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Bosonic systems: described by

HN =
N∑
j=1

−∆xj + λ
N∑
i<j

V (xi − xj)

acting on Hilbert space L2
s(R3N) of symmetric wave functions.

Mean field regime: large number of weak collisions.

Realized when N � 1, |λ| � 1, Nλ ' 1. Study Schrödinger
evolution

i∂tψN,t =

 N∑
j=1

−∆xj +
1

N

N∑
i<j

V (xi − xj)

ψN,t
Trapped bosons: ground state approximated by ϕ⊗N , with ϕ

determined by Hartree theory.

For this reason, it makes sense to study evolution of approxi-
mately factorized initial data
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Dynamics: factorization approximately preserved

ψN,t ' ϕ⊗Nt
where ϕt solves Hartree equation

i∂tϕt = −∆ϕt + (V ∗ |ϕt|2)ϕt, with ϕt=0 = ϕ

One-particle reduced density: defined by kernel

γ
(1)
N,t(x; y) = N

∫
dx2 . . . dxN ψN,t(x, x2, . . . , xN)ψN,t(y, x2, . . . , xN)

Theorem: under appropriate assumptions on potential

Tr
∣∣∣∣γ(1)
N,t −N |ϕt〉〈ϕt|

∣∣∣∣ ≤ CeK|t|
Rigorous works: Hepp, Ginibre-Velo, Spohn, Erdős-Yau,

Rodnianski-S., Fröhlich-Knowles-Schwarz, Knowles-Pickl,

Grillakis-Machedon-Margetis, Lewin-Nam-S. , . . .
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Fermionic systems: described by Hamiltonian

HN =
N∑
j=1

−∆xj + λ
∑
i<j

V (xi − xj)

Scaling: kinetic energy is of order N5/3 ⇒ take λ = N−1/3

Velocities are order N1/3 ⇒ consider times of order N−1/3;

iN1/3∂tψN,t =

 N∑
j=1

−∆xj +
1

N1/3

N∑
i<j

V (xi − xj)

ψN,t

Set ε = N−1/3. We find

iε∂tψN,t =

 N∑
j=1

−ε2∆xj +
1

N

N∑
i<j

V (xi − xj)

ψN,t
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Hartree-Fock theory: consider trapped fermions, with

HN =
N∑
j=1

(−ε2∆xj + Vext(xj)) +
1

N

N∑
i<j

V (xi − xj)

Ground state ' Slater determinant, with reduced density ωN
minimizing the Hartree-Fock energy

EHF(ωN) = Tr(−ε2∆ + Vext)ωN

+
1

2N

∫
dxdyV (x− y)

(
ωN(x, x)ωN(y, y)− |ωN(x, y)|2

)

Goal: show that evolution of Slater determinant is approximately

a Slater determinant, with reduced density ωN,t s.t.

iε∂tωN,t =
[
−ε2∆ + (V ∗ ρt)−Xt, ωN,t

]

However: cannot be true for arbitrary initial Slater determinants.
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Semiclassical structure: consider system of free fermions in
box Λ, with volume one.

Ground state: is a Slater determinant

ωN(x, y) =
∑

k∈Z3:|k|≤cN1/3

eik·(x−y) ' ε−3
∫
|k|≤c

dk eik·(x−y)/ε

Consequence: ωN(x, y) ' ε−3ϕ((x− y)/ε) concentrates close to
diagonal.

General trapping potential: we expect (linear combination of)

ωN(x, y) ' ε−3ϕ

(
x− y
ε

)
g

(
x+ y

2

)

Conclusion: Slater determinants like ωN satisfy{
Tr |[x, ωN ]| ≤ CNε
Tr |[ε∇, ωN ]| ≤ CNε
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Thomas-Fermi theory: reduced density of ground state of

HN =
N∑
j=1

(−ε2∆xj + Vext(xj)) +
1

N

N∑
i<j

V (xi − xj)

approximated by

ωN(x, y) = OpM(x, y) =
1

(2πε)3

∫
dpM(p, (x+ y)/2)eip·(x−y)/ε

with phase-space density M(p, q) = χ(|p| ≤ c ρ1/3
TF (x)).

Thomas-Fermi density: ρTF minimizes

ETF(ρ) =
3

5
γ
∫
dxρ5/3(x)+

∫
dxVext(x)ρ(x)+

1

2

∫
dxdy V (x−y)ρ(x)ρ(y).

Semiclassics: since [x, ωN ] = iεOp∇pM , [ε∇, ωN ] = εOp∇qM ,

Tr|[x, ωN ]| '
ε

(2πε)3

∫
dpdq|∇pM(p, q)| = CNε

∫
ρ

2/3
TF (x)dx ≤ CNε

Tr|ε∇, ωN ]| '
ε

(2πε)3

∫
dpdq|∇qM(p, q)| = CNε

∫
|∇ρTF(x)|dx ≤ CNε
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Fock space: we introduce

F =
⊕
n≥0

L2
a(R3n, dx1 . . . dxn)

Creation and annihilation operators: for f ∈ L2(R3) we define

a∗(f) und a(f), satisfying the CAR

{a(f), a∗(g)} = 〈f, g〉, {a(f), a(g)} = {a∗(f), a∗(g)} = 0

We also introduce operator valued distributions a∗x, ax so that

a∗(f) =
∫
dx f(x) a∗x and a(f) =

∫
dx f(x) ax

Hamilton operator: Using these distributions, we define

HN = ε2
∫
dx∇xa∗x∇xax +

1

2N

∫
dxdyV (x− y) a∗xa

∗
yayax
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Bogoliubov transformations: let

ωN =
N∑
j=1

|fj〉〈fj|

be orthogonal projection onto L2(R3) with TrωN = N .

Let {fj}j∈N be an orthonormal basis of L2(R3).

Unitary implementor: find unitary map RωN on F such that

RωNΩ = a∗(f1) . . . a∗(fN)Ω

and

R∗ωNa
∗(fj)RωN =

{
a(fj) if j ≤ N
a∗(fj) if j > N

For general g ∈ L2(R3), we have (with uN = 1− ωN)

RωNa
∗(g)Rω∗N

= a∗(uNg) + a(ωNg)
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Theorem: let V : R3 → R s.t.∫
|V̂ (p)|(1 + p2)dp <∞

Initial data: let ωN be family of projections with TrωN = N and

Tr |[x, ωN ]| ≤ CNε and Tr |[ε∇, ωN ]| ≤ CNε

Let ξN be a sequence in F, with 〈ξN ,N ξN〉 ≤ C.

Time evolution: consider ψN,t = e−iHN t/εRνNξN

Convergence in Hilbert-Schmidt norm: we have

‖γ(1)
N,t − ωN,t‖HS ≤ C exp(c1 exp(c2|t|))

Convergence in trace norm: if additionally 〈ξN ,N2ξN〉 ≤ C and
dΓ(ωN,t)ξN = 0, we have

Tr
∣∣∣∣γ(1)
N,t − ωN,t

∣∣∣∣ ≤ CN1/6 exp (c1 exp (c2|t|))
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Extension: weaker bounds also hold if

〈ξN ,N ξN〉 ≤ CNα, for 0 ≤ α < 1.

Corollary: let ψN ∈ L2
a(R3N) be s.t.

Tr
∣∣∣∣γ(1)
N − ωN

∣∣∣∣ ≤ CNα

for 0 ≤ α < 1 and for orthogonal projection ωN with TrωN = N ,

satisfying semiclassical bounds.

Then ψN,t = e−iHN t/εψN is such that

‖γ(1)
N,t − ωN,t‖HS ≤ CNα exp(c1 exp(c2|t|))

Proof: set ξN = R∗ωNψN and observe that

〈ξN ,N ξN〉 ≤ Tr
∣∣∣∣γ(1)
N − ωN

∣∣∣∣ ≤ CNα
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Remarks:

Higher order densities: similar bounds can be proven for γ(k)
N,t,

for any fixed k ∈ N.

Hartree-Fock versus Hartree: Exchange term in Hartree-Fock
equation is of smaller order. Bounds continue to hold for

iε∂tω̃N,t =
[
−ε2∆ + (V ∗ ρ̃t), ω̃N,t

]
Vlasov dynamics: Hartree-Fock equation still depend on N .
Let

WN,t(x, v) =
1

(2πε)3

∫
dy ωN,t

(
x+

εy

2
, x−

εy

2

)
eiv·y

Then WN,t →W∞,t as N →∞, where

∂tW∞,t + v · ∇xW∞,t +∇ (V ∗ ρt) · ∇vW∞,t = 0

is classical Vlasov equation.
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Previous works:

Narnhofer-Sewell (1980) proved convergence towards Vlasov

dynamics for smooth potentials.

Spohn (1982) extended convergence to bounded potentials.

Elgart-Erdős-S.-Yau (2003) proved convergence to Hartree but

only for short times and analytic potentials.

Bardos-Golse-Gottlieb-Mauser (2002) and Fröhlich-Knowles

(2010) showed convergence to Hartree-Fock dynamics, but with

different scaling (no semiclassical limit).

Bach (1992) and Graf-Solovej (1994) proved that Hartree-Fock

theory approximates ground state energy of systems of matter,

up to relative error o(ε2).
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Fluctuation dynamics: we define ξN,t s.t.

e−iHN t/εRωNξN = RωN,tξN,t

Equivalently ξN,t = UN(t)ξN with unitary evolution

UN(t) = R∗ωN,te
−iHN t/εRωN

We want to compute

γ
(1)
N,t(x, y) = 〈e−iHN t/εRωNψN , a

∗
xay e

−iHN t/εRωNψN〉
= 〈RωN,tξN,t, a

∗
xayRωN,tξN,t〉

=
〈
ξN,t,

(
a∗(uN,t,x) + a(ωN,t,x

) (
a(uN,t,y) + a∗(ωN,t,y)

)
ξN,t

〉
= ωN,t(x, y) + normally ordered terms

Conclusion: need to control

〈ξN,t,N ξN,t〉 = 〈ξN ,U∗N(t)NUN(t)ξN〉

uniformly in N .
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Growth of fluctuations: we compute

iε ∂t〈 UN(t)ξN ,N UN(t)ξN〉
= iε ∂t

〈
RωNξN , e

iHN t/ε
(
N − 2dΓ(ωN,t) +N

)
e−iHN t/εRωNξN

〉
= −2

〈
e−iHN t/εRωNξN ,

{
[HN , dΓ(ωN,t)] + dΓ(iε ∂tωN,t)

}
× e−iHN t/εRωNξN

〉
Identity for derivative: We obtain

iε ∂t〈 UN(t)ξN ,N UN(t)ξN〉

= Re
1

N

∫
dxdyV (x− y)

×
〈
UN(t)ξN ,

{
a∗(uN,t,y)a∗(ωN,t,y)a∗(ωN,t,x)a(ωN,t,x)

+ a∗(uN,t,x)a(uN,t,x)a(ωN,t,y)a(uN,t,y)

+ a(uN,t,x)a(ωN,t,x)a(ωN,t,y)a(uN,t,y)
}
UN(t)ξN

〉
Consider for example, the last contribution

1

N

∫
dxdyV (x− y)

〈
a(uN,t,x)a(ωN,t,x)a(ωN,t,y)a(uN,t,y)

〉
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Expanding V in Fourier space, we find

1

N

∫
dxdyV (x− y)

〈
a(uN,t,x)a(ωN,t,x)a(ωN,t,y)a(uN,t,y)

〉
=

1

N

∫
dp V̂ (p)

〈 ∫
dr1ds1(ωN,te

ip·xuN,t)(r1, s1)a∗r1
a∗s1
UN(t)ξN ,∫

dr2ds2(ωN,te
ip·xuN,t)(r2, s2)ar2as2 UN(t)ξN

〉

Bound for operators on F: if A(x, y) is kernel of operator A,

we have ∥∥∥∥∫ drdsA(r, s)arasψ
∥∥∥∥ ≤ ‖A‖HS ‖(N + 1)1/2ψ‖

Hence, we conclude that∣∣∣∣ 1N
∫
dxdyV (x− y)

〈
a(uN,t,x)a(ωN,t,x)a(ωN,t,y)a(uN,t,y)

〉 ∣∣∣∣
≤

1

N

∫
dp |V̂ (p)| ‖ωN,t eip·xuN,t‖2HS ‖(N + 1)1/2UN(t)ξN‖2
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Since ‖ωN,t eip·xuN,t‖2HS ≤ ‖ωN,t‖
2
HS = N , we easily conclude that∣∣∣∣ 1N

∫
dxdyV (x− y)

〈
a(uN,t,x)a(ωN,t,x)a(ωN,t,y)a(uN,t,y)

〉 ∣∣∣∣
≤ C〈 UN(t)ξN , (N + 1)UN(t)ξN〉

However: this is still not enough, since we are computing iε ∂t . . .

We need to extract an additional ε from ‖ωN,t eip·xuN,t‖2HS.

Improved estimate: we notice that

‖ωN,t eip·xuN,t‖2HS = ‖ωN,t [eip·x, uN,t]‖2HS = ‖ωN,t [eip·x, ωN,t]‖2HS

≤ ‖[eip·x, ωN,t]‖2HS ≤ Tr|[eip·x, ωN,t]|
≤ C(1 + |p|)Tr |[x, ωN,t]|

Desired bound for growth of N follows, if we can show propaga-
tion of semiclassical structure

Tr |[x, ωN,t]| ≤ C(t)Nε
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Propagation of semiclassical structure: we observe

iε ∂t[x, ωN,t] = [x, [−ε2∆ + (V ∗ ρt), ωN,t]]
= [ωN,t, [x, ε

2∆]] + [−ε2∆ + (V ∗ ρt), [x, ωN,t]]
= ε[ε∇, ωN,t] + [−ε2∆ + (V ∗ ρt), [x, ωN,t]]

The second term cannot change the trace norm (it acts as uni-
tary conjugation). Hence

Tr |[x, ωN,t]| ≤ Tr |[x, ωN,0]|+
∫ t

0
dsTr |[ε∇, ωN,s]|

Analogously, from assumption on the potential, we find

Tr |[ε∇, ωN,t]| ≤ Tr |[ε∇, ωN,0]|+ C
∫ t

0
dsTr |[x, ωN,s]|

Gronwall’s Lemma: implies that{
Tr |[x, ωN,t]| ≤ CNε exp(c|t|)
Tr |[ε∇, ωN,t]| ≤ CNε exp(c|t|)
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