Semitoric families

Joseph Palmer Rutgers University

joint with Y. Le Floch (work with J. Alonso, S. Hohloch, D.M. Kane, and Á. Pelayo will also be mentioned)

IAS/Princeton Symplectic geometry and dynamics seminar

October 8, 2018

- Let (M, ω) be a symplectic manifold and $f: M \to \mathbb{R}$.
- Denote by \mathcal{X}_f the Hamiltonian vector field of f, which satisfies

$$\omega(\mathcal{X}_f,\cdot)+\mathrm{d} f=0.$$

- Let (M, ω) be a symplectic manifold and $f: M \to \mathbb{R}$.
- Denote by \mathcal{X}_f the Hamiltonian vector field of f, which satisfies

$$\omega(\mathcal{X}_f,\cdot) + \mathrm{d}f = 0.$$

Definition

An *integrable system* is a triple $(M, \omega, F = (f_1, \dots, f_n))$ where (M, ω) is a 2*n*-dimensional symplectic manifold and 1 $\{f_i, f_j\} = 0;$ 2 df_1, \dots, df_n are linearly independent almost everywhere;

- Let (M, ω) be a symplectic manifold and $f: M \to \mathbb{R}$.
- Denote by \mathcal{X}_f the Hamiltonian vector field of f, which satisfies

$$\omega(\mathcal{X}_f,\cdot) + \mathrm{d}f = 0.$$

Definition

An *integrable system* is a triple (M, ω, F = (f₁,..., f_n)) where (M, ω) is a 2n-dimensional symplectic manifold and
1 {f_i, f_j} = 0;
2 df₁,..., df_n are linearly independent almost everywhere;

• *singular points* are those for which linear independence fails.

- Let (M, ω) be a symplectic manifold and $f: M \to \mathbb{R}$.
- Denote by \mathcal{X}_f the Hamiltonian vector field of f, which satisfies

$$\omega(\mathcal{X}_f,\cdot)+\mathrm{d} f=0.$$

Definition

An *integrable system* is a triple $(M, \omega, F = (f_1, ..., f_n))$ where (M, ω) is a 2*n*-dimensional symplectic manifold and 1 $\{f_i, f_j\} = 0;$ 2 $df_1, ..., df_n$ are linearly independent almost everywhere;

- singular points are those for which linear independence fails.
- Flows of $\mathcal{X}_{f_1}, \ldots \mathcal{X}_{f_n}$ induce (local) \mathbb{R}^n -action.

- Let (M, ω) be a symplectic manifold and $f: M \to \mathbb{R}$.
- Denote by \mathcal{X}_f the Hamiltonian vector field of f, which satisfies

$$\omega(\mathcal{X}_f,\cdot)+\mathrm{d} f=0.$$

Definition

An *integrable system* is a triple $(M, \omega, F = (f_1, ..., f_n))$ where (M, ω) is a 2*n*-dimensional symplectic manifold and 1 $\{f_i, f_j\} = 0;$ 2 $df_1, ..., df_n$ are linearly independent almost everywhere;

- singular points are those for which linear independence fails.
- Flows of $\mathcal{X}_{f_1}, \ldots \mathcal{X}_{f_n}$ induce (local) \mathbb{R}^n -action.
- Fixed point or rank zero point is $p \in M$ such that dF(p) = 0.

Definition

A toric integrable system is a triple $(M, \omega, F = (f_1, \dots, f_n))$ where (M, ω) is a 2*n*-dimensional symplectic manifold and

1
$$\{f_i, f_j\} = 0;$$

2 df_1, \ldots, df_n are linearly independent almost everywhere;

Definition

1
$$\{f_i, f_j\} = 0;$$

- **2** df_1, \ldots, df_n are linearly independent almost everywhere;
- **3** the flows of $\mathcal{X}_{f_1}, \ldots, \mathcal{X}_{f_n}$ are periodic (i.e. \mathbb{T}^n -action);
- 4 M is compact;

Definition

1
$$\{f_i, f_j\} = 0;$$

- **2** df_1, \ldots, df_n are linearly independent almost everywhere;
- **3** the flows of $\mathcal{X}_{f_1}, \ldots, \mathcal{X}_{f_n}$ are periodic (i.e. \mathbb{T}^n -action);
- 4 M is compact;
- $F: M \to \mathbb{R}^n$.

Definition

1
$$\{f_i, f_j\} = 0;$$

- **2** df_1, \ldots, df_n are linearly independent almost everywhere;
- **3** the flows of $\mathcal{X}_{f_1}, \ldots, \mathcal{X}_{f_n}$ are periodic (i.e. \mathbb{T}^n -action);
- 4 M is compact;
- $F: M \to \mathbb{R}^n$.
- Atiyah, Guillemin-Sternberg (1982) showed *F*(*M*) is the convex hull of the images of the fixed points.

Toric integrable systems: the classification

Theorem (Delzant, 1988)

Given any "Delzant polytope" $\Delta \subset \mathbb{R}^n$, there exists a unique (up to isomorphism) toric integrable system (M, ω, F) such that $F(M) = \Delta$.

Toric integrable systems: the classification

Theorem (Delzant, 1988)

Given any "Delzant polytope" $\Delta \subset \mathbb{R}^n$, there exists a unique (up to isomorphism) toric integrable system (M, ω, F) such that $F(M) = \Delta$.

• {toric systems} \longleftrightarrow {Delzant polytopes}.

Toric integrable systems: the classification

Theorem (Delzant, 1988)

Given any "Delzant polytope" $\Delta \subset \mathbb{R}^n$, there exists a unique (up to isomorphism) toric integrable system (M, ω, F) such that $F(M) = \Delta$.

- {toric systems} \longleftrightarrow {Delzant polytopes}.
- System can be recovered by symplectic reduction on \mathbb{C}^d .

Definition (Vũ Ngọc, 2007)

- **1** $\{J, H\} = 0;$
- **2** dJ and dH are linearly independent almost everywhere;

Definition (Vũ Ngọc, 2007)

- 1 $\{J, H\} = 0;$
- **2** dJ and dH are linearly independent almost everywhere;
- **3** the flow of \mathcal{X}_J is periodic;
- 4 J is proper;
- **5** all singularities of (J, H) are non-degenerate with no hyperbolic blocks.

Definition (Vũ Ngọc, 2007)

- 1 $\{J, H\} = 0;$
- **2** dJ and dH are linearly independent almost everywhere;
- **3** the flow of \mathcal{X}_J is periodic;
- 4 J is proper;
- **5** all singularities of (J, H) are non-degenerate with no hyperbolic blocks.
- non-degenerate, analogue of Morse theory

Definition (Vũ Ngọc, 2007)

- 1 $\{J, H\} = 0;$
- **2** dJ and dH are linearly independent almost everywhere;
- **3** the flow of \mathcal{X}_J is periodic;
- 4 J is proper;
- **5** all singularities of (J, H) are non-degenerate with no hyperbolic blocks.
- non-degenerate, analogue of Morse theory
- Simple = at most one focus-focus point in each level set of J.

Semitoric integrable systems: fibers

- regular points;
- rank one: elliptic-regular points;
- fixed points (rank zero): elliptic-elliptic points or focus-focus points.

Semitoric integrable systems: fibers

- regular points;
- rank one: elliptic-regular points;
- fixed points (rank zero): elliptic-elliptic points or focus-focus points.

6/45

Semitoric integrable systems: fibers

- regular points;
- rank one: elliptic-regular points;
- fixed points (rank zero): elliptic-elliptic points or focus-focus points.

6/45

Semitoric integrable systems: fibers

- regular points;
- rank one: elliptic-regular points;
- fixed points (rank zero): elliptic-elliptic points or focus-focus points.

Semitoric integrable systems: the "complete invariant"

• Associated to each semitoric integrable system is a polygon with marked interior points.

Semitoric integrable systems: the "complete invariant"

• Associated to each semitoric integrable system is a polygon with marked interior points.

• Each interior point is labeled with an integer and a Taylor series in two variables.

Semitoric integrable systems: classification

The five invariants:

- (1) the number of focus-focus points invariant;
- (2) the semitoric polygon invariant;
- (3) the height invariant;
- (4) the Taylor series invariant;
- (5) the twisting index invariant;

Semitoric integrable systems: classification

The five invariants:

- (1) the number of focus-focus points invariant;
- (2) the semitoric polygon invariant;
- (3) the height invariant;
- (4) the Taylor series invariant;
- (5) the twisting index invariant;

Theorem (Pelayo-Vũ Ngọc classification (2009, 2011))

- **1** Two simple semitoric systems are isomorphic if and only if they have the same invariants (1)-(5);
- 2 Given any admissible list of invariants (1)-(5) there exists a simple semitoric system with those as its invariants.

Semitoric integrable systems: classification

The five invariants:

- (1) the number of focus-focus points invariant;
- (2) the semitoric polygon invariant;
- (3) the height invariant;
- (4) the Taylor series invariant;
- (5) the twisting index invariant;

Theorem (Pelayo-Vũ Ngọc classification (2009, 2011))

- **1** Two simple semitoric systems are isomorphic if and only if they have the same invariants (1)-(5);
- 2 Given any admissible list of invariants (1)-(5) there exists a simple semitoric system with those as its invariants.
- {semitoric systems} \longleftrightarrow {admissible invariants (1)-(5)}.

- Toric integrable systems can be recovered from the polytope by performing specific reductions on \mathbb{C}^d .
- Semitoric integrable systems can be constructed from invariants by gluing of semi-local normal forms.

- Toric integrable systems can be recovered from the polytope by performing specific reductions on \mathbb{C}^d .
- Semitoric integrable systems can be constructed from invariants by gluing of semi-local normal forms.

Notice!!

Much harder to write down examples in semitoric case!

- Toric integrable systems can be recovered from the polytope by performing specific reductions on \mathbb{C}^d .
- Semitoric integrable systems can be constructed from invariants by gluing of semi-local normal forms.

Notice!!

Much harder to write down examples in semitoric case! (in some sense unavoidable because semitoric systems are more complicated, but should still be able to find *some* simple examples)

- Toric integrable systems can be recovered from the polytope by performing specific reductions on \mathbb{C}^d .
- Semitoric integrable systems can be constructed from invariants by gluing of semi-local normal forms.

Notice!!

Much harder to write down examples in semitoric case! (in some sense unavoidable because semitoric systems are more complicated, but should still be able to find *some* simple examples)

Goal

Given specified semitoric polygon invariant try to find a simple system with that invariant (forgetting about the other invariants).

Semitoric systems Semitoric families Finding minimal models

Toric Semitoric Construction Invariants Example

Semitoric invariants: 1. Number of focus-focus points

• Focus-focus points are isolated and there are finitely many.

Semitoric invariants: 1. Number of focus-focus points

- Focus-focus points are isolated and there are finitely many.
- Their number is the first invariant.

• $F: M \to \mathbb{R}^2$ produces a singular Lagrangian torus fibration

• $F: M \to \mathbb{R}^2$ produces a singular Lagrangian torus fibration

• $F: M \to \mathbb{R}^2$ produces a singular Lagrangian torus fibration.

• $F: M \to \mathbb{R}^2$ produces a singular Lagrangian torus fibration.

- Torus fibration \rightarrow integral affine structure on $F(M) \subset \mathbb{R}^2$.
 - $\bullet~\text{NOT}$ equal to integral affine structure inherited from $\mathbb{R}^2.$

• The integral affine structure may be "straightened out" [Vũ Ngọc (2007) following Symington (2002)]

• Semitoric polygon invariant: Family of polygons.

Semitoric invariants: 3. Height invariant

• Height invariant: position of images of focus-focus points.

Semitoric invariants: 3. Height invariant

• Height invariant: position of images of focus-focus points.

Semitoric invariants: 3. Height invariant

• Height invariant: position of images of focus-focus points.

• Note: $f_{\varepsilon} \circ F$ is a toric momentum map away from the cuts.

• For each focus-focus point the neighborhood of the singular fiber is classified by a Taylor series [Vũ Ngọc, 2003].

- For each focus-focus point the neighborhood of the singular fiber is classified by a Taylor series [Vũ Ngọc, 2003].
- Starting at a fiber nearby, follow the flow of \tilde{H} to return to the *J*-orbit, and then follow the flow of *J*.

- For each focus-focus point the neighborhood of the singular fiber is classified by a Taylor series [Vũ Ngọc, 2003].
- Starting at a fiber nearby, follow the flow of \tilde{H} to return to the *J*-orbit, and then follow the flow of *J*.

- For each focus-focus point the neighborhood of the singular fiber is classified by a Taylor series [Vũ Ngọc, 2003].
- Starting at a fiber nearby, follow the flow of \tilde{H} to return to the *J*-orbit, and then follow the flow of *J*.

- For each focus-focus point the neighborhood of the singular fiber is classified by a Taylor series [Vũ Ngọc, 2003].
- Starting at a fiber nearby, follow the flow of \tilde{H} to return to the *J*-orbit, and then follow the flow of *J*.

• Use τ_1 and τ_2 to specify a Taylor series in two variables.

- Use τ_1 and τ_2 to specify a Taylor series in two variables.
- Notice: this construction only sees where the trajectory "lands" - it can't detect a Dehn twist.

The toric momentum map from choosing a polygon (f_ε ◦ F) gives us a background against which to compare γ.

- The toric momentum map from choosing a polygon (f_ε ∘ F) gives us a background against which to compare γ.
- The path of the second component of Φ = f ∘ F and γ differ by some number of twists in the J direction.

- The toric momentum map from choosing a polygon (f_ε F) gives us a background against which to compare γ.
- The path of the second component of Φ = f ∘ F and γ differ by some number of twists in the J direction.

• This $k \in \mathbb{Z}$ is the *twisting index*.

- The toric momentum map from choosing a polygon (f_ε ο F) gives us a background against which to compare γ.
- The path of the second component of Φ = f ∘ F and γ differ by some number of twists in the J direction.

• This $k \in \mathbb{Z}$ is the *twisting index*.

(related to upcoming work with J. Alonso and S. Hohloch, k originally defined by Pelayo-Vũ Ngọc via $\Phi = T^k \nu$)

[Sadovskií and Zĥilinskií, 1999]

- $M = \mathbb{S}^2 \times \mathbb{S}^2$, $\omega = R_1 \omega_1 \oplus R_2 \omega_2$
- coordinates (*x*₁, *y*₁, *z*₁, *x*₂, *y*₂, *z*₂)

[Sadovskií and Zĥilinskií, 1999]

•
$$M = \mathbb{S}^2 \times \mathbb{S}^2$$
, $\omega = R_1 \omega_1 \oplus R_2 \omega_2$

• coordinates (*x*₁, *y*₁, *z*₁, *x*₂, *y*₂, *z*₂)

$$\left\{ egin{array}{l} J=R_1z_1+R_2z_2\ H_t=(1-t)z_1+t(x_1x_2+y_1y_2+z_1z_2) \end{array}
ight.$$

for $t \in [0, 1]$ and $R_1 < R_2$.

[Sadovskií and Zĥilinskií, 1999]

•
$$M=\mathbb{S}^2 imes\mathbb{S}^2$$
, $\omega=R_1\omega_1\oplus R_2\omega_2$

• coordinates (*x*₁, *y*₁, *z*₁, *x*₂, *y*₂, *z*₂)

$$\left\{ egin{array}{l} J=R_1z_1+R_2z_2\ H_t=(1-t)z_1+t(x_1x_2+y_1y_2+z_1z_2) \end{array}
ight.$$

for $t \in [0, 1]$ and $R_1 < R_2$.

• Let NS = (0, 0, 1, 0, 0, -1)

[Sadovskií and Zĥilinskií, 1999]

•
$$M = \mathbb{S}^2 \times \mathbb{S}^2$$
, $\omega = R_1 \omega_1 \oplus R_2 \omega_2$

• coordinates (*x*₁, *y*₁, *z*₁, *x*₂, *y*₂, *z*₂)

$$\left\{ egin{array}{l} J=R_1z_1+R_2z_2\ H_t=(1-t)z_1+t(x_1x_2+y_1y_2+z_1z_2) \end{array}
ight.$$

for $t \in [0, 1]$ and $R_1 < R_2$.

• Let
$$NS = (0, 0, 1, 0, 0, -1)$$

Theorem (Sadovskií-Zĥilinskií (1999) and Le Floch-Pelayo (2018))

Let $t \in [0,1]$. There exists $t^-, t^+ \in (0,1)$ such that $t^- < t^+$ and

if t < t[−] then (J, H_t) is semitoric with zero focus-focus points;

Theorem (Sadovskií-Zĥilinskií (1999) and Le Floch-Pelayo (2018))

Let $t \in [0,1].$ There exists $t^-, t^+ \in (0,1)$ such that $t^- < t^+$ and

if t < t[−] then (J, H_t) is semitoric with zero focus-focus points;

2 if $t = t^-$ then (J, H_t) has a degenerate singular point at NS;

Theorem (Sadovskií-Zĥilinskií (1999) and Le Floch-Pelayo (2018))

Let $t \in [0,1]$. There exists $t^-, t^+ \in (0,1)$ such that $t^- < t^+$ and

- I if t < t[−] then (J, H_t) is semitoric with zero focus-focus points;
- **2** if $t = t^-$ then (J, H_t) has a degenerate singular point at NS;
- if t⁻ < t < t⁺ then (J, H_t) is a semitoric with exactly one focus-focus point (at NS);

Theorem (Sadovskií-Zĥilinskií (1999) and Le Floch-Pelayo (2018))

- Let $t \in [0,1]$. There exists $t^-, t^+ \in (0,1)$ such that $t^- < t^+$ and
 - if t < t[−] then (J, H_t) is semitoric with zero focus-focus points;
 - **2** if $t = t^-$ then (J, H_t) has a degenerate singular point at NS;
 - if t⁻ < t < t⁺ then (J, H_t) is a semitoric with exactly one focus-focus point (at NS);
 - **4** if $t = t^+$ then (J, H_t) has a degenerate singular point at NS;

Theorem (Sadovskií-Zĥilinskií (1999) and Le Floch-Pelayo (2018))

- Let $t \in [0,1]$. There exists $t^-, t^+ \in (0,1)$ such that $t^- < t^+$ and
 - if t < t[−] then (J, H_t) is semitoric with zero focus-focus points;
 - **2** if $t = t^-$ then (J, H_t) has a degenerate singular point at NS;
 - if t⁻ < t < t⁺ then (J, H_t) is a semitoric with exactly one focus-focus point (at NS);
 - 4 if $t = t^+$ then (J, H_t) has a degenerate singular point at NS;
 - 5 if $t > t^+$ then (J, H_t) is semitoric with zero focus-focus points.

Semitoric with zero focus-focus points (figure made in Mathematica)

Semitoric with zero focus-focus points (figure made in Mathematica)

Semitoric with one focus-focus point (figure made in Mathematica)

Semitoric with one focus-focus point (figure made in Mathematica)

Semitoric with one focus-focus point (figure made in Mathematica)

Semitoric with zero focus-focus points (figure made in Mathematica)

Coupled angular momenta: semitoric polygon

The image of the momentum map for (J, H_t) :

Coupled angular momenta: semitoric polygon

The image of the momentum map for (J, H_t) :

The semitoric polygons for $(J, H_{1/2})$:

Coupled angular momenta: semitoric polygon

The image of the momentum map for (J, H_t) :

The semitoric polygons for $(J, H_{1/2})$:

Idea

Interpolate between systems related to semitoric polygons to find desired semitoric system.

Semitoric families: definition

Definition (Le Floch-P.)

A *fixed*- S^1 *family* is a family of integrable systems (M, ω, F_t) , $0 \le t \le 1$, where

- $\dim(M) = 4;$
- $F_t = (J, H_t);$
- J generates an \mathbb{S}^1 -action;
- $(t,p) \mapsto H_t(p)$ is smooth.

Semitoric families: definition

Definition (Le Floch-P.)

A *fixed*- \mathbb{S}^1 *family* is a family of integrable systems (M, ω, F_t) , $0 \le t \le 1$, where

- $\dim(M) = 4;$
- $F_t = (J, H_t);$
- J generates an \mathbb{S}^1 -action;
- $(t,p) \mapsto H_t(p)$ is smooth.

It is a *semitoric family* if additionally it is semitoric for all but finitely many values of t (called the *degenerate times*).

 At each degenerate time there is a degenerate fiber (i.e. no hyperbolic points);

- At each degenerate time there is a degenerate fiber (i.e. no hyperbolic points);
- Fixed set of \mathbb{S}^1 -action is spheres *S* (at $j_{\max/\min}$) or points.

- At each degenerate time there is a degenerate fiber (i.e. no hyperbolic points);
- Fixed set of \mathbb{S}^1 -action is spheres *S* (at $j_{\max/\min}$) or points.
- If p ∉ S and p is a fixed point of F_t for some t, then it is a fixed point of F_t for all t;

- At each degenerate time there is a degenerate fiber (i.e. no hyperbolic points);
- Fixed set of \mathbb{S}^1 -action is spheres S (at $j_{\max/\min}$) or points.
- If $p \notin S$ and p is a fixed point of F_t for some t, then it is a fixed point of F_t for all t;
 - but fixed points of F_t may 'move' in fixed sphere of J.

- At each degenerate time there is a degenerate fiber (i.e. no hyperbolic points);
- Fixed set of \mathbb{S}^1 -action is spheres *S* (at $j_{\max/\min}$) or points.
- If p ∉ S and p is a fixed point of F_t for some t, then it is a fixed point of F_t for all t;
 - but fixed points of F_t may 'move' in fixed sphere of J.
- If p is focus-focus for $t < t_0$ and elliptic-elliptic for $t > t_0$ then it is degenerate for $t = t_0$ (Hamiltonian-Hopf bifurcation, related to Symington's *nodal trade*).

- At each degenerate time there is a degenerate fiber (i.e. no hyperbolic points);
- Fixed set of \mathbb{S}^1 -action is spheres *S* (at $j_{\max/\min}$) or points.
- If $p \notin S$ and p is a fixed point of F_t for some t, then it is a fixed point of F_t for all t;
 - but fixed points of F_t may 'move' in fixed sphere of J.
- If p is focus-focus for $t < t_0$ and elliptic-elliptic for $t > t_0$ then it is degenerate for $t = t_0$ (Hamiltonian-Hopf bifurcation, related to Symington's *nodal trade*).

Definition (Le Floch-P.)

- p is of elliptic-elliptic type for $t < t^-$;
- *p* is of focus-focus type for $t^- < t < t^+$;
- *p* is of elliptic-elliptic type for $t > t^+$;
- $M \setminus \{p\}$ has no degenerate points for any time.

Definition (Le Floch-P.)

- p is of elliptic-elliptic type for $t < t^-$;
- *p* is of focus-focus type for $t^- < t < t^+$;
- p is of elliptic-elliptic type for $t > t^+$;
- $M \setminus \{p\}$ has no degenerate points for any time.
- p automatically degenerate for $t = t^{\pm}$

Definition (Le Floch-P.)

- p is of elliptic-elliptic type for $t < t^-$;
- *p* is of focus-focus type for $t^- < t < t^+$;
- p is of elliptic-elliptic type for $t > t^+$;
- $M \setminus \{p\}$ has no degenerate points for any time.
- p automatically degenerate for $t = t^{\pm}$
- Other rank zero points cannot change type

Definition (Le Floch-P.)

- p is of elliptic-elliptic type for $t < t^-$;
- *p* is of focus-focus type for $t^- < t < t^+$;
- p is of elliptic-elliptic type for $t > t^+$;
- $M \setminus \{p\}$ has no degenerate points for any time.
- p automatically degenerate for $t = t^{\pm}$
- Other rank zero points cannot change type
- First example: coupled angular momenta

Reduction by \mathbb{S}^1 -action

• Reduce by the \mathbb{S}^1 -action generated by J at level J=j to get $M^{\rm red}_j=J^{-1}(j)/\mathbb{S}^1$

Reduction by \mathbb{S}^1 -action

- Reduce by the \mathbb{S}^1 -action generated by J at level J=j to get $M_j^{\rm red}=J^{-1}(j)/\mathbb{S}^1$
- At regular values of J: non-degenerate $\Leftrightarrow H^{\operatorname{red},j}$ is Morse.

- Reduce by the \mathbb{S}^1 -action generated by J at level J=j to get $M_j^{\rm red}=J^{-1}(j)/\mathbb{S}^1$
- At regular values of J: non-degenerate $\Leftrightarrow H^{\operatorname{red},j}$ is Morse.
- What is M_j^{red} ?

- Reduce by the \mathbb{S}^1 -action generated by J at level J=j to get $M_j^{\rm red}=J^{-1}(j)/\mathbb{S}^1$
- At regular values of J: non-degenerate $\Leftrightarrow H^{\operatorname{red},j}$ is Morse.
- What is M_j^{red}?
 If j = j_{max/min} then M_j^{red} is diffeomorphic to S² or a point.

- Reduce by the \mathbb{S}^1 -action generated by J at level J=j to get $M_j^{\rm red}=J^{-1}(j)/\mathbb{S}^1$
- At regular values of J: non-degenerate $\Leftrightarrow H^{\operatorname{red},j}$ is Morse.
- What is M_i^{red} ?
 - If $j = j_{\max/\min}$ then M_i^{red} is diffeomorphic to \mathbb{S}^2 or a point.
 - If $j_{\min} < j < j_{\max}$ then M_j^{red} is homeomorphic to \mathbb{S}^2 ;

- Reduce by the \mathbb{S}^1 -action generated by J at level J=j to get $M_j^{\rm red}=J^{-1}(j)/\mathbb{S}^1$
- At regular values of J: non-degenerate $\Leftrightarrow H^{\operatorname{red},j}$ is Morse.
- What is M_i^{red} ?
 - If $j = j_{\max/\min}$ then M_i^{red} is diffeomorphic to \mathbb{S}^2 or a point.
 - If $j_{\min} < j < j_{\max}$ then M_j^{red} is homeomorphic to \mathbb{S}^2 ;
 - If $j_{\min} < j < j_{\max}$ and j is regular then M_j^{red} is diffeomorphic to \mathbb{S}^2 .

- Reduce by the $\mathbb{S}^1\text{-action}$ generated by J at level J=j to get $M^{\rm red}_i=J^{-1}(j)/\mathbb{S}^1$
- At regular values of J: non-degenerate $\Leftrightarrow H^{\operatorname{red},j}$ is Morse.
- What is M_i^{red} ?
 - If $j = j_{\max/\min}$ then M_i^{red} is diffeomorphic to \mathbb{S}^2 or a point.
 - If $j_{\min} < j < j_{\max}$ then M_j^{red} is homeomorphic to \mathbb{S}^2 ;
 - If $j_{\min} < j < j_{\max}$ and j is regular then M_j^{red} is diffeomorphic to \mathbb{S}^2 .

- Reduce by the $\mathbb{S}^1\text{-action}$ generated by J at level J=j to get $M^{\rm red}_i=J^{-1}(j)/\mathbb{S}^1$
- At regular values of J: non-degenerate $\Leftrightarrow H^{\operatorname{red},j}$ is Morse.
- What is M_i^{red} ?
 - If $j = j_{\max/\min}$ then M_j^{red} is diffeomorphic to \mathbb{S}^2 or a point.
 - If $j_{\min} < j < j_{\max}$ then M_j^{red} is homeomorphic to \mathbb{S}^2 ;
 - If $j_{\min} < j < j_{\max}$ and j is regular then M_j^{red} is diffeomorphic to \mathbb{S}^2 .

• If $dJ_j = 0$ get a 'teardrop' or 'pinched sphere' orbifold.

Invariance of polygon:

Lemma (Le Floch-P.)

The polygon invariant and number of focus-focus points in a (simple) semitoric family can only change at degenerate times.

Invariance of polygon:

Lemma (Le Floch-P.)

The polygon invariant and number of focus-focus points in a (simple) semitoric family can only change at degenerate times.

• But how does is change?

Invariance of polygon:

Lemma (Le Floch-P.)

The polygon invariant and number of focus-focus points in a (simple) semitoric family can only change at degenerate times.

• But how does is change?

Lemma (Le Floch-P.)

Let $(M, \omega, (J, H_t))$ be a semitoric transition family with transition point p. If the weights of the J-action at p are ± 1 then, roughly, the set of semitoric polygons for $t^- < t < t^+$ is the union of the ones for $t < t^-$ and $t > t^+$.

Intro Reduction Polygons Examples on W1

Polygons in a semitoric family

• Can help us find systems for t = 0, 1 to transition between.

Semitoric systems Semitoric families Finding minimal models

Intro Reduction Polygons Examples on W_1

The first Hirzebruch surface

• Recall the first Hirzebruch surface, W_1 , given by \mathbb{C}^4 reduced by Hamiltonian torus action:

$${\it N}=(1/2)\left(|u_1|^2+|u_2|^2+|u_3|^2,|u_3|^2+|u_4|^2
ight)$$
 at (2,1).

• Usual toric system: $J = 1/2|u_2|^2$, $H_0 = 1/2|u_3|^2$.

Semitoric systems Semitoric families Finding minimal models

Intro Reduction Polygons Examples on W1

The first Hirzebruch surface

• Recall the first Hirzebruch surface, W_1 , given by \mathbb{C}^4 reduced by Hamiltonian torus action:

$${\it N}=(1/2)\left(|u_1|^2+|u_2|^2+|u_3|^2,|u_3|^2+|u_4|^2
ight)$$
 at (2,1).

- Usual toric system: $J = 1/2|u_2|^2$, $H_0 = 1/2|u_3|^2$.
- Transition between H_0 and $-H_0$.

Semitoric systems Semitoric families Finding minimal models

Intro Reduction Polygons Examples on W1

The first Hirzebruch surface

• Recall the first Hirzebruch surface, *W*₁, given by \mathbb{C}^4 reduced by Hamiltonian torus action:

$${\sf N}=(1/2)\left(|u_1|^2+|u_2|^2+|u_3|^2,|u_3|^2+|u_4|^2
ight)$$
 at (2,1).

- Usual toric system: $J = 1/2|u_2|^2$, $H_0 = 1/2|u_3|^2$.
- Transition between H_0 and $-H_0$.

First example on W_1

Let
$$H_t = (1-t)H_0 + t(-H_0 + \gamma \operatorname{Re}(\overline{u}_1 u_3 \overline{u}_4)).$$

Theorem (Le Floch-P.)

 (J, H_t) is a semitoric transition family on W_1 .

First example on W_1

Let
$$H_t = (1-t)H_0 + t(-H_0 + \gamma \operatorname{Re}(\overline{u}_1 u_3 \overline{u}_4)).$$

Theorem (Le Floch-P.)

First example on W_1

Let
$$H_t = (1-t)H_0 + t(-H_0 + \gamma \operatorname{Re}(\overline{u}_1 u_3 \overline{u}_4)).$$

Theorem (Le Floch-P.)

• Fixed points move on sphere $S = J^{-1}(0)$.

Second example on W_1

Let
$$H_t = (1-t)H_0 + t(-H_0 + \gamma J \operatorname{Re}(\overline{u}_1 u_3 \overline{u}_4) + 1)$$

Theorem (Le Floch-P.)

 (J, H_t) is a semitoric family on W_1 with three degenerate times.

Second example on W_1

Let
$$H_t = (1-t)H_0 + t(-H_0 + \gamma J \operatorname{Re}(\overline{u}_1 u_3 \overline{u}_4) + 1)$$

Theorem (Le Floch-P.)

 (J, H_t) is a semitoric family on W_1 with three degenerate times.

Second example on W_1

Let
$$H_t = (1-t)H_0 + t(-H_0 + \gamma J \operatorname{Re}(\overline{u}_1 u_3 \overline{u}_4) + 1)$$

Theorem (Le Floch-P.)

 (J, H_t) is a semitoric family on W_1 with three degenerate times.

An example with hyperbolic points on W_1

Let
$$H_t = (1-t)H_0 + t(-H_0 + \operatorname{Re}(\overline{u}_1 u_3 \overline{u}_4) + 2|u_1|^2|u_4|^2)$$

An example with hyperbolic points on W_1

An example with hyperbolic points on W_1

• Similar to Dullin-Pelayo (2016).

Minimal models

• Around an elliptic-elliptic point can perform a blowup of toric type, by blowing up with respect to $f_{\varepsilon} \circ F$ (blowing down is the inverse operation)

Minimal models

• Around an elliptic-elliptic point can perform a blowup of toric type, by blowing up with respect to $f_{\varepsilon} \circ F$ (blowing down is the inverse operation)

Goal

Find all compact semitoric systems which do not admit a blowdown (*minimal models*).

Minimal models

• Around an elliptic-elliptic point can perform a blowup of toric type, by blowing up with respect to $f_{\varepsilon} \circ F$ (blowing down is the inverse operation)

Goal

Find all compact semitoric systems which do not admit a blowdown (*minimal models*).

• Then all systems can be obtained from these by performing a sequence of blowups.

• Blowups correspond to a corner chop of the semitoric polygon.

• Blowups correspond to a corner chop of the semitoric polygon.

• Sometimes can be hard to see if blowdown is possible.

• Blowups correspond to a corner chop of the semitoric polygon.

• Sometimes can be hard to see if blowdown is possible.

• Blowups correspond to a corner chop of the semitoric polygon.

• Sometimes can be hard to see if blowdown is possible.

• Introduce *semitoric helix* (joint with Kane-Pelayo);

• Similar to the fan of a non-singular toric surface.

- Introduce *semitoric helix* (joint with Kane-Pelayo);
 - Similar to the fan of a non-singular toric surface.
- Idea: "unwind" non-Delzant corners, so all corners are Delzant but boundary no longer closes up.

- Introduce *semitoric helix* (joint with Kane-Pelayo);
 - Similar to the fan of a non-singular toric surface.
- Idea: "unwind" non-Delzant corners, so all corners are Delzant but boundary no longer closes up.

- Introduce *semitoric helix* (joint with Kane-Pelayo);
 - Similar to the fan of a non-singular toric surface.
- Idea: "unwind" non-Delzant corners, so all corners are Delzant but boundary no longer closes up.

• Classify by lifting to "universal cover" of $SL_2(\mathbb{Z})$.

Minimal models: minimal helices

Theorem (Kane-P.-Pelayo, 2016)

The minimal helices come in 7 families:

with (1)
$$c = 1$$
; (2) $c = 2$; (3) $k \neq 2$, $c = 1$;
(4) $c \neq 2$; (5) $k \neq \pm 1, 0, c \neq 1$; (6) $k \neq -1, 1 - c, c > 0$
and type (7).

Minimal models: minimal helices

Theorem (Kane-P.-Pelayo, 2016)

The minimal helices come in 7 families:

with (1)
$$c = 1$$
; (2) $c = 2$; (3) $k \neq 2$, $c = 1$;
(4) $c \neq 2$; (5) $k \neq \pm 1, 0, c \neq 1$; (6) $k \neq -1, 1 - c, c > 0$
and type (7).

• \mathbb{S}^1 -action on types (4)-(7) has a fixed sphere.

Semitoric systems Semitoric families Finding minimal models

Classification type (3) type (2)

Minimal models: minimal polygons (1), (2), (3)

The polygons of the remaining minimal systems:

Classification type (3) type (2)

Minimal models: minimal polygons (1), (2), (3)

The polygons of the remaining minimal systems:

• K. Efstathiou found a semitoric family which is of type (1) for t = 1/2 on \mathbb{CP}^2 .

Minimal models: minimal polygons (1), (2), (3)

The polygons of the remaining minimal systems:

• K. Efstathiou found a semitoric family which is of type (1) for t = 1/2 on \mathbb{CP}^2 .

Goals

- I Find an explicit system which is minimal of type (3) for each $k \in \mathbb{Z}$.
- 2 Find an explicit system which is minimal of type (2).

Minimal models: minimal polygons (1), (2), (3)

The polygons of the remaining minimal systems:

• K. Efstathiou found a semitoric family which is of type (1) for t = 1/2 on \mathbb{CP}^2 .

Goals

- **1** Find an explicit system which is minimal of type (3) for each $k \in \mathbb{Z}$.
- 2 Find an explicit system which is minimal of type (2).
- 3 Exhibit these examples in a semitoric family?

• Minimal system of type (3):

• Minimal system of type (3):

• Coupled angular momenta is minimal of type (3) with k = -1.

• Minimal system of type (3):

• Coupled angular momenta is minimal of type (3) with k = -1.

Lemma (Le Floch-P.)

A blowup/down of a semitoric family is still a semitoric family.

- Recall the Hirzebruch surface with parameter n, W_n :
 - $\bullet\,$ Symplectic reduction of \mathbb{C}^4 by

$$N = (1/2) \left(|u_1|^2 + |u_2|^2 + n|u_3|^2, |u_3|^2 + |u_4|^2
ight)$$
 at (n+1,1).

• Usual toric system: $H=(1/2)|u_3|^2, J=(1/2)|u_2|^2$

- Recall the Hirzebruch surface with parameter n, W_n :
 - $\bullet\,$ Symplectic reduction of \mathbb{C}^4 by

$$N = (1/2) \left(|u_1|^2 + |u_2|^2 + n|u_3|^2, |u_3|^2 + |u_4|^2
ight)$$
 at (n+1,1).

• Usual toric system: $H=(1/2)|u_3|^2, J=(1/2)|u_2|^2$

Polygon:

- Recall the Hirzebruch surface with parameter n, W_n :
 - $\bullet\,$ Symplectic reduction of \mathbb{C}^4 by

$$N = (1/2) \left(|u_1|^2 + |u_2|^2 + n|u_3|^2, |u_3|^2 + |u_4|^2
ight)$$
 at (n+1,1).

• Usual toric system: $H=(1/2)|u_3|^2, J=(1/2)|u_2|^2$

• Polygon:

• Instead, use $J = (1/2)|u_2|^2 + H$.

- Recall the Hirzebruch surface with parameter n, W_n :
 - $\bullet\,$ Symplectic reduction of \mathbb{C}^4 by

$$N = (1/2) \left(|u_1|^2 + |u_2|^2 + n|u_3|^2, |u_3|^2 + |u_4|^2
ight)$$
 at (n+1,1).

• Usual toric system: $H=(1/2)|u_3|^2, J=(1/2)|u_2|^2$

• Polygon:

• Instead, use $J = (1/2)|u_2|^2 + H$.

Classification type (3) type (2)

Finding a system of type (3)

$M = W_0 \cong \mathbb{S}^2 imes \mathbb{S}^2$ (coupled angular momentum)

(minimal of type (3) with k=-1)

$M = \operatorname{Blowup}(W_0)$

 $M = W_1$

(minimal of type (3) with k=0)

$M = \operatorname{Blowup}(W_1)$

 $M = W_2$

(minimal of type (3) with k=1)
Finding a system of type (3)

$M = \operatorname{Blowup}(W_2)$

 $M = W_3$

(minimal of type (3) with k=2)

Existence of examples on Hirzebruch surfaces

Corollary (Le Floch-P.)

- A semitoric system which is minimal of type (3) with parameter k exists on the $(k + 1)^{st}$ Hirzebruch surface.
- Moreover, that system is the t = 1/2 system in a semitoric family which can be obtained from the coupled angular momenta family on S² × S² ≅ W₀ by a sequence of alternating blowups and blowdowns.

A system of type (2)

• Minimal system of type (2):

A system of type (2)

• Minimal system of type (2):

• Think about coupled angular momenta again:

Classification type (3) type (2)

A system of type (2)

• Minimal system of type (2):

• Think about coupled angular momenta again:

• The point NS passes through the interior and becomes focus-focus, can we do this with SN as well?

A system of type (2): 4 parameter family

$$\begin{cases} J = R_1 z_1 + R_2 z_2 \\ H_{t_1, t_2, t_3, t_4} = t_1 z_1 + t_2 z_2 + t_3 (x_1 x_2 + y_1 y_2) + t_4 z_1 z_2 \end{cases}$$

A system of type (2): 4 parameter family

$$\begin{cases} J = R_1 z_1 + R_2 z_2 \\ H_{t_1, t_2, t_3, t_4} = t_1 z_1 + t_2 z_2 + t_3 (x_1 x_2 + y_1 y_2) + t_4 z_1 z_2 \end{cases}$$

Theorem (Hohloch-P., 2018)

Let $R_1 = 1$ and $R_2 = 2$. Then $(J, H_{\frac{1}{4}, \frac{1}{4}, \frac{1}{2}, 0})$ is a semitoric integrable system with exactly two focus-focus points (and so is every system in an open neighborhood of these parameters).

A system of type (2): rewriting the system

Let

$$\begin{cases} H_{0,0} &= x_1 x_2 + y_1 y_2 + z_1 z_2 \\ H_{1,0} &= z_1 \\ H_{0,1} &= z_2 \\ H_{1,1} &= x_1 x_2 + y_1 y_2 - z_1 z_2 \end{cases}$$

and

A system of type (2): rewriting the system

Let

$$\begin{cases} H_{0,0} &= x_1 x_2 + y_1 y_2 + z_1 z_2 \\ H_{1,0} &= z_1 \\ H_{0,1} &= z_2 \\ H_{1,1} &= x_1 x_2 + y_1 y_2 - z_1 z_2 \end{cases}$$

and

$$H_{s_1,s_2} = (1-s_2)\Big((1-s_1)H_{0,0} + s_1H_{1,0}\Big) + s_2\Big((1-s_1)H_{0,1} + s_1H_{1,1}\Big).$$

Then

A system of type (2): rewriting the system

Let

$$\begin{cases} H_{0,0} &= x_1 x_2 + y_1 y_2 + z_1 z_2 \\ H_{1,0} &= z_1 \\ H_{0,1} &= z_2 \\ H_{1,1} &= x_1 x_2 + y_1 y_2 - z_1 z_2 \end{cases}$$

and

$$H_{s_1,s_2} = (1-s_2)\Big((1-s_1)H_{0,0} + s_1H_{1,0}\Big) + s_2\Big((1-s_1)H_{0,1} + s_1H_{1,1}\Big).$$

Then

$$(J, H_{\frac{1}{4}, \frac{1}{4}, \frac{1}{2}, 0}) = (J, H_{\frac{1}{2}, \frac{1}{2}})$$

A system of type (2): the semitoric polygons

The semitoric polygons for $(J, H_{\frac{1}{2}, \frac{1}{2}})$ (minimal polygons of type (2)):

Image of (J, H_{s_1, s_2}) for $s_1, s_2 \in [0, 1]$

Image of (J, H_{s_1, s_2}) for $s_1, s_2 \in [0, 1]$

End

Some references

- Sadovskií, D. and Zĥilinskií, B. Monodromy, diabolic points, and angular momentum coupling Phys. Lett. A, 256(4): (1999) 235-244.
- Vũ Ngọc, S. Moment polytopes for symplectic manifolds with monodromy Adv. Math., 208(2): (2007) 909-934.
- Pelayo, Á and Vũ Ngọc, S. Semitoric integrable systems on symplectic 4-manifolds Invent. Math., 177(3): (2009) 571-597.
- Pelayo, Á and Vũ Ngọc, S. Constructing integrable systems of semitoric type Acta. Math., 206: (2011) 93-125.
- Kane, D., Palmer, J., and Pelayo, Á. Minimal models of compact semitoric manifolds The Journal of Geometry and Physics 125 (2018), 49–74
- Le Floch, Y. and Pelayo, Á. Symplectic geometry and spectral properties of the classical and quantum coupled angular momenta To appear in *J. of Nonlinear Science*, arXiv:1607.05419.
- Hohloch S., and Palmer, J.
 A family of compact semitoric systems with two focus-focus points To appear in J. of Geometric Mechanics, (arXiv:1710.05746).
- Le Floch, Y. and Palmer, J. (upcoming) Semitoric families