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The weakly self-avoiding walk (or undirected polymer)

� X(T ): continuous-time simple random walk (SRW) on Z
d, X(0) = 0

� Intersection local time of X up to time T :

I(T ) =

∫ T

0

∫ T

0
1X(S1)=X(S2) dS1 dS2 =

∑

x∈Zd

Lx(T )2

where Lx(T ) is the time spent at x by X[0, T ] (local time).

� Polymer measure for weakly self-avoiding walk (SAW): Given g > 0,

Pg,T (dX) =
1

Zg,T
e−gI(T ) P0,T (dX)

where P0,T is the law of SRW of length T .

� Universality conjecture: long-time behavior is independent of g > 0
(including strictly self-avoiding walk); known for d = 1 and d ≥ 5.



Distribution of the endpoint

End-to-end distance:

(

Eg,T |X(T )|2
)

1

2 ∼ [?] as T → ∞

Fixed T partition functions and their Laplace transforms:

� Normalization and susceptibility:

ZT = E(e−gI(T )), χ(ν) =

∫ ∞

0
ZT e

−νT dT

� Unnormalized endpoint distribution and two-point function:

ZT (x) = E(e−gI(T )1X(T )=x), Gν(x) =

∫ ∞

0
ZT (x)e

−νT dT

Critical point. ZT+S ≤ ZTZS , as a consequence there is νc(g) such that

ZT = eTνc(g)(1+o(1)) as T → ∞.



The dependence on dimension

� d = 1: Ballistic behavior. Trivial for strictly self-avoiding walk, large
deviation statements proved for weakly self-avoiding walk (Greven, den
Hollander, v.d. Hofstad). In particular,

ET |X(T )|2 ∼ cT 2.

� d ≥ 5: Diffusive behavior. Proved for weakly and strictly
self-avoiding walk (Brydges–Spencer, Hara–Slade, Hara):

ET |X(T )|2 ∼ cT, χ(νc + ε) ∼ cε−1, Gνc(x) ∼ c|x|−(d−2).

� 2 ≤ d ≤ 4: Predicted to be super-diffusive and sub-ballistic.

Proved for strictly SAW (Madras(l), Duminil-Copin–Hammond(u)):

1
6T

4

3d

(l)

≤ ET |X(T )|2
(u)

≤ o(T 2)

Not proved:

T ≤ O(ET |X(T )|2), ET |X(T )|2 ≤ O(T 2−ε)



The dependence on dimension

Non-rigorous predictions in d = 2 and d = 4:

� d = 2: Nienhuis, Lawler–Schramm–Werner:

ET |X(T )|2 ∼ cT
3

2 , χ(νc + ε) ∼ cε−
43

32 , Gνc(x) ∼ c|x|−
5

24 .

Evidence that scaling limit is SLE8/3 (Lawler–Schramm–Werner).

� d = 3: –

� d = 4: Brézin, Le Guillou, Zinn-Justin, ...:

ET |X(T )|2 ∼ cT (log T )
1

4 ,

χ(νc + ε) ∼ cε−1(log ε−1)
1

4 , Gνc(x) ∼ c|x|−2.

Heuristically, two exponents determine the third (“Fisher’s relation”).



Main result

Theorem (with Brydges-Slade). For d = 4 and g > 0 small,

χ(νc + ε) ∼ Agε
−1(log ε−1)

1

4 (ε ↓ 0). (∗)

As g ↓ 0,

Ag = (g/(2π2))
1

4 (1 +O(g)), νc(g) = −2G0,0(0)g +O(g2).

Immediately related results:

� Brydges–Slade: Proof of Gνc(x) ∼ c|x|−2 in d = 4. Proof of theorem for
susceptibility extends techniques developed for two-point function.

� Bovier–Felder–Fröhlich (1984): If Gνc(x) ∼ c|x|−2 then there can be at
most a logarithmic correction for χ in d = 4.



Selected related results

Logarithmic corrections:

� Brydges–Evans–Imbrie and Brydges–Imbrie (1992, 2003): Proof of
similar results for two-point function and end-to-end distance for
weakly self-avoiding walks on 4D hierarchical groups.

� Hara–Tasaki (1986, with method of Gawedzki–Kupiainen): Proof of
similar logarithmic corrections for (scalar) ϕ4 spin model on Z

4

(different exponents)

� Lawler (1986, 1995): Loop-erased random walk on Z
4 has logarithmic

corrections (but different exponents).

Decay of critical two-point function for related models:

� Gawedzki–Kupiainen (ϕ4), Feldman–Rivasseau–Magnen–Sénéor (ϕ4),
Iagolnitzer–Magnen (Edwards model)



Intersections of simple random walks and criticality of d = 4

� Expected intersection time of two independent simple random walks:

∫ ∞

0

∫ ∞

0
E(1X(T )=Y (S)) dT dS

{

= ∞ (d ≤ 4),

<∞ (d > 4).

Thus d = 4 is critical. As m2 ↓ 0,

Bm2 =

∫ ∞

0

∫ ∞

0
E(1X(T )=Y (S))e

−m2T e−m2S dT dS ∼











cm−(4−d) (d < 4),

c logm−2 (d = 4),

c (d > 4).

� Bm2 is also called the bubble diagram for the simple random walk:

Bm2 =
∑

x∈Zd

Cm2(x)2, Cm2(x) = (−∆Zd +m2)−1
0,x.



Supersymmetry

Let A = (Axy)
M
x,y=1: matrix with positive definite real part. Then:

(A−1)xy = (detA)−1

∫

CM

φ̄xφy exp

{

−

M
∑

x,y=1

Axyφ̄xφy

} M
∏

x=1

dφ̄x dφx
2πi

View dφx and dφ̄x as differential forms. Then this can be written as:

(A−1)xy =

∫

CM

φ̄xφy exp

{

−
M
∑

x,y=1

Axy

(

φ̄xφy +
1

2πi
dφ̄x ∧ dφy

)}

(S)

where the integral is over the top degree part of the differential form, and
∧ is the anticommuting wedge product.

The right-hand side of (S) has many properties of the ordinary Gaussian
measure, but it is also possible to integrate more general differential forms.



Supersymmetry

Suppress wedge product ∧ and set

ψx = (2πi)−1/2dφx, ψ̄x = (2πi)−1/2dφ̄x.

Then (S) reads

(A−1)xy =

∫

CM

φ̄xφy exp

{

−
M
∑

x,y=1

Axy

(

φ̄xφy + ψ̄xψy

)

}

Interpret ψx as anticommuting analogue of φx, a Fermionic field. The
above is also known as the Berezin integral. The analogues of random
variables are differential forms. These are polynomial in ψ.

Apply to A = −∆+ ν + iV , with −∆ the discrete Laplace operator and
iV imaginary potential. On the other hand, A−1 can be written as
two-point function of simple random walk. Then take Vx i.i.d. Gaussian
and expectation.



Integral representation

Thus (on finite graph Λ)

∫ ∞

0
Ex(e

−g
∑

x Lx(T )21X(T )=y) e
−νT dT =

∫

CΛ

φ̄xφye
−

∑
x(τ∆,x+ντx+gτ2x)

where
τx = φ̄xφx + ψ̄xψx, τ∆,x = φ̄x(∆φ)x + ψ̄x(∆ψ)x.

RHS is SUSY version of two-point function of |φ|4 spin model.

SUSY representation can be seen as well-defined implementation of
“n→ 0” limit of n-component |ϕ|4 (or n-vector) model of de Gennes
(Parisi–Sourlas, McKane).

Resembles n-component |ϕ|4 model, but probabilistic tools not available
(e.g., reflection positivity and infrared bound of Fröhlich–Simon–Spencer).

Always work on finite torus Λ = ΛN = Z
d/LN

Z
d (with uniformity in N).



Extension to |ϕ|4 model on Z
4 (with Brydges–Slade)

Let d = 4 and g > 0 small.

Susceptibility. The susceptibility of the n-component |ϕ|4 model with
n = 1, 2, 3, . . . satisfies

χ(νc + ε) ∼ Agε
−1(log ε−1)

n+2

n+8 (ε ↓ 0).

Formally setting n = 0, the exponent of the logarithm becomes 1
4 .

Other results. For example, scaling limits to massive free fields with
scaling ν ↓ νc and Λ ↑ Z

d simultaneously.



Approximation by Gaussian measure

Ignoring Fermions (differential forms) for the moment,

e−
∑

x(|∇φx|2+ν|φx|2+g|φx|4) = e−
∑

x(|∇φx|2+ν|φx|2)e−
∑

x g|φx|4

But careful: νc < 0.



Approximation by Gaussian measure

Ignoring Fermions (differential forms) for the moment,

e−
∑

x(|∇φx|2+ν|φx|2+g|φx|4) = e−
∑

x(|∇φx|2+ν|φx|2)e−
∑

x g|φx|4

But careful: νc < 0.

More generally, for any m2 > 0,

e−
∑

x(|∇φx|2+ν|φx|2+g|φx|4) = e−
∑

x(|∇φx|2+m2|φx|2)e−
∑

x((ν−m2)|φx|2+g|φx|4)



Approximation by Gaussian measure

Ignoring Fermions (differential forms) for the moment,

e−
∑

x(|∇φx|2+ν|φx|2+g|φx|4) = e−
∑

x(|∇φx|2+ν|φx|2)e−
∑

x g|φx|4

But careful: νc < 0.

More generally, for any m2 > 0, z0 > −1,

e−
∑

x(|∇φx|2+ν|φx|2+g|φx|4) = e−
∑

x(|∇ϕx|2+m2|ϕx|2)e−
∑

x(z0|∇ϕx|2+ν0|ϕx|2+g0|ϕx|4)

= e−(ϕ̄,Aϕ)Z0(ϕ)

with A = −∆+m2 and

ϕ = (1 + z0)
−1/2φ, g0 = g(1 + z0)

2, ν0 = (1 + z0)ν −m2.

The Gaussian measures with covariances (−∆+m2)−1 will indeed play a
fundamental role, but m2 and z0 are not known yet.



Generating functional. Translation of Gaussian measure.

Recall:

e−
∑

x(|∇φx|2+ν|φx|2+(g|φx|4) = e−(ϕ̄,Aϕ)Z0(ϕ), ϕ = (1 + z0)
−1/2φ.

Study the generating functional (where C = A−1 = (−∆+m2)−1):

Σ(f) =

∫

e(f̄ ,φ)+(f,φ̄)e−(φ̄,Aφ)Z0(φ)

= e(f,Cf)

∫

e−(φ̄,Aφ)Z0(φ+ Cf) = e(f,Cf)
ECZ0(φ+ Cf)

The susceptibility can be written in terms of Σ as

χ(g, ν) =
∑

x

∫

φ̄0φxe
−

∑
x(|∇φx|2+ν|φx|2+(g|φx|4) =

1 + z0
|Λ|

D2Σ(0; 1, 1),

where 1 is the constant test function 1x = 1 for all x ∈ Λ.



Generating functional. Translation of Gaussian measure.

Recall:

e−
∑

x(|∇φx|2+ν|φx|2+(g|φx|4) = e−(ϕ̄,Aϕ)Z0(ϕ), ϕ = (1 + z0)
−1/2φ.

Study the generating functional (where C = A−1 = (−∆+m2)−1):

Σ(f) =

∫

e(f̄ ,φ)+(f,φ̄)e−(φ̄,Aφ)Z0(φ)

= e(f,Cf)

∫

e−(φ̄,Aφ)Z0(φ+ Cf) = e(f,Cf)
ECZ0(φ+ Cf)

Convolution:
ZN (φ) = ECθZ0(φ) := ECZ0(φ+ ζ)

Then:

χ(g, ν) =
1 + z0
|Λ|

D2Σ(0; 1, 1) =
1 + z0
m2

+
1 + z0
|Λ|m4

D2ZN (0; 1, 1)

where 1 is the constant test function 1x = 1 for all x ∈ Λ.



Semigroup structure of Gaussian measures

Covariance C = A−1 −→ PC : Gaussian measure with covariance C.

Semigroup property: C +C ′ −→ PC ∗PC′ . (Remains true with Fermions.)

Equivalently: if φ ∼ PC and φ′ ∼ PC′ (independent) then φ+ φ′ ∼ PC+C′ .

Finite range decomposition for (−∆ΛN
+m2)−1 with ΛN = Z

d/LN
Z
d:

(−∆ΛN
+m2)−1 = C1 + C2 + · · ·+ CN

exists, with smooth dependence in m2 > 0, and the following properties
(B., 2013; also BGM 2003):

� Cj is positive definite,

� [Cj ]xy = 0 if |x− y| > 1
2L

j ,

� Cj is independent of N if j < N ,

� |[∇sCj ]xy| ≤ O(L−(d−2)(j+s−1)).

(B., 2013) Construction using finite propagation speed of wave equation
for general elliptic operators (continuum) and discrete elliptic operators.



Wilson’s renormalization group

As formal power series,

EC1
θe−

∑
x(z0|∇φx|2+ν0|φx|2+(g0|φx|4) ≈ EC1

θ

(

1−
∑

x

g0|φx|
4 + · · ·

)

(P)

≈ e−
∑

x(z1|∇φx|2+ν1|φx|2+(g1|φx|4)+remainder

where remainder consists of non-local and higher-order terms.

Wilson’s insight: Terms that are sufficiently non-local or high-degree
are contractive (irrelevant).

Example: In d = 4, since [Cj ]xy ≈ L−(d−2)j = L−2j , φx ≈ Var(φx)
1

2 ≈ L−j ,

∑

|x|≤Lj

|φx|
p ≈ LdjL− d−2

2
jp = L−(p−4)j











irrelevant (p > 4),

marginal (p = 4),

relevant (p < 4).

RHS of (P) is general local field polynomial respecting symmetries,
consisting only of relevant and marginal monomials.



Wilson’s renormalization group

As formal power series,

EC1
θe−

∑
x(z0|∇φx|2+ν0|φx|2+(g0|φx|4) ≈ EC1

θ

(

1−
∑

x

g0|φx|
4 + · · ·

)

(P)

≈ e−
∑

x(z1|∇φx|2+ν1|φx|2+(g1|φx|4)+remainder

where remainder consists of non-local and higher-order terms.

Wilson’s insight: Terms that are sufficiently non-local or high-degree
are contractive (irrelevant).

Normalization: µj = L2jνj .

Dynamical systems picture:

(gj , µj , zj ,Kj) 7→ (gj+1, µj+1, zj+1,Kj+1)

where Vj = (gj , µj , zj) is expanding or marginal and Kj is contracting.

How can Kj be controlled? How does this dynamical system behave?



Remainder estimate

Kind of Taylor remainder formula with local structure:

Zj(φ) =
∑

X⊂Λ

Ij(Λ \X,φ)Kj(X,φ), ZN (φ) = IN (Λ, φ) +KN (Λ, φ).

Ij is second order in Vj (∼ perturbative analysis), Kj is estimated by a
complicated norm in which it is contractive and third-order.

Locality properties: X are unions of blocks of side length Lj and

Ij(X) factors over blocks, Kj(X) factors over connected components.

Such estimates were developed to study the two-point function by
Brydges–Slade. We use this.

Such approximations understood in many problems but still challenging.
Most relevant references: Dipole gas (Brydges–Yau), Hierarchical model
(Brydges–Evans-Imbrie), Dipole Gas Park City Lectures (Brydges),
Coulomb gas, quantum field theory, ∇φ interface models, ...



Phase portrait

Study the dynamical system: (Vj+1,Kj+1) = Φm2

j (Vj ,Kj), for each m
2.

Fixed point: Φj(0, 0) = (0, 0), free field or simple random walk.

Phase portrait of dynamical system near a hyperbolic fixed point:

stable manifold fixed point

unstable manifold

Difficulty: Fixed point is not hyperbolic, but picture remains true.



Massless and massive stable trajectories

Usual heuristics of renormalization group:

� critical point (massless) ↔ stable manifold.

� subcritical points (massive) ↔ unstable trajectories.

Our implementation is slightly different (a hybrid solution):

� To remain close to the fixed point (perturbative regime), we consider
only stable trajectories in the infinite volume limit.

To study the the subcritical case, rather than moving off the critical
trajectory, we perturb the dynamical system to find new critical
trajectories corresponding to massive free fields.

� On the other hand, changes of the stable manifold with the mass
parameter are difficult to study directly (e.g., loss of regularity).

Solution: in finite volume (thus finite trajectories), study infinitesimal
change of trajectories (derivatives) in initial condition for fixed mass.



The mass parameter

For any m2 > 0, z0 > −1, setting g0 = (1 + z0)
2g, ν0 = (1 + z0)ν −m2,

χ(g, ν) = (1 + z0)D
2Σ(0; 1, 1) =

1 + z0
m2

+
1 + z0
|ΛN |m4

D2ZN (0; 1, 1).

where ZN (φ) = ECθe
−

∑
x(z0|∇φx|2+ν0|φx|2+g0|φx|4) and C = (−∆Λ +m2)−1.



The mass parameter

For any m2 > 0, z0 > −1, setting g0 = (1 + z0)
2g, ν0 = (1 + z0)ν −m2,

χ(g, ν) = (1 + z0)D
2Σ(0; 1, 1) =

1 + z0
m2

+
1 + z0
|ΛN |m4

D2ZN (0; 1, 1).

where ZN (φ) = ECθe
−

∑
x(z0|∇φx|2+ν0|φx|2+g0|φx|4) and C = (−∆Λ +m2)−1.

Stable manifold. For g0 > 0, m2 > 0, there exist (z0, ν0) = (zc0, ν
c
0) with

lim
N→∞

|ΛN |−1D2ZN (0; 1, 1) = 0 (equality!) (∗)

Derivative orthogonal to stable manifold.

lim
N→∞

∂

∂ν0
|ΛN |−1D2ZN (0; 1, 1) ∼ c(logm−2)−

1

4 (m2 ↓ 0). (∗∗)

Leads to:
χ′(ν) ∼ cχ(ν)2(− logχ(ν))−

1

4 as ν ↓ νc.



Source of logarithmic correction

Dynamical system:

gj+1 = gj − βjg
2
j + · · · [marginal]

µj+1 = L2

(

1−
1

4
βjgj

)

µj + · · · [expanding]

The coefficients are m2-dependent and

∞
∑

j=0

βj = 8Bm2 ∼
logm−2

2π2
, g∞ ∼

1

8Bm2

∼
2π2

logm−2
(m2 ↓ 0)

1−
1

4
βjgj = (1− βjgj)

1

4 (1 +O(gj)) =

(

gj+1

gj

)
1

4

(1 +O(gj)).

Thus:

∂

∂µ0

D2ZN (0; 1, 1)

|ΛN |
= lim

j→∞
L−2j ∂µj

∂µ0
∼ c

(

g∞
g0

)
1

4

∼ c(logm−2)−
1

4 (m2 ↓ 0).
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