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I We shall consider the simplest Navier-Stokes system
for incompressible fluids in the d -dimensional space:
u = (u1, u2, · · · , ud)

Du

dt
=
∂u

∂t
+ (u · ∇)u = ∆u −∇p, (1)

∇ · u = 0. (2)

The viscosity is 1, p is the pressure, and(∂u

∂t
+ (u · ∇)u

)
i

=
∂ui

∂t
+
∑
k

∂ui

∂xk
· uk , 1 ≤ i ≤ d .

The equation ∇ · u = divu = 0 is the
incompressibility condition.

I A big role in the whole theory is played by the energy

E (u) =
1

2

∫
|u|2dx

I Real-valued solutions satisfy the energy inequality∫
|u|2(t1, x)dx ≤

∫
|u|2(t2, x)dx , t1 > t2.
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I We shall discuss also the Burgers system

∂ui

∂t
+
∑ ∂ui

∂xk
· uk = ∆ui , 1 ≤ i ≤ d (3)

which does not contain the pressure and the
incompressibility condition. For the purpose of this
talk it does not contain external forcing. This means
that we shall discuss mainly kinematic effects.

I It is well-known that (3) has simple solutions and in
some sense is integrable if u = ∇φ. This
representation is preserved in time. It will be shown
that (3) also has interesting solutions of different
type.

I Our main method of analysis is based on the
Renormalization Group Method (RGM). Initially it
appeared long ago in Quantum Field Theory and
Statistical Physics. Then M. Feigenbaum applied
RGM to some problems in dynamics and later it led
to the appearance of a large new field in dynamics.
Some names which can be mentioned on this
occasion are P. Coullet, Ch. Tresser, B. Derrida, A.
Gervois, Y. Pomeau, O. Lanford, K. Khanin.
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Intro to RGM: a motivating example

Recall the Central Limit Theorem: Xn iid, EXn = 0,
EX 2

n = 1, then ∑n
i=1 Xi√

n
→ N (0, 1).

Q: How to understand it from RGM point of view?
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RGM point of view on Central Limit
Theorem

I Consider iid Xn with (even) pdf p(x) and∫
x2p(x) = 1.

I Define

ξm =
X1 + · · · + X2m

2m/2
.

I Then

ξm+1 =
ξ′m + ξ′′m√

2
.

I pm(x) =density of ξm, then

pm+1(x) =
√

2

∫ ∞
−∞

pm(
√

2x − y)pm(y)dy =: F (pm)

I the goal: to study pm = Fm(p1) as m→∞.
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The RGM argument: Step 1: fixed pts

I fixed points solve

q(x) =
√

2

∫ ∞
−∞

q(
√

2x − y)q(y)dy

I This equation is called the Gaussian integral equation

I Solution given by Gaussian densities:

qσ(x) =
1√
2πσ

e
− x2

2σ2 .
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RGM argument. Step 2: linearization
and spectrum

I The linearized map (Gaussian integral operator!)

Lσh(x) = 2
√

2

∫ ∞
−∞

h(
√

2x − y)qσ(y)dy .

I σ = 1, eigen-functions of L1: Hem(x) 1√
2π

e−
x2

2 .

I eigen-values λm = 1

2
m
2−1

, m is even ( recall

p(x) = p(−x)!)

I λ0 = 2, λ2 = 1, λ2m < 1.
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Local version of CLT by using RGM

Thm: Let p1(x) = 1√
2π

e−
x2

2 (1 + h(x)) where∫ ∞
−∞

h(x)
1√
2π

e−
x2

2 = 0, (kill unstable)∫ ∞
−∞

h(x)x2 1√
2π

e−
x2

2 = 0, (kill neutral)

If ‖h‖
L2(e−x2/2dx)

is sufficiently small, then

Fm(p1)→ 1√
2π

e−
x2

2 in the sense of L2.
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General RG

I The number of parameters in F (0) equals to
dim(Γ(u)).

I In the theory of dynamical systems, RG is used for
the analysis of the number of periodic points of
continuous maps (Feigenbaum), smoothness of the
invariant measures in one-dimensinoal
homeomorphisms and even as some replacement of
KAM theory.
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I In statistical physics RGM is used for analysis of
critical points in systems such as 2D Ising model.
Recently deep results were obtained by Fields
Medalist S. Smirnov who studied conformal
invariance of the probability distribution of the
critical Ising model.

I There were many attempts to apply RGM to
problems of fluid dynamics and turbulence theory like
a series of papers by I. Moise and R. Temam and
others. Scaling concepts appeared in
ground-breaking works by Kolmogorov and
Richardson.

I We shall use the RGM in the style of Feigenbaum.
We consider the 3D case. However, other values of
dimension are equally possible. The first step is to
make Fourier transform. Then NSS takes the form

v(k, t) = e−t|k|2v(k, 0) +

∫ t

0
e−(t−s)|k|2∫

Rd
〈v(k − k ′, s), k〉Pkv(k ′, s)dk ′ds. (4)

In (4) Pk is the projection to the subspace
orthogonal to k :

Pkv = v − 〈v , k〉k〈k, k〉 .
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I We consider (4) in the subspace 〈v(k, t), k〉 = 0
which is some form of the incompressibility
condition.

I Real-valued solutions of (4) are complex-valued
solutions of the initial Navier-Stokes system. Such
solutions do not satisfy energy inequality and their
analysis in many respects is simpler. On the other
hand, presumably many properties of complex
blow-ups will be valid in real cases (if they exist).

I The equation (4) can be studied in various spaces.
The spaces which consist of functions

v(k, t) =
c(k, t)

|k|α , 2 < α < 3,

sup |c(k, t)| <∞
are of some interest because in these spaces some
scaling properties are valid.
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I There are many deep existence and uniqueness
results here which we shall not discuss in detail. See
a very good expository paper by M. Cannone
(“Harmonic Analysis Tools for Solving the
Incompressible Navier-Stokes equation. Handbook of
Mathematical Fluid Dynamics, vol. 3, 2002”)
Instead we shall use an approach which is often used
in the theory of dynamical systems. Namely, we
consider one-dimensional families of initial conditions

vA(k, 0) = Av(k, 0)

and analyze the dependence of solutions on A. Little
thinking shows that it is convenient to write the
unknown function vA(k, t) in the form

vA(k, t) = e−t|k|2Av(k, 0)+

+

∫ t

0
e−(t−s)|k|2∑

p

Apgp(k, s)ds. (5)
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I For the coefficients gp(k, s) we have the system of
recurrent equations

gp(k, s)

=

∫ s

0
ds2

∫
R3
〈v(k − k ′, 0), k〉Pkgp−1(k ′, s2)

· e−s|k−k ′|2−(s−s2)|k ′|2d3k ′

+
∑

p1+p2=p
p1,p2>1

∫ s

0
ds1

∫ s

0
ds2

∫
R3
〈gp1(k − k ′, s1), k〉

Pkgp2(k ′, s2)e−(s−s1)|k−k ′|2−(s−s2)|k ′|2d3k ′

+

∫ s

0
ds1

∫
R3
〈gp−1(k − k ′, s1), k〉Pkv(k ′, 0)

e−(s−s1)|k−k ′|2−s|k ′|2d3k ′. (6)

which replaces the initial Navier-Stokes system.
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I Under very simple assumptions the series (5)
converges for sufficiently small t and gives a classical
solution of (2).

I In the paper ”Diagrammatic approach to solutions of
the Navier-Stokes system” (Russian Math Surveys,
vol 60, No. 5, 2005) a method was proposed which
allowed to represent gp in the form of some diagrams
similar in some respect to diagrams in quantum field
theory.

I The formula (6) resembles convolutions in probability
theory. For example, if C = suppv(k, 0), then

suppgk = C + C + · · · + C︸ ︷︷ ︸
ktimes

= Ck .

If g1 is concentrated on C , then gk is concentrated
on Ck .

I Choose some initial number k(0) and introduce the
vector K (r) = (0, 0, rk(0)). Then write

k = K (r) +
√

rk(0)Y . Thus instead of k we have
the new variable Y which in a typical situation takes
values O(1).
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Propagation of support in k-space
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I There is another change of variables connected with
variables s1, s2. It was a big surprise for us to
understand that in the integrals in (6) the main
contribution comes from a small neighborhood of the
point s. This is true for Navier-Stokes system and
presumably is not true for the Euler system (viscosity
is zero).

I In the main approximation, time drops out and only
the basic nonlinearity remains.
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I Put sj = s(1− θj
p2
j
), j = 1, 2. Write

gp(K (p) +

√
pk(0)Y , s) = g̃p(Y , s) =

=(pk(0))
5
2
∑

p1+p2=p

∫ p2
1

0
dθ1

∫ p2
2

0
dθ2 ·

1

p2
1p2

2∫
R3
〈gp1(

Y − Y ′√
γ

, (1− θ1

p2
1

)s), κ(0,0) +
Y√
pk(0)

〉·

P
κ(0,0)+ Y√

pk(0)

g̃p2(
Y ′√
1− γ, (1− θ2

p2
2

)s)

e
−θ1|κ(0)+

√
k(0)Y−Y ′√

pγ |2−θ2|κ(0)+
√

k(0) Y ′√
p(1−γ)

|2
d3Y ′.

(7)

here γ = p1
p , 1− γ = p2

p , κ(0,0) = (0, 0, 1),

κ(0) = (0, 0, k(0)). It is very important that in front

of (7) we have the factor p
5
2 and inside the sum the

factor 1
p2

1p2
2
.
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I As p →∞, the recurrent equation (7) converges to
some limiting form which is the equation for the
fixed point of RGM :

H(Y ) = (H1(Y1,Y2),H2(Y1,Y2))

σ(1)

2π
e−

σ(1)

2 |Y |2H(Y ) =∫ 1

0
dγ

∫
R2

σ(1)

2πγ
e
−σ(1)|Y−Y ′|2

2γ · σ(1)

2π(1− γ)
· e−

σ(1)|Y ′|2
2(1−γ)[

−(1− γ)
3
2(

Y1 − Y ′1√
γ

H1(
Y − Y ′√

γ
)

+
Y2 − Y ′2√

γ
H2(

Y − Y ′√
γ

))

+ γ
1
2(1− γ)(

Y ′1√
1− γH1(

Y − Y ′√
γ

)

+
Y ′2√
1− γH2(

Y − Y ′√
γ

))
]
H(

Y ′√
1− γ)d2Y ′. (8)
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I The equation looks complicated but it can be
studied in detail due to the system of recurrent
equation which it implies

Thm: Let σ(1), σ(2) > 0 and h
(1)
12 , h

(1)
21 , h

(1)
30 be

sufficiently small. Then the equation for the fixed
point has a solution

G (Y1,Y2,Y3) =
1

2πσ(1)
e
−|Y1|2+|Y2|2

2σ(1)

· 1√
2πσ(2)

e
− |Y3|2

2σ(2)

· 1√
σ(1)

H(h
(1)
12 ,h

(1)
21 ,h

(1)
30 )(

1√
σ(1)

Y1,
1√
σ(2)

Y2)

where H is written as a series wrt Hermite
polynomials

I It is possible to show that the coefficients of the
series decay fast enough so it is converging
(absolutely)

I In our situation, we take σ(1) = σ(2) = 1,

h
(1)
12 = h

(1)
21 = h

(1)
30 = 0, and

H(Y ) = H(Y1,Y2) = (−2Y1,−2Y2).
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The next step in RGM is to study the spectrum of the
linearized transformation near the fixed point. This can
be done in our case and here is the result:

1. there is a four-dimensional subspace generated by
four unstable eigen-vectors;

2. there is a six-dimensional subspace generated by six
neutral eigen-values (i.e. the corresponding
eigen-value is 1)

3. there is a linear subspace of co-dimension 10 where
the spectrum is stable.
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Main Theorem. Let the moment of blowup tcr be
chosen. Then there exists a 10-parameter local
submanifold of initial conditions such that for some
point from this submanifold the solution develops
blowup at tcr .

Geometric meaning: Initial conditions are
concentrated in a small ball away from the origin.
Under the action of nonlinear terms the modes get
concentrated along the line generated by the initial
conditions and decay there in a power-like manner.

This construction in particular gives some hints which
can be interpreted as giving the frequency of blowups.
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Corollary: Let E (t) be the energy of solution at the
moment t (before tcr), then

E (t) ∼ C

(tcr − t)5
. (9)

I This asymptotics is the same for all cases treated by
our method and it does not depend on the dimension
of the system. This is connected with the fact that
in the critical regime all modes become concentrated
along a single direction.

I The singularity in the x-space is concentrated near
the origin in the x-space and dependence in time
becomes very complicated. In this sense the solution
resembles a tornado and can be called kinematic
tornado because the temperature is not involved.
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Numerical results

I C. Boldrighini (Universita di Roma), S. Frigio and P.
Maponi (Universita di Camerino) studied numerically
the 2-dimensional Burgers system: u = (u1, u2)

∂u

∂t
+
∑

uk
∂u

∂xk
= ∆u.

I This system is integrable on the space of
gradient-like solutions (due to Hopf-Cole
substitution). For real-valued solutions O.
Ladyzenskaya proved global existence and uniqueness
result. It turns out that complex-valued solutions
differ drastically from real-valued solutions.

I In the paper by BFM the authors found
complex-valued initial conditions for which the
solutions develop singularity in finite time in
complete agreement with the theory presented above.
In particular in their solutions the energy grows
according to (9). More recent results were obtained
for complex-valued 3-dim Navier-Stokes system
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FIG. 2. Case 1, δt = 2 − 8 × 10 − 4, δk = 1, implicit integration method. Plot of the energy density e(k, t) = |v(k,t)|2
2 at times

12.00 × 10 − 4, 12.02 × 10 − 4, 12.03 × 10 − 4.
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Figure 1: Initial energy E(0) = 200. T0 is the estimated critical time.
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Figure 6: Plot of the log of the marginal energy density in k-space vs kz. Initial energy
E(0) = 1. Initial bumps at distance L = 20, radius � = 17. Time T = 40⇥ �t, �t = 10�5.
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Why the theory of real-valued solutions
is more difficult

I In all cases of complex-valued solutions initial
conditions were concentrated in small domains away
from the origin.

I For real-valued solutions we need conditions which
are odd or even functions in the Fourier space. There
can be two types of behavior of solutions:
1. the modes get concentrated at infinity and this leads to

finite-time singularities;
2. the modes remain concentrated in a compact part of the

space and in this case there are no singularities.

I We have no possibility to decide whether the first
case is possible.
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Bifurcation of viscous vortices

I Dong Li and I studied bifurcations in equations of
fluid dynamics. We proposed a new approach to the
whole set of problems here. So far it works mainly in
the 2-dim case and its extension to the
multi-dimensional situation is a very interesting
problem.

I Let us write NSS for the stream function ψ(t, x , y)
which is connected with the velocity by the relation
(u1, u2) = (−∂yψ, ∂xψ) = ∇⊥ψ,

∂ψ

∂t
+ ∆−1

(∂ψ
∂x

∂∆ψ

∂y
− ∂ψ

∂y

∂∆ψ

∂x

)
= ∆ψ

For simplicity assume periodic boundary conditions.
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I Let the initial condition ψ(0, x , y) be a smooth
function on T2 and is a Morse function on T2 having
two critical points: the point of maximum and the
point of minimum. In the non-degenerate case level
sets near the critical points are closed curves. Since
the velocity vector u is tangent to the level set, it is
natural to call critical points as (local) viscous
vortices. This notion can be used even in the linear
cases. The fluid trajectories resemble in some sense
hurricanes.
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I In our joint paper with Dong Li we proved the
following theorems.

I Thm 1(Splitting of vortices): There exists an
open set A1 in the space of stream functions such
that for any ψ0 ∈ A1 there is an open neighborhood
U of the origin, two moments of time 0 < t1 < t2 so
that
1. for any 0 ≤ t < t1, ψ has only one critical point in U ;
2. for t = t1, the stream function ψ has two critical points in U ;
3. for t1 < t < t2, the stream function ψ has three critical

points in U

I Simpler situation:

1 nondegenerate critical point

→ 1 degenerate critical point

→ 3 critical points
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Hump of a young camel

29 / 31



I Thm2(Merging of vortices): There exists an
open set A2 in the space of stream functions such
that for any ψ0 ∈ A1 there is an open neighborhood
U of the origin, two moments of time 0 < t1 < t2 so
that
1. for any 0 ≤ t < t1, ψ has three critical points in U ;
2. for t = t1, the stream function ψ has two critical points in U ;
3. for t1 < t < t2, the stream function ψ has only one critical

point in U
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The reversed picture (merging)

I

I Contrary to the usual bifurcation theory,
deformations of solutions (versal deformations) are
produced by solution of the NSS system. This
process is also interesting for linear systems.
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