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The Lorentz gas

Arch. Neerl. (1905) Hendrik Lorentz (1853-1928)



The Boltzmann-Grad limit
Consider the dynamics in the limit of small scatterer radius p
(q(t), v(t)) = “microscopic” phase space coordinate at time ¢

A dimensional argument shows that, in the limit p — 0O, the mean free
path length (i.e., the average time between consecutive collisions) scales
like p—(4=1) (= 1/total scattering cross section)

We thus re-define position and time and use the “macroscopic” coordinates

(QW),V(®) = (p" tqlp~ " Dp), v(p~ "))



The linear Boltzmann equation

e Time evolution of initial data (Q,V):

(QM), V(1) =2,(Q,V)

e Time evolution of a particle cloud with initial density f € L!:

1PQ, V) = f(2,1(Q. V)

In his 1905 paper Lorentz suggested that ft(p) IS governed, as p — O, by the
linear Boltzmann equation:

0
[& —I_ v VQ] ft(Q’ V) — /Sclil [ft(Qa VO) o ft(Q7 V)}O'(VO, V)dVO

where the collision kernel o(V g, V') is the cross section of the individual scat-
terer. E.g.: 0(Vo, V) = %||Vg — V|3~ for specular reflection at a hard sphere
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The linear Boltzmann equation—rigorous proofs

Galavotti (Phys Rev 1969 & report 1972): Poisson distributed hard-sphere
scatterers

Spohn (Comm Math Phys 1978): extension to more general random scatterer
configurations and potentials

Boldrighini, Bunimovich and Sinai (J Stat Phys 1983): prove convergence for
almost every scatterer configuration

Quantum: Spohn (J Stat Phys 1977): Gaussian random potentials, weak
coupling limit & small times; Erdds and Yau (Contemp Math 1998, Comm
Pure Appl Math 2000): General random potentials, weak coupling limit; Eng
and Erdds (Rev Math Phys 2005): Low density limit



The periodic Lorentz gas






The Boltzmann-Grad limit
e Recall: We are interested in the dynamics in the limit of small scatterer radius
e (q(t),v(t)) = “microscopic” phase space coordinate at time ¢

e Re-define position and time and use the “macroscopic” coordinates

(Q(), V(1) = (p? 1q(p~ D) w(p= =Dy



A limiting random process

A cloud of particles with initial density f(Q, V') evolves in time ¢ to

£2@Q,v) = [LL11(Q, V) = f(2,4Q. V).

Theorem A [UM & Strombergsson, Annals of Math 2011].

For every t > O there exists a linear operator Lt : LI(TI(RY)) —

LI(TL(RY)), such that for every f € L1(T1(R?%)) and any set .4 ¢ T1(R%)
with boundary of Liouville measure zero,

lim [ [L61(Q. V) dQav = | [L'/1(Q.V)dQaV.

The operator L! thus describes the macroscopic diffusion of the Lorentz gas in
the Boltzmann-Grad limit p — O.

Note: The family {L!},~q does not form a semigroup.



A generalization of the linear Boltzmann equation
Consider extended phase space coordinates (Q,V,£, V4 ):

(Q,V) € THR?) — usual position and momentum
§eERy — fllght time until the next scatterer
Ve Sd — velocity after the next hit

-I-V Vo — ]ft(Q V,§&,Vy)

- Sd_lft(Q,Vo,O,V)po(Vo,V,f,VJr)dVo
1

with a new collision kernel po(V o, V', &, V1 ), which can be expressed as a prod-
uct of the scattering cross section of an individual scatterer and a ceratin transition

probability for hitting a given point the next scatterer after time £&. We obtain the
original particle density via

£(Q, V) = /O /Sclll £(Q,V,€, V) dV . de.

10



Why “a generalization” of the linear Boltzmann equation?

-I-V Vo - ]ft(Q V.&,Vy)

= Sd_lft(Q,Vo,O,V)po(VO,V,S,VJF)dVo
1

Substituting in the above the transition density for the random (rather than peri-
odic) scatterer configuration

ft(Qa Va 57 V—|—> — gt(Q7 V)J(Va V—I—)e_aga o= VOl(B?I_Z_]-L

po(Vo,V, &, V) =0o(V,V )e %

yields the classical linear Boltzmann equation for ¢;:(Q, V).
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The key theorem:
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Joint distribution of path segments




Joint distribution for path segments

The following theorem proves the existence of a Markov process that describes
the dynamics of the Lorentz gas in the Boltzmann-Grad limit.

Theorem B [JM & Strombergsson, Annals of Math 2011]. Fix an a.c. Borel
probability measure A on T1(R?). Then, for each n € N there exists a prob-

ability density W,,  on R"? such that, for any set A C R"? with boundary of
Lebesgue measure zero,

pli_rpo/\({(QO,Vo) e TY(RY) : (S1,...,80) € A})
:/Awn,/\(s’,...,sgl) s’y ---ds’,

and, for n > 3,

n
W, A(S1,...,80) = W a(S1,82) || w(S;-2,5;-1,5;),
j=3

where W is a continuous probability density independent of A (and the lattice).

Theorem A follows from Theorem B by standard probabilistic arguments.
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First step: The distribution of free path lengths
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Lattices

e [ C Re—euyclidean lattice of covolume one

e recall £L = Z%M for some M € SL(d,R), therefore the homogeneous space
X1 = SL(d,Z)\ SL(d,R) parametrizes the space of lattices of covolume
one

o 111—right-SL(d, R) invariant prob measure on X (Haar)
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Affine lattices

e ASL(d,R) = SL(n,R) x R%—the semidirect product group with multiplica-
tion law

(M, z)(M', ") = (MM, M + 2.
An action of ASL(d,R) on R? can be defined as
y—y(M,x) .= yM + x.

e the space of affine lattices is then represented by X = ASL(d,Z)\ ASL(d,R)
where ASL(d,Z) = SL(d,Z) x Z%, i.e.,

L= (Z%+ )M = 7% 1, a)(M,0)

e u—right-ASL (d,R) invariant prob measure on X
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Let us denote by 1 = 7(q,v) the free path length corresponding to the initial
condition (g, v).

Theorem C [JM & Strombergsson, Annals of Math 2010]. Fix a lattice Lg
and the initial position g. Let A be any a.c. Borel probability measure on
S‘f‘l. Then, for every £ > 0, the limit

Froq(®) = lim A({v e S{71: p¥ 1y > ¢}
p—0
exists, is continuous in &£ and independent of A. Furthermore

Fo(§) =m({LeX1:LNZ(E) =0}) ifge Ly

Fro.q(8) = {F(g) =pu({(LeX LNZE) =0}) ifq¢ QLo

with the cylinder

Z(g)z{(a;l,...,a:d)ERd:o<x1<g,x§+...+x§<1}.
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Idea of proof (g = 0)

+ + + + + + + + + + +
+ + + + + + + + + + +
+ + + + + + + + + + +

~ A({’v - S‘li_l - 7% N Z(v,p_(d_l)f,p) = (Z)})

21



Idea of proof (g = 0)

(Rotate by K(v) € SO(d) such that v — 61)
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Idea of proof (g = 0)
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Idea of proof (g = 0)

(Apply D, =diag(p® 1, p7t, ..., p7 1) € SL(n,R))
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Idea of proof (g = 0)

)\({’v eS¢l 729K (w)D,N Z(ey,6,1) = @})
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The following Theorem shows that in the limit p — O the lattice
d—1 0
70K P
(v) < 0 ,0_11>
behaves like a random lattice with respect to Haar measure p11. Define a flow on
X1 =SL(n,Z)\ SL(n,R) via right translation by

—(d—1)t
t ___[¢€ 0
= ( 0 et1>'

Theorem D. Fix any My € SL(n,R). Let X\ be an a.c. Borel probability
measure on Scll_l. Then, for every bounded continuous function f : X1 — R,

im fog 2 S (MoK (0)e)dA(w) = Jy FODdu (1),

t— 00
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Theorem D is a direct consequence of the mixing property for the flow &?.
This concludes the proof of Theorem C when g € £ = Z%Mj.

The generalization of Theorem D required for the full proof of Theorem C uses
Ratner’s classification of ergodic measures invariant under a unipotent flow. We
exploit a close variant of a theorem by N. Shah (Proc. Ind. Acad. Sci. 1996) on
the uniform distribution of translates of unipotent orbits.
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Limiting densities for d = 3

(&) = —FF (&) P (&) = —FFo(€)

For random scatterer configuarions:
D(£) =7e %, do(¢) = e % withs = voI(Bcll_l)
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Tail asymptotics [UM & Strombergsson, GAFA 2011].

d—1
L T 2 -2 _2_2
Pg(é) =0 for £ sufficiently large
_ o? 2
Cb(ﬁ):(f—_@‘f‘l'o(ﬁ) as £ — 0
o)
Po(§) = @ + O(¢&) as £ — 0.
r(d=1)/2

with 7 = vol(B{™ 1) = ety /2y
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Quasicrystals
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Cut and project

e R =R? x R™, & and 7, orthogonal projections onto R%, R™

e L C R™an (in general) affine lattice of full rank

o A := (L) is an abelian subgroup of R, with Haar measure u 4

e VW C A a “regular window set”
(i.e. bounded with non-empty interior, u 4(0W) = 0)

o POV, L) = {n(y) : y € L, Tint(y) € W} C R
is called a “regular cut-and-project set”

e P(W, L) defines the locations of scatterers in our quasicrystal
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Example: The Penrose tiling

yate
ey Taeae
KT
AN

(from: de Bruijn, Kon Nederl Akad Wetensch Proc Ser A, 1981)
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Density

We have the following well known facts:
e P(W, L) is a Delone set, i.e., uniformly discrete and relatively dense in R®

e For any bounded D C R? with boundary of Lebesgue measure zero,

. #(PNTD)
lim
T— 00 Td
(the constant ¢, is explicit)

= cg vol(D)ps(W)
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Recall -1 = 7(q,v) denotes the free path length corresponding to the initial
condition (g, v).

Theorem E [UJM & StrOmbergsson, 2013]. Fix a regular cut-and-project set
Po and the initial position q. Let A be any a.c. Borel probability measure on
S‘f‘l. Then, for every £ > 0, the limit

Fpo,q(€) 1= IMA({v € S770: p* iy > €])

exists, is continuous in & and independent of .

In analogy with Theorem C and the space of lattices, we will express Fp, 4(£) in
terms of a random variable in the space of quasicrystals.

34



Spaces of quasicrystals (I)
SetG = ASL(n,R), T = ASL(n,Z).

For g € GG, define an embedding of SL(d,R) in G by the map

¢g: SL(d,R) -G, Awrg <<§ l?n> ,O) g L.

It follows from Ratner’s theorems that there exists a closed connected sub-
group H,4 ofc G such that

— [N Hyis alattice in Hy
— ¢g(SL(d,R)) C Hy
— the closure of M\IMpy(SL(d,R)) in M\G is given by M\l Hy,.

Denote the unique right-H, invariant probability measure on M\I" Hy by 1.

35



Spaces of quasicrystals (ll)

e Given an affine lattice £ C R™ as above, choose 6 > 0 and g € GG so that
£ = §/nzrg. Then A = it (Z79).

e Since '\I"Hy isthe closure of M\IMp4(SL(d, R)), it follows that i (Z"™hg) C
Aforall h € Hy, and 7t (Z"hg) = A for almost all h € Hy,.
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Spaces of quasicrystals (lll)

e For each fixed 6 > 0 and window W C A, the map from IM\I" H, to the set of
point sets in RY, M\Ih — P(§1/7Z"hg, W) gives a natural parametrisation
of a space of quasicrystals by M\I" Hy.

e Denote the image of this map by Q4 = Q4(W, §), and define a probability
measure on 4 as the push-forward of 14 (for which we will use the same
symbol). This defines a random point process in R€.

e In the topology inherited from M\I" Hy, the space 9, is the closure of the
set {P(Lh, W) : h € SL(d,R)}, with the (in general) affine lattice £ =
51/”an.
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Theorem F [JM & Strombergsson, 2013].
For Po = P(L,¥) and initial position g, pick g € G and § > 0 such that
L —(q,0) = §Y/"zng. Then

Fro.q(€) = ng({P € Q4 3¢ NP = 0}).
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Examples

o If Po = P(L, W), then for almost every L in the space of lattices and q €
Po, we have H; = SL(n,R), T N Hy = SL(n,Z).

Fp, (&) is independent of Py and g and has compact support.

o If Po = P(L, W), then for almost every L in the space of lattices and almost
every g, we have H; = ASL(n,R), " N Hy = ASL(n,Z).

Fp, (&) < €71 (¢ — oo) where the implied constants depend on n, W, §.
Again Fp, ,(§) is independent of Py and q.

e If Py is the Penrose quasicrystal and q € Pg, we have H, = SL(2,R)?,
" N Hy = a congruence subgroup of the Hilbert modular group SL(n, O),
with O the ring of integers of K = Q(+/5).

Fp, q(§) =< work in progress ...
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Other aperiodic scatterer configurations: unions of lattices

e Consider now scatterer locations at the point set
N
_—1/d
Po= U L5 Li=m; N2+ w)M;
i=1

with w; € R4, M; € SL(d,R) andm; > Osuchthatny +...+ay =1
e Let S be the commensurator of SL(d,Z) in SL(d,R):

S = {(detT) Y47 : T € GL(d,Q), detT > 0}.

e We say that the matrices M+, ..., My € SL(n,R) are pairwise incommen-
surable if MZ-J\/[j_1 ¢ S for all © = 5. A simple example is

_ija ¢ 0 L
M; = ¢ (o 1d_1>, i=1,..., N,

where ¢ is any positive number such that ¢, ¢2,..., ¢V 1 ¢ Q.
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Free path lengths for unions of lattices

Theorem G [UM & Strombergsson, 2013]. Let Py as on the previous slide with

M; € SL(d,R) pairwise incommensurable. Let X be any a.c. Borel probability
measure on Scli_l. Then, for every & > 0, the limit

Fpo,q(8) = lim A({v € St p?1lr > €))

exists. If for instance w; — ﬁil/qui_l ¢ Q4 for all 4, then

N
Fp, q(&) = 1] F@;)
i=1
where F (&) is the distribution of free path length corresponding to a single
lattice and generic initial point (as in Theorem C).

Recall F(¢) ~ C¢~1 for ¢ — co. Thus

Fpy,q(€) ~ CNe™ .
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Key step in the proof: equidistribution in products

...is as before an equidistribution theorem that follows from Ratner’s measure
classification (again via Shah’s theorem):

Theorem H [UJM & Strombergsson, 2013]. Assume that Mq,..., My €
SL(n,R) are pairwise incommensurable, and o, ..., an ¢ Q7 (for simplic-
ity). Let A be an a.c. Borel probability measure on Scll_l. Then
- t
M Jogs /(Lo 2) MK @)$4,0), ...
o (L a) (MK (0) @', 0)) dA(v)

= XNf(gL---,gN)du(gﬂ~--du(9N)-
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Future work
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