Hartree-Fock dynamics for weakly interacting fermions

Benjamin Schlein, University of Zurich

Princeton, February 19, 2014

Joint work with Niels Benedikter and Marcello Porta

Bosonic systems: described by

$$
H_{N}=\sum_{j=1}^{N}-\Delta_{x_{j}}+\lambda \sum_{i<j}^{N} V\left(x_{i}-x_{j}\right)
$$

acting on Hilbert space $L_{s}^{2}\left(\mathbb{R}^{3 N}\right)$ of symmetric wave functions.
Mean field regime: large number of weak collisions.
Realized when $N \gg 1,|\lambda| \ll 1, N \lambda \simeq 1$. Study Schrödinger evolution

$$
i \partial_{t} \psi_{N, t}=\left[\sum_{j=1}^{N}-\Delta_{x_{j}}+\frac{1}{N} \sum_{i<j}^{N} V\left(x_{i}-x_{j}\right)\right] \psi_{N, t}
$$

Trapped bosons: ground state approximated by $\varphi^{\otimes N}$, with φ determined by Hartree theory.

For this reason, it makes sense to study evolution of approximately factorized initial data

Dynamics: factorization approximately preserved

$$
\psi_{N, t} \simeq \varphi_{t}^{\otimes N}
$$

where φ_{t} solves Hartree equation

$$
i \partial_{t} \varphi_{t}=-\Delta \varphi_{t}+\left(V *\left|\varphi_{t}\right|^{2}\right) \varphi_{t}, \quad \text { with } \varphi_{t=0}=\varphi
$$

One-particle reduced density: defined by kernel

$$
\gamma_{N, t}^{(1)}(x ; y)=N \int d x_{2} \ldots d x_{N} \psi_{N, t}\left(x, x_{2}, \ldots, x_{N}\right) \bar{\psi}_{N, t}\left(y, x_{2}, \ldots, x_{N}\right)
$$

Theorem: under appropriate assumptions on potential

$$
\left.\operatorname{Tr}\left|\gamma_{N, t}^{(1)}-N\right| \varphi_{t}\right\rangle\left\langle\varphi_{t}\right| \mid \leq C e^{K|t|}
$$

Rigorous works: Hepp, Ginibre-Velo, Spohn, Erdős-Yau, Rodnianski-S., Fröhlich-Knowles-Schwarz, Knowles-PickI, Grillakis-Machedon-Margetis, Lewin-Nam-S. , . . .

Fermionic systems: described by Hamiltonian

$$
H_{N}=\sum_{j=1}^{N}-\Delta_{x_{j}}+\lambda \sum_{i<j} V\left(x_{i}-x_{j}\right)
$$

Scaling: kinetic energy is of order $N^{5 / 3} \Rightarrow$ take $\lambda=N^{-1 / 3}$
Velocities are order $N^{1 / 3} \Rightarrow$ consider times of order $N^{-1 / 3}$;

$$
i N^{1 / 3} \partial_{t} \psi_{N, t}=\left(\sum_{j=1}^{N}-\Delta_{x_{j}}+\frac{1}{N^{1 / 3}} \sum_{i<j}^{N} V\left(x_{i}-x_{j}\right)\right) \psi_{N, t}
$$

Set $\varepsilon=N^{-1 / 3}$. We find

$$
i \varepsilon \partial_{t} \psi_{N, t}=\left(\sum_{j=1}^{N}-\varepsilon^{2} \Delta_{x_{j}}+\frac{1}{N} \sum_{i<j}^{N} V\left(x_{i}-x_{j}\right)\right) \psi_{N, t}
$$

Hartree-Fock theory: consider trapped fermions, with

$$
H_{N}=\sum_{j=1}^{N}\left(-\varepsilon^{2} \Delta_{x_{j}}+V_{\mathrm{ext}}\left(x_{j}\right)\right)+\frac{1}{N} \sum_{i<j}^{N} V\left(x_{i}-x_{j}\right)
$$

Ground state \simeq Slater determinant, with reduced density ω_{N} minimizing the Hartree-Fock energy

$$
\begin{aligned}
\mathcal{E}_{\mathrm{HF}}\left(\omega_{N}\right)= & \operatorname{Tr}\left(-\varepsilon^{2} \Delta+V_{\mathrm{ext}}\right) \omega_{N} \\
& +\frac{1}{2 N} \int d x d y V(x-y)\left(\omega_{N}(x, x) \omega_{N}(y, y)-\left|\omega_{N}(x, y)\right|^{2}\right)
\end{aligned}
$$

Goal: show that evolution of Slater determinant is approximately a Slater determinant, with reduced density $\omega_{N, t}$ s.t.

$$
i \varepsilon \partial_{t} \omega_{N, t}=\left[-\varepsilon^{2} \Delta+\left(V * \rho_{t}\right)-X_{t}, \omega_{N, t}\right]
$$

However: cannot be true for arbitrary initial Slater determinants.

Semiclassical structure: consider system of free fermions in box \wedge, with volume one.

Ground state: is a Slater determinant

$$
\omega_{N}(x, y)=\sum_{k \in \mathbb{Z}^{3}:|k| \leq c N^{1 / 3}} e^{i k \cdot(x-y)} \simeq \varepsilon^{-3} \int_{|k| \leq c} d k e^{i k \cdot(x-y) / \varepsilon}
$$

Consequence: $\omega_{N}(x, y) \simeq \varepsilon^{-3} \varphi((x-y) / \varepsilon)$ concentrates close to diagonal.

General trapping potential: we expect (linear combination of)

$$
\omega_{N}(x, y) \simeq \varepsilon^{-3} \varphi\left(\frac{x-y}{\varepsilon}\right) g\left(\frac{x+y}{2}\right)
$$

Conclusion: Slater determinants like ω_{N} satisfy

$$
\begin{cases}\operatorname{Tr}\left|\left[x, \omega_{N}\right]\right| & \leq C N \varepsilon \\ \operatorname{Tr}\left|\left[\varepsilon \nabla, \omega_{N}\right]\right| & \leq C N \varepsilon\end{cases}
$$

Thomas-Fermi theory: reduced density of ground state of

$$
H_{N}=\sum_{j=1}^{N}\left(-\varepsilon^{2} \Delta_{x_{j}}+V_{\mathrm{ext}}\left(x_{j}\right)\right)+\frac{1}{N} \sum_{i<j}^{N} V\left(x_{i}-x_{j}\right)
$$

approximated by

$$
\omega_{N}(x, y)=\operatorname{Op}_{M}(x, y)=\frac{1}{(2 \pi \varepsilon)^{3}} \int d p M(p,(x+y) / 2) e^{i p \cdot(x-y) / \varepsilon}
$$

with phase-space density $M(p, q)=\chi\left(|p| \leq c \rho_{T F}^{1 / 3}(x)\right)$.
Thomas-Fermi density: $\rho_{\text {TF }}$ minimizes
$\mathcal{E}_{\mathrm{TF}}(\rho)=\frac{3}{5} \gamma \int d x \rho^{5 / 3}(x)+\int d x V_{\mathrm{ext}}(x) \rho(x)+\frac{1}{2} \int d x d y V(x-y) \rho(x) \rho(y)$.
Semiclassics: since $\left[x, \omega_{N}\right]=i \varepsilon \mathrm{Op}_{\nabla_{p} M},\left[\varepsilon \nabla, \omega_{N}\right]=\varepsilon \mathrm{Op}_{\nabla_{q} M}$,

$$
\begin{aligned}
& \operatorname{Tr}\left|\left[x, \omega_{N}\right]\right| \simeq \frac{\varepsilon}{(2 \pi \varepsilon)^{3}} \int d p d q\left|\nabla_{p} M(p, q)\right|=C N \varepsilon \int \rho_{\mathrm{TF}}^{2 / 3}(x) d x \leq C N \varepsilon \\
& \left.\operatorname{Tr} \mid \varepsilon \nabla, \omega_{N}\right] \left.\left|\simeq \frac{\varepsilon}{(2 \pi \varepsilon)^{3}} \int d p d q\right| \nabla_{q} M(p, q)\left|=C N \varepsilon \int\right| \nabla \rho_{\mathrm{TF}}(x) \right\rvert\, d x \leq C N \varepsilon
\end{aligned}
$$

Fock space: we introduce

$$
\mathcal{F}=\bigoplus_{n \geq 0} L_{a}^{2}\left(\mathbb{R}^{3 n}, d x_{1} \ldots d x_{n}\right)
$$

Creation and annihilation operators: for $f \in L^{2}\left(\mathbb{R}^{3}\right)$ we define $a^{*}(f)$ und $a(f)$, satisfying the CAR

$$
\left\{a(f), a^{*}(g)\right\}=\langle f, g\rangle, \quad\{a(f), a(g)\}=\left\{a^{*}(f), a^{*}(g)\right\}=0
$$

We also introduce operator valued distributions a_{x}^{*}, a_{x} so that

$$
a^{*}(f)=\int d x f(x) a_{x}^{*} \quad \text { and } \quad a(f)=\int d x \overline{f(x)} a_{x}
$$

Hamilton operator: Using these distributions, we define

$$
\mathcal{H}_{N}=\varepsilon^{2} \int d x \nabla_{x} a_{x}^{*} \nabla_{x} a_{x}+\frac{1}{2 N} \int d x d y V(x-y) a_{x}^{*} a_{y}^{*} a_{y} a_{x}
$$

Bogoliubov transformations: let

$$
\omega_{N}=\sum_{j=1}^{N}\left|f_{j}\right\rangle\left\langle f_{j}\right|
$$

be orthogonal projection onto $L^{2}\left(\mathbb{R}^{3}\right)$ with $\operatorname{Tr} \omega_{N}=N$.
Let $\left\{f_{j}\right\}_{j \in \mathbb{N}}$ be an orthonormal basis of $L^{2}\left(\mathbb{R}^{3}\right)$.
Unitary implementor: find unitary map $R_{\omega_{N}}$ on \mathcal{F} such that

$$
R_{\omega_{N}} \Omega=a^{*}\left(f_{1}\right) \ldots a^{*}\left(f_{N}\right) \Omega
$$

and

$$
R_{\omega_{N}}^{*} a^{*}\left(f_{j}\right) R_{\omega_{N}}= \begin{cases}a\left(f_{j}\right) & \text { if } j \leq N \\ a^{*}\left(f_{j}\right) & \text { if } j>N\end{cases}
$$

For general $g \in L^{2}\left(\mathbb{R}^{3}\right)$, we have (with $u_{N}=1-\omega_{N}$)

$$
R_{\omega_{N}} a^{*}(g) R_{\omega_{N}^{*}}=a^{*}\left(u_{N} g\right)+a\left(\omega_{N} g\right)
$$

Theorem: let $V: \mathbb{R}^{3} \rightarrow \mathbb{R}$ s.t.

$$
\int|\widehat{V}(p)|\left(1+p^{2}\right) d p<\infty
$$

Initial data: let ω_{N} be family of projections with $\operatorname{Tr} \omega_{N}=N$ and

$$
\operatorname{Tr}\left|\left[x, \omega_{N}\right]\right| \leq C N \varepsilon \quad \text { and } \quad \operatorname{Tr}\left|\left[\varepsilon \nabla, \omega_{N}\right]\right| \leq C N \varepsilon
$$

Let ξ_{N} be a sequence in \mathcal{F}, with $\left\langle\xi_{N}, \mathcal{N} \xi_{N}\right\rangle \leq C$.
Time evolution: consider $\psi_{N, t}=e^{-i \mathcal{H}_{N} t / \varepsilon} R_{\nu_{N}} \xi_{N}$
Convergence in Hilbert-Schmidt norm: we have

$$
\left\|\gamma_{N, t}^{(1)}-\omega_{N, t}\right\|_{H S} \leq C \exp \left(c_{1} \exp \left(c_{2}|t|\right)\right)
$$

Convergence in trace norm: if additionally $\left\langle\xi_{N}, \mathcal{N}^{2} \xi_{N}\right\rangle \leq C$ and $d \Gamma\left(\omega_{N, t}\right) \xi_{N}=0$, we have

$$
\operatorname{Tr}\left|\gamma_{N, t}^{(1)}-\omega_{N, t}\right| \leq C N^{1 / 6} \exp \left(c_{1} \exp \left(c_{2}|t|\right)\right)
$$

Extension: weaker bounds also hold if

$$
\left\langle\xi_{N}, \mathcal{N} \xi_{N}\right\rangle \leq C N^{\alpha}, \quad \text { for } 0 \leq \alpha<1
$$

Corollary: let $\psi_{N} \in L_{a}^{2}\left(\mathbb{R}^{3 N}\right)$ be s.t.

$$
\operatorname{Tr}\left|\gamma_{N}^{(1)}-\omega_{N}\right| \leq C N^{\alpha}
$$

for $0 \leq \alpha<1$ and for orthogonal projection ω_{N} with $\operatorname{Tr} \omega_{N}=N$, satisfying semiclassical bounds.

Then $\psi_{N, t}=e^{-i H_{N} t / \varepsilon} \psi_{N}$ is such that

$$
\left\|\gamma_{N, t}^{(1)}-\omega_{N, t}\right\|_{\mathrm{HS}} \leq C N^{\alpha} \exp \left(c_{1} \exp \left(c_{2}|t|\right)\right)
$$

Proof: set $\xi_{N}=R_{\omega_{N}}^{*} \psi_{N}$ and observe that

$$
\left\langle\xi_{N}, \mathcal{N} \xi_{N}\right\rangle \leq \operatorname{Tr}\left|\gamma_{N}^{(1)}-\omega_{N}\right| \leq C N^{\alpha}
$$

Remarks:

Higher order densities: similar bounds can be proven for $\gamma_{N, t}^{(k)}$, for any fixed $k \in \mathbb{N}$.

Hartree-Fock versus Hartree: Exchange term in Hartree-Fock equation is of smaller order. Bounds continue to hold for

$$
i \varepsilon \partial_{t} \widetilde{\omega}_{N, t}=\left[-\varepsilon^{2} \Delta+\left(V * \widetilde{\rho}_{t}\right), \widetilde{\omega}_{N, t}\right]
$$

Vlasov dynamics: Hartree-Fock equation still depend on N. Let

$$
W_{N, t}(x, v)=\frac{1}{(2 \pi \varepsilon)^{3}} \int d y \omega_{N, t}\left(x+\frac{\varepsilon y}{2}, x-\frac{\varepsilon y}{2}\right) e^{i v \cdot y}
$$

Then $W_{N, t} \rightarrow W_{\infty, t}$ as $N \rightarrow \infty$, where

$$
\partial_{t} W_{\infty, t}+v \cdot \nabla_{x} W_{\infty, t}+\nabla\left(V * \rho_{t}\right) \cdot \nabla_{v} W_{\infty, t}=0
$$

is classical Vlasov equation.

Previous works:

Narnhofer-Sewell (1980) proved convergence towards Vlasov dynamics for smooth potentials.

Spohn (1982) extended convergence to bounded potentials.
Elgart-Erdős-S.-Yau (2003) proved convergence to Hartree but only for short times and analytic potentials.

Bardos-Golse-Gottlieb-Mauser (2002) and Fröhlich-Knowles (2010) showed convergence to Hartree-Fock dynamics, but with different scaling (no semiclassical limit).

Bach (1992) and Graf-Solovej (1994) proved that Hartree-Fock theory approximates ground state energy of systems of matter, up to relative error $o\left(\varepsilon^{2}\right)$.

Fluctuation dynamics: we define $\xi_{N, t}$ s.t.

$$
e^{-i \mathcal{H}_{N} t / \varepsilon} R_{\omega_{N}} \xi_{N}=R_{\omega_{N, t}} \xi_{N, t}
$$

Equivalently $\xi_{N, t}=\mathcal{U}_{N}(t) \xi_{N}$ with unitary evolution

$$
\mathcal{U}_{N}(t)=R_{\omega_{N, t}}^{*} e^{-i \mathcal{H}_{N} t / \varepsilon} R_{\omega_{N}}
$$

We want to compute

$$
\begin{aligned}
\gamma_{N, t}^{(1)}(x, y) & =\left\langle e^{-i \mathcal{H}_{N} t / \varepsilon} R_{\omega_{N}} \psi_{N}, a_{x}^{*} a_{y} e^{-i \mathcal{H}_{N} t / \varepsilon} R_{\omega_{N}} \psi_{N}\right\rangle \\
& =\left\langle R_{\omega_{N, t}} \xi_{N, t}, a_{x}^{*} a_{y} R_{\omega_{N, t}} \xi_{N, t}\right\rangle \\
& =\left\langle\xi_{N, t},\left(a^{*}\left(u_{N, t, x}\right)+a\left(\omega_{N, t, x}\right)\left(a\left(u_{N, t, y}\right)+a^{*}\left(\omega_{N, t, y}\right)\right) \xi_{N, t}\right\rangle\right. \\
& =\omega_{N, t}(x, y)+\text { normally ordered terms }
\end{aligned}
$$

Conclusion: need to control

$$
\left\langle\xi_{N, t}, \mathcal{N} \xi_{N, t}\right\rangle=\left\langle\xi_{N}, \mathcal{U}_{N}^{*}(t) \mathcal{N} \mathcal{U}_{N}(t) \xi_{N}\right\rangle
$$

uniformly in N.

Growth of fluctuations: we compute

$$
\begin{aligned}
& i \varepsilon \partial_{t}\left\langle\mathcal{U}_{N}(t) \xi_{N}, \mathcal{N} \mathcal{U}_{N}(t) \xi_{N}\right\rangle \\
& =i \varepsilon \partial_{t}\left\langle R_{\omega_{N}} \xi_{N}, e^{i \mathcal{H}_{N} t / \varepsilon}\left(\mathcal{N}-2 d \Gamma\left(\omega_{N, t}\right)+N\right) e^{-i \mathcal{H}_{N} t / \varepsilon} R_{\omega_{N}} \xi_{N}\right\rangle \\
& =-2\left\langle e^{-i \mathcal{H}_{N} t / \varepsilon} R_{\omega_{N}} \xi_{N},\left\{\left[\mathcal{H}_{N}, d \Gamma\left(\omega_{N, t}\right)\right]+d \Gamma\left(i \varepsilon \partial_{t} \omega_{N, t}\right)\right\}\right. \\
& \left.\times e^{-i \mathcal{H}_{N} t / \varepsilon} R_{\omega_{N}} \xi_{N}\right\rangle
\end{aligned}
$$

Identity for derivative: We obtain

$$
\text { is } \partial_{t}\left\langle\mathcal{U}_{N}(t) \xi_{N}, \mathcal{N} \mathcal{U}_{N}(t) \xi_{N}\right\rangle, \begin{aligned}
&=\operatorname{Re} \frac{1}{N} \int d x d y V(x-y) \\
& \times\left\langle\mathcal{U}_{N}(t) \xi_{N},\right.\left\{a^{*}\left(u_{N, t, y}\right) a^{*}\left(\omega_{N, t, y}\right) a^{*}\left(\omega_{N, t, x}\right) a\left(\omega_{N, t, x}\right)\right. \\
&+a^{*}\left(u_{N, t, x}\right) a\left(u_{N, t, x}\right) a\left(\omega_{N, t, y}\right) a\left(u_{N, t, y}\right) \\
&\left.\left.+a\left(u_{N, t, x}\right) a\left(\omega_{N, t, x}\right) a\left(\omega_{N, t, y}\right) a\left(u_{N, t, y}\right)\right\} \mathcal{U}_{N}(t) \xi_{N}\right\rangle
\end{aligned}
$$

Consider for example, the last contribution

$$
\frac{1}{N} \int d x d y V(x-y)\left\langle a\left(u_{N, t, x}\right) a\left(\omega_{N, t, x}\right) a\left(\omega_{N, t, y}\right) a\left(u_{N, t, y}\right)\right\rangle
$$

Expanding V in Fourier space, we find

$$
\begin{aligned}
& \frac{1}{N} \int d x d y V(x-y)\left\langle a\left(u_{N, t, x}\right) a\left(\omega_{N, t, x}\right) a\left(\omega_{N, t, y}\right) a\left(u_{N, t, y}\right)\right\rangle \\
& =\frac{1}{N} \int d p \widehat{V}(p)\left\langle\int d r_{1} d s_{1}\left(\omega_{N, t} e^{i p \cdot x} u_{N, t}\right)\left(r_{1}, s_{1}\right) a_{r_{1}}^{*} a_{s_{1}}^{*} \mathcal{U}_{N}(t) \xi_{N}\right. \\
& \left.\quad \int d r_{2} d s_{2}\left(\omega_{N, t} e^{i p \cdot x} u_{N, t}\right)\left(r_{2}, s_{2}\right) a_{r_{2}} a_{s_{2}} \mathcal{U}_{N}(t) \xi_{N}\right\rangle
\end{aligned}
$$

Bound for operators on \mathcal{F} : if $A(x, y)$ is kernel of operator A, we have

$$
\left\|\int d r d s A(r, s) a_{r} a_{s} \psi\right\| \leq\|A\|_{\mathrm{HS}}\left\|(\mathcal{N}+1)^{1 / 2} \psi\right\|
$$

Hence, we conclude that

$$
\begin{aligned}
& \left|\frac{1}{N} \int d x d y V(x-y)\left\langle a\left(u_{N, t, x}\right) a\left(\omega_{N, t, x}\right) a\left(\omega_{N, t, y}\right) a\left(u_{N, t, y}\right)\right\rangle\right| \\
& \quad \leq \frac{1}{N} \int d p|\widehat{V}(p)|\left\|\omega_{N, t} e^{i p \cdot x} u_{N, t}\right\|_{\mathrm{HS}}^{2}\left\|(\mathcal{N}+1)^{1 / 2} \mathcal{U}_{N}(t) \xi_{N}\right\|^{2}
\end{aligned}
$$

Since $\left\|\omega_{N, t} e^{i p \cdot x} u_{N, t}\right\|_{\mathrm{HS}}^{2} \leq\left\|\omega_{N, t}\right\|_{\mathrm{HS}}^{2}=N$, we easily conclude that

$$
\begin{array}{r}
\left|\frac{1}{N} \int d x d y V(x-y)\left\langle a\left(u_{N, t, x}\right) a\left(\omega_{N, t, x}\right) a\left(\omega_{N, t, y}\right) a\left(u_{N, t, y}\right)\right\rangle\right| \\
\leq C\left\langle\mathcal{U}_{N}(t) \xi_{N},(\mathcal{N}+1) \mathcal{U}_{N}(t) \xi_{N}\right\rangle
\end{array}
$$

However: this is still not enough, since we are computing $i \varepsilon \partial_{t} \ldots$
We need to extract an additional ε from $\left\|\omega_{N, t} e^{i p \cdot x} u_{N, t}\right\|_{\mathrm{HS}}^{2}$.
Improved estimate: we notice that

$$
\begin{aligned}
\left\|\omega_{N, t} e^{i p \cdot x} u_{N, t}\right\|_{\mathrm{HS}}^{2} & =\left\|\omega_{N, t}\left[e^{i p \cdot x}, u_{N, t}\right]\right\|_{\mathrm{HS}}^{2}=\left\|\omega_{N, t}\left[e^{i p \cdot x}, \omega_{N, t}\right]\right\|_{\mathrm{HS}}^{2} \\
& \leq\left\|\left[e^{i p \cdot x}, \omega_{N, t}\right]\right\|_{\mathrm{HS}} \leq \operatorname{Tr}\left|\left[e^{i p \cdot x}, \omega_{N, t}\right]\right| \\
& \leq C(1+|p|) \operatorname{Tr}\left|\left[x, \omega_{N, t}\right]\right|
\end{aligned}
$$

Desired bound for growth of \mathcal{N} follows, if we can show propagation of semiclassical structure

$$
\operatorname{Tr}\left|\left[x, \omega_{N, t}\right]\right| \leq C(t) N \varepsilon
$$

Propagation of semiclassical structure: we observe

$$
\begin{aligned}
i \varepsilon \partial_{t}\left[x, \omega_{N, t}\right] & =\left[x,\left[-\varepsilon^{2} \Delta+\left(V * \rho_{t}\right), \omega_{N, t} t\right]\right] \\
& =\left[\omega_{N, t},\left[x, \varepsilon^{2} \Delta\right]\right]+\left[-\varepsilon^{2} \Delta+\left(V * \rho_{t}\right),\left[x, \omega_{N, t}\right]\right] \\
& =\varepsilon\left[\varepsilon \nabla, \omega_{N, t}\right]+\left[-\varepsilon^{2} \Delta+\left(V * \rho_{t}\right),\left[x, \omega_{N, t}\right]\right]
\end{aligned}
$$

The second term cannot change the trace norm (it acts as unitary conjugation). Hence

$$
\operatorname{Tr}\left|\left[x, \omega_{N, t}\right]\right| \leq \operatorname{Tr}\left|\left[x, \omega_{N, 0}\right]\right|+\int_{0}^{t} d s \operatorname{Tr}\left|\left[\varepsilon \nabla, \omega_{N, s}\right]\right|
$$

Analogously, from assumption on the potential, we find

$$
\operatorname{Tr}\left|\left[\varepsilon \nabla, \omega_{N, t}\right]\right| \leq \operatorname{Tr}\left|\left[\varepsilon \nabla, \omega_{N, 0}\right]\right|+C \int_{0}^{t} d s \operatorname{Tr}\left|\left[x, \omega_{N, s}\right]\right|
$$

Gronwall's Lemma: implies that

$$
\begin{cases}\operatorname{Tr}\left|\left[x, \omega_{N, t}\right]\right| & \leq C N \varepsilon \exp (c|t|) \\ \operatorname{Tr}\left|\left[\varepsilon \nabla, \omega_{N, t}\right]\right| & \leq C N \varepsilon \exp (c|t|)\end{cases}
$$

