= (M + O(\log^2 N)) \left(k(E_0) + o(1)\right) |J| + O\left(\frac{\log N}{N}\right)$$

$$= Mk(E_0) |J| \left(1 + O\left(\frac{1}{\log N}\right)\right)$$