Kinetic transport in quasicrystals

September 2013

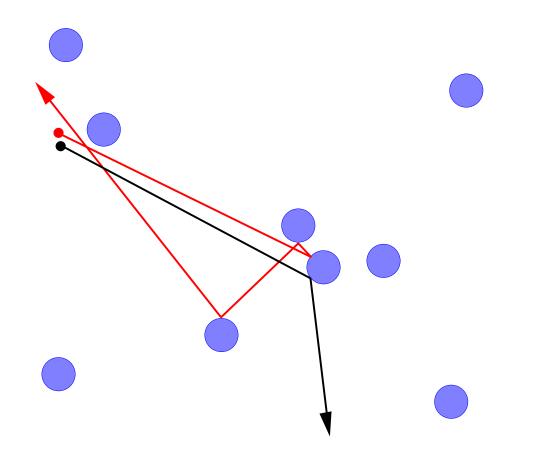
Jens Marklof*

University of Bristol http://www.maths.bristol.ac.uk

joint work with Andreas Strömbergsson (Uppsala)

*supported by Royal Society and ERC

The Lorentz gas



Arch. Neerl. (1905)

Hendrik Lorentz (1853-1928)

The Boltzmann-Grad limit

- Consider the dynamics in the limit of small scatterer radius ho
- (q(t), v(t)) = "microscopic" phase space coordinate at time t
- A dimensional argument shows that, in the limit $\rho \to 0$, the mean free path length (i.e., the average time between consecutive collisions) scales like $\rho^{-(d-1)}$ (= 1/total scattering cross section)
- We thus re-define position and time and use the "macroscopic" coordinates $\left(Q(t), V(t)\right) = \left(\rho^{d-1}q(\rho^{-(d-1)}t), v(\rho^{-(d-1)}t)\right)$

The linear Boltzmann equation

• Time evolution of initial data (Q, V):

 $(\boldsymbol{Q}(t), \boldsymbol{V}(t)) = \Phi_{\rho}^{t}(\boldsymbol{Q}, \boldsymbol{V})$

• Time evolution of a particle cloud with initial density $f \in L^1$:

 $f_t^{(\rho)}(\boldsymbol{Q}, \boldsymbol{V}) := f\left(\Phi_{\rho}^{-t}(\boldsymbol{Q}, \boldsymbol{V})\right)$

In his 1905 paper Lorentz suggested that $f_t^{(\rho)}$ is governed, as $\rho \to 0$, by the linear Boltzmann equation:

$$\left[\frac{\partial}{\partial t} + \boldsymbol{V} \cdot \nabla_{\boldsymbol{Q}}\right] f_t(\boldsymbol{Q}, \boldsymbol{V}) = \int_{\mathsf{S}_1^{d-1}} \left[f_t(\boldsymbol{Q}, \boldsymbol{V}_0) - f_t(\boldsymbol{Q}, \boldsymbol{V}) \right] \sigma(\boldsymbol{V}_0, \boldsymbol{V}) d\boldsymbol{V}_0$$

where the collision kernel $\sigma(V_0, V)$ is the cross section of the individual scatterer. E.g.: $\sigma(V_0, V) = \frac{1}{4} ||V_0 - V||^{3-d}$ for specular reflection at a hard sphere

The linear Boltzmann equation—rigorous proofs

- Galavotti (Phys Rev 1969 & report 1972): Poisson distributed hard-sphere scatterers
- Spohn (Comm Math Phys 1978): extension to more general random scatterer configurations and potentials
- Boldrighini, Bunimovich and Sinai (J Stat Phys 1983): prove convergence for almost every scatterer configuration
- Quantum: Spohn (J Stat Phys 1977): Gaussian random potentials, weak coupling limit & small times; Erdös and Yau (Contemp Math 1998, Comm Pure Appl Math 2000): General random potentials, weak coupling limit; Eng and Erdös (Rev Math Phys 2005): Low density limit

The periodic Lorentz gas

0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	°/	0	0
0	0	0	ο	0	ο	0	0	ο	o	0	ο	0	0	0	0	0	0	0
0	0	0	ο	0	ο	0	0	ο	0	- \	0	0	0	0	0	ο	0	0
0	0	0	ο	0	0	0<	0	0	0	0	0	0	0	0	ο	ο	0	0
0	0	0	ο	0	0	0	0	0	0	>°	ο	0	~	0	ο	ο	0	0
0	0	ο	ο	0	ο	ο	0	0	9	0	0	0	9	0	ο	ο	0	0
0	0	0	ο	ο	ο	ο	0	0	0	0	ο	ο	0	0	ο	ο	0	ο
0	0	0	ο	ο	0	ο	0	ο	0	0	0	0	0	0	0	0	0	0
0	0	0	ο	ο	0	ο	0	ο	ο	0	ο	0	0	0	0	0	0	ο
0	0	ο	ο	0	ο	ο	0	ο	ο	0	ο	ο	0	0	ο	0	0	ο
0	ο	0	ο	0	0	ο	0	ο	0	0	ο	0	0	ο	ο	0	0	0

The Boltzmann-Grad limit

- *Recall:* We are interested in the dynamics in the limit of small scatterer radius
- (q(t), v(t)) = "microscopic" phase space coordinate at time t
- Re-define position and time and use the "macroscopic" coordinates

$$(Q(t), V(t)) = (\rho^{d-1}q(\rho^{-(d-1)}t), v(\rho^{-(d-1)}t))$$

A limiting random process

A cloud of particles with initial density f(Q, V) evolves in time t to

$$f_t^{(\rho)}(\boldsymbol{Q}, \boldsymbol{V}) = [L_{\rho}^t f](\boldsymbol{Q}, \boldsymbol{V}) = f\left(\Phi_{\rho}^{-t}(\boldsymbol{Q}, \boldsymbol{V})\right).$$

Theorem A [JM & Strömbergsson, Annals of Math 2011]. For every t > 0 there exists a linear operator $L^t : L^1(T^1(\mathbb{R}^d)) \rightarrow L^1(T^1(\mathbb{R}^d))$, such that for every $f \in L^1(T^1(\mathbb{R}^d))$ and any set $\mathcal{A} \subset T^1(\mathbb{R}^d)$ with boundary of Liouville measure zero,

$$\lim_{\rho \to 0} \int_{\mathcal{A}} [L_{\rho}^{t} f](\boldsymbol{Q}, \boldsymbol{V}) \, d\boldsymbol{Q} \, d\boldsymbol{V} = \int_{\mathcal{A}} [L^{t} f](\boldsymbol{Q}, \boldsymbol{V}) \, d\boldsymbol{Q} \, d\boldsymbol{V}.$$

The operator L^t thus describes the macroscopic diffusion of the Lorentz gas in the Boltzmann-Grad limit $\rho \rightarrow 0$.

Note: The family $\{L^t\}_{t>0}$ does *not* form a semigroup.

A generalization of the linear Boltzmann equation

Consider extended phase space coordinates (Q, V, ξ, V_+) :

 $(Q, V) \in T^1(\mathbb{R}^d)$ — usual position and momentum $\xi \in \mathbb{R}_+$ — flight time until the next scatterer $V_+ \in S_1^{d-1}$ — velocity after the next hit

$$\begin{bmatrix} \frac{\partial}{\partial t} + \mathbf{V} \cdot \nabla_{\mathbf{Q}} - \frac{\partial}{\partial \xi} \end{bmatrix} f_t(\mathbf{Q}, \mathbf{V}, \xi, \mathbf{V}_+) = \int_{\mathsf{S}_1^{d-1}} f_t(\mathbf{Q}, \mathbf{V}_0, 0, \mathbf{V}) p_0(\mathbf{V}_0, \mathbf{V}, \xi, \mathbf{V}_+) d\mathbf{V}_0$$

with a new collision kernel $p_0(V_0, V, \xi, V_+)$, which can be expressed as a product of the scattering cross section of an individual scatterer and a ceratin transition probability for hitting a given point the next scatterer after time ξ . We obtain the original particle density via

$$f_t(\boldsymbol{Q}, \boldsymbol{V}) = \int_0^\infty \int_{\mathsf{S}_1^{d-1}} f_t(\boldsymbol{Q}, \boldsymbol{V}, \xi, \boldsymbol{V}_+) \, d\boldsymbol{V}_+ \, d\xi.$$

Why "a generalization" of the linear Boltzmann equation?

$$\begin{bmatrix} \frac{\partial}{\partial t} + \mathbf{V} \cdot \nabla_{\mathbf{Q}} - \frac{\partial}{\partial \xi} \end{bmatrix} f_t(\mathbf{Q}, \mathbf{V}, \xi, \mathbf{V}_+)$$

= $\int_{\mathbb{S}_1^{d-1}} f_t(\mathbf{Q}, \mathbf{V}_0, 0, \mathbf{V}) p_0(\mathbf{V}_0, \mathbf{V}, \xi, \mathbf{V}_+) d\mathbf{V}_0$

Substituting in the above the transition density for the random (rather than periodic) scatterer configuration

$$f_t(\boldsymbol{Q}, \boldsymbol{V}, \boldsymbol{\xi}, \boldsymbol{V}_+) = g_t(\boldsymbol{Q}, \boldsymbol{V}) \sigma(\boldsymbol{V}, \boldsymbol{V}_+) \mathrm{e}^{-\overline{\sigma}\boldsymbol{\xi}}, \quad \overline{\sigma} = \mathrm{vol}(\mathcal{B}_1^{d-1}),$$

$$p_0(V_0, V, \xi, V_+) = \sigma(V, V_+) e^{-\overline{\sigma}\xi}$$

yields the classical linear Boltzmann equation for $g_t(Q, V)$.

The key theorem:

Joint distribution of path segments

0	ο	ο	ο	0	ο	ο	0	ο	0	0	ο	0	0	ο	ο	0/	0	0
0	o	o	ο	0	o	o	0	o	0	o	0	0	0	0	S ^o ₅ /	0	0	0
ο	ο	ο	ο	ο	ο	ο	o	°S	30		0	0	ο	0	0	ο	0	0
0	ο	ο	ο	ο	ο	0<	0	0	0	ο	°S	0	0	0	ο	ο	ο	0
0	ο	0	ο	0	0	0	S ₂	0	0		0	•	~	0	ο	ο	0	ο
o	ο	ο	ο	0	ο	ο	0	0/	1	0	0	0	0	0	ο	ο	0	0
0	ο	ο	ο	0	ο	ο	ο	0	0	0	0	0	0	0	0	ο	ο	ο
ο	ο	ο	ο	ο	ο	ο	0	ο	0-	0	0	0	ο	0	0	0	0	0
0	0	ο	ο	0	0	ο	0	0	0	0	0	0	0	0	0	0	0	ο
0	ο	ο	ο	0	ο	o	0	ο	ο	0	ο	0	0	ο	ο	0	0	ο
ο	ο	ο	ο	ο	ο	ο	o	ο	ο	0	ο	ο	0	0	0	ο	0	ο

Joint distribution for path segments

The following theorem proves the existence of a Markov process that describes the dynamics of the Lorentz gas in the Boltzmann-Grad limit.

Theorem B [JM & Strömbergsson, Annals of Math 2011]. Fix an a.c. Borel probability measure Λ on $T^1(\mathbb{R}^d)$. Then, for each $n \in \mathbb{N}$ there exists a probability density $\Psi_{n,\Lambda}$ on \mathbb{R}^{nd} such that, for any set $\mathcal{A} \subset \mathbb{R}^{nd}$ with boundary of Lebesgue measure zero,

$$\lim_{\rho \to 0} \wedge \left(\left\{ (Q_0, V_0) \in \mathsf{T}^1(\mathbb{R}^d) : (S_1, \dots, S_n) \in \mathcal{A} \right\} \right)$$
$$= \int_{\mathcal{A}} \Psi_{n, \wedge}(S'_1, \dots, S'_n) \, dS'_1 \cdots dS'_n,$$
and, for $n \ge 3$,

$$\Psi_{n,\Lambda}(\boldsymbol{S}_1,\ldots,\boldsymbol{S}_n)=\Psi_{2,\Lambda}(\boldsymbol{S}_1,\boldsymbol{S}_2)\prod_{j=3}^n\Psi(\boldsymbol{S}_{j-2},\boldsymbol{S}_{j-1},\boldsymbol{S}_j),$$

where Ψ is a continuous probability density independent of Λ (and the lattice).

Theorem A follows from Theorem B by standard probabilistic arguments.

First step: The distribution of free path lengths

References

- Polya (Arch Math Phys 1918): "Visibility in a forest" (d = 2)
- Dahlquist (Nonlinearity 1997); Boca, Cobeli, Zaharescu (CMP 2000); Caglioti, Golse (CMP 2003); Boca, Gologan, Zaharescu (CMP 2003); Boca, Zaharescu (CMP 2007): Limit distributions for the free path lengths for various sets of initial data (d = 2)
- Dumas, Dumas, Golse (J Stat Phys 1997): Asymptotics of mean free path lengths (d ≥ 2)
- Bourgain, Golse, Wennberg (CMP 1998); Golse, Wennberg (CMP 2000): bounds on possible weak limits $(d \ge 2)$
- Boca & Gologan (Annales I Fourier 2009), Boca (NY J Math 2010): honeycomb lattice
- JM & Strömbergsson (Annals of Math 2010, 2011, GAFA 2011): proof of limit distribution and tail estimates in arbitrary dimension

Lattices

- $\mathcal{L} \subset \mathbb{R}^d$ —euclidean lattice of covolume one
- recall L = Z^dM for some M ∈ SL(d, ℝ), therefore the homogeneous space
 X₁ = SL(d, Z) \ SL(d, ℝ) parametrizes the space of lattices of covolume one
- μ_1 —right-SL(d, \mathbb{R}) invariant prob measure on X_1 (Haar)

Affine lattices

ASL(d, ℝ) = SL(n, ℝ) × ℝ^d—the semidirect product group with multiplication law

(M, x)(M', x') = (MM', xM' + x').

An action of $ASL(d, \mathbb{R})$ on \mathbb{R}^d can be defined as

 $y \mapsto y(M, x) := yM + x.$

• the space of affine lattices is then represented by $X = \mathsf{ASL}(d, \mathbb{Z}) \setminus \mathsf{ASL}(d, \mathbb{R})$ where $\mathsf{ASL}(d, \mathbb{Z}) = \mathsf{SL}(d, \mathbb{Z}) \ltimes \mathbb{Z}^d$, i.e.,

$$\mathcal{L} = (\mathbb{Z}^d + \alpha)M = \mathbb{Z}^d(1, \alpha)(M, 0)$$

• μ —right-ASL(d, \mathbb{R}) invariant prob measure on X

Let us denote by $\tau_1 = \tau(q, v)$ the free path length corresponding to the initial condition (q, v).

Theorem C [JM & Strömbergsson, Annals of Math 2010]. Fix a lattice \mathcal{L}_0 and the initial position q. Let λ be any a.c. Borel probability measure on S_1^{d-1} . Then, for every $\xi > 0$, the limit

$$F_{\mathcal{L}_0,\boldsymbol{q}}(\xi) := \lim_{\rho \to 0} \lambda(\{\boldsymbol{v} \in \mathsf{S}_1^{d-1} : \rho^{d-1}\tau_1 \ge \xi\})$$

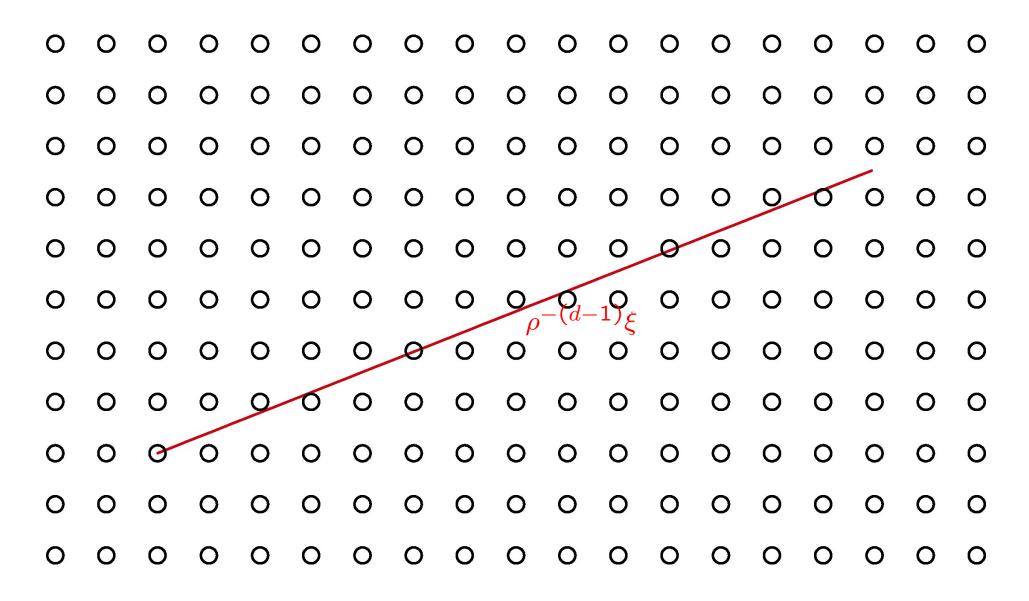
exists, is continuous in ξ and independent of λ . Furthermore

$$F_{\mathcal{L}_0,q}(\xi) = \begin{cases} F_0(\xi) := \mu_1(\{\mathcal{L} \in X_1 : \mathcal{L} \cap \mathcal{Z}(\xi) = \emptyset\}) & \text{if } q \in \mathcal{L}_0 \\ F(\xi) := \mu(\{(\mathcal{L} \in X : \mathcal{L} \cap \mathcal{Z}(\xi) = \emptyset\}) & \text{if } q \notin \mathbb{Q}\mathcal{L}_0. \end{cases}$$

with the cylinder

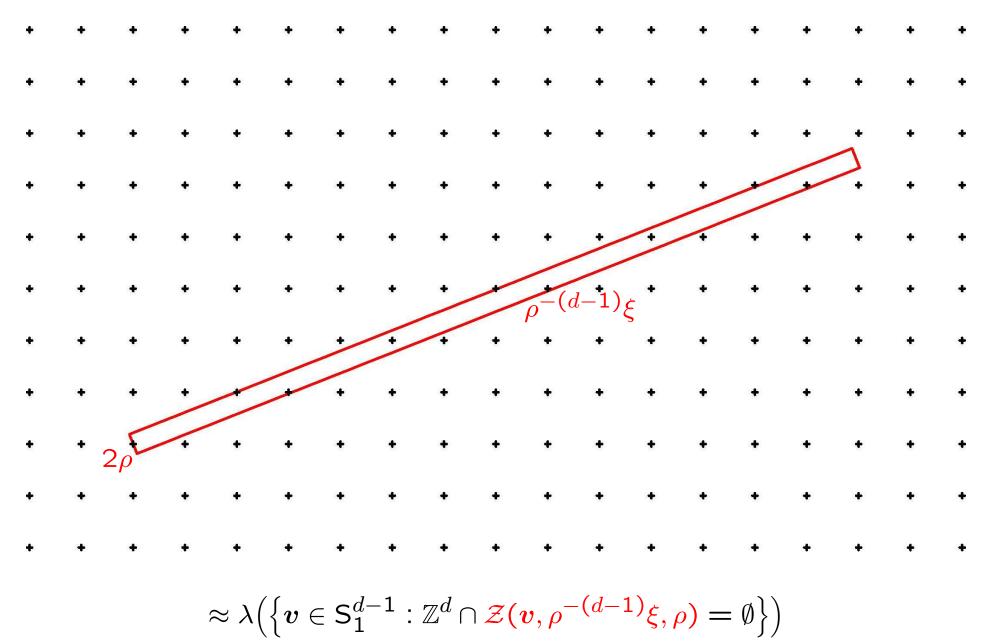
$$\mathcal{Z}(\xi) = \{(x_1, \dots, x_d) \in \mathbb{R}^d : 0 < x_1 < \xi, x_2^2 + \dots + x_d^2 < 1\}.$$

Idea of proof (q = 0)

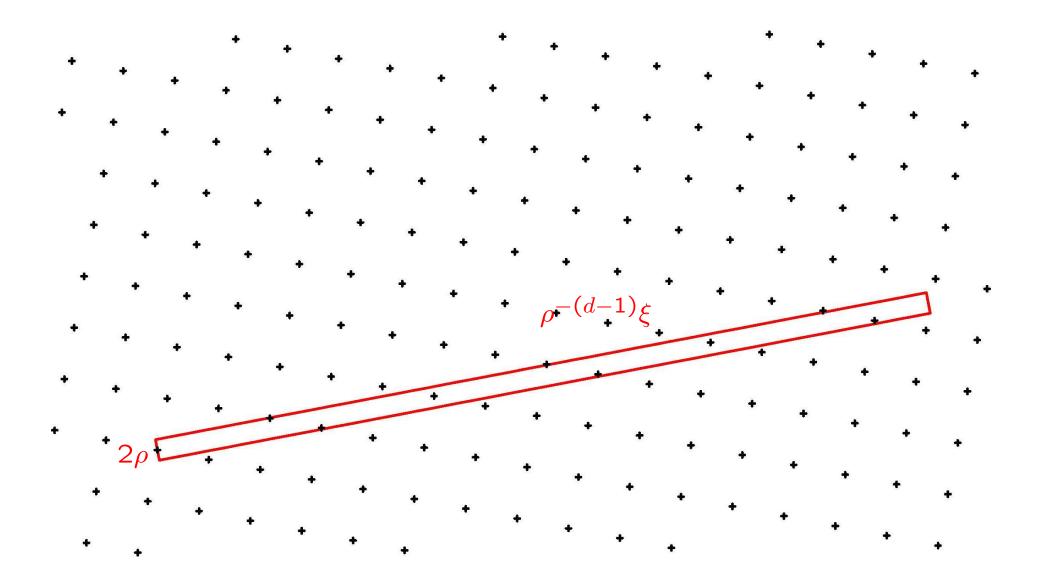


 $= \lambda \left(\left\{ v \in \mathsf{S}_1^{d-1} : \text{ no scatterer intersects } \mathsf{ray}(v, \rho^{-(d-1)}\xi) \right\} \right)$

Idea of proof (q=0)

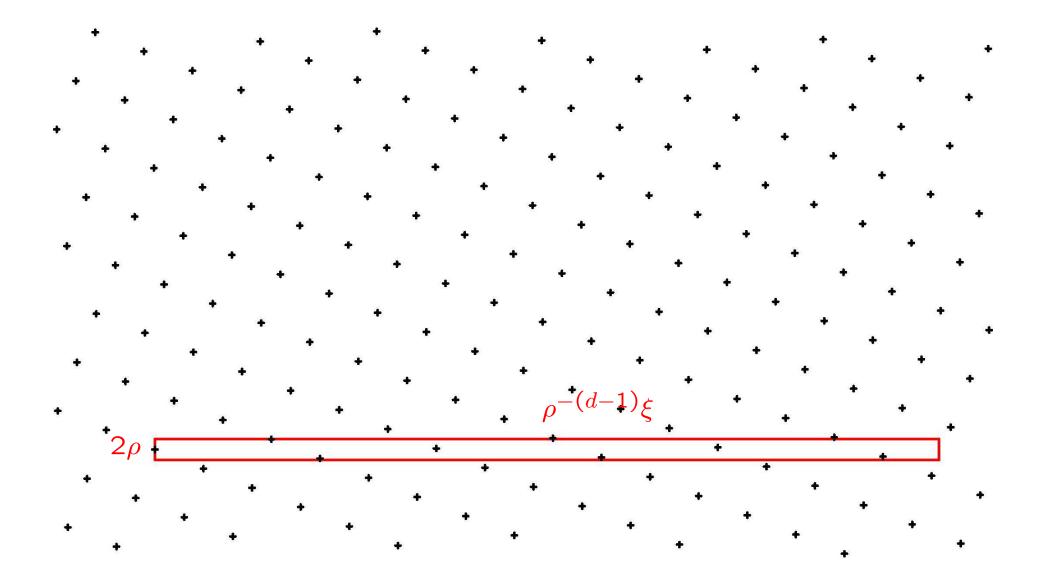


Idea of proof (q = 0)



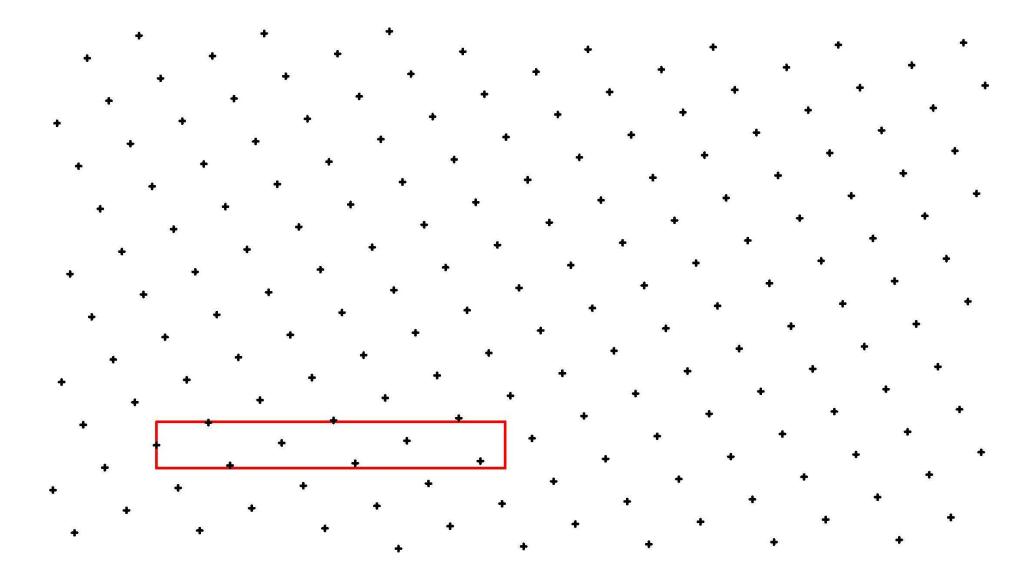
 $ig(\mathsf{Rotate by} \ K(oldsymbol{v}) \in \mathsf{SO}(d) \ \mathsf{such that} \ oldsymbol{v} \mapsto oldsymbol{e}_1 ig)$

Idea of proof (q = 0)



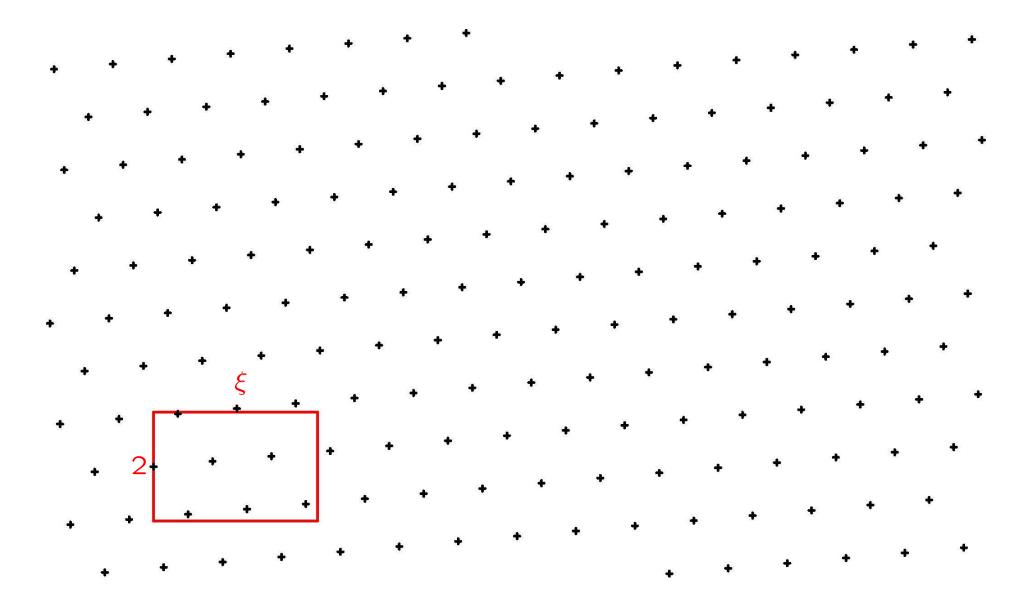
 $\lambda \left(\left\{ v \in \mathsf{S}_1^{d-1} : \mathbb{Z}^d K(v) \cap \mathcal{Z}(e_1, \rho^{-(d-1)}\xi, \rho) = \emptyset \right\} \right)$

Idea of proof (q=0)



(Apply $D_{\rho} = \operatorname{diag}(\rho^{d-1}, \rho^{-1}, \dots, \rho^{-1}) \in \operatorname{SL}(n, \mathbb{R})$)

Idea of proof (q = 0)



 $\lambda \left(\left\{ \boldsymbol{v} \in \mathsf{S}_1^{d-1} : \mathbb{Z}^d K(\boldsymbol{v}) D_{\rho} \cap \boldsymbol{\mathcal{Z}}(\boldsymbol{e_1}, \boldsymbol{\xi}, \boldsymbol{1}) = \emptyset \right\} \right)$

The following Theorem shows that in the limit $\rho \rightarrow 0$ the lattice

$$\mathbb{Z}^{d}K(oldsymbol{v}) egin{pmatrix}
ho^{d-1} & oldsymbol{0} \ ^{ extsf{t}}oldsymbol{0} &
ho^{-1}oldsymbol{1} \end{pmatrix}$$

behaves like a random lattice with respect to Haar measure μ_1 . Define a flow on $X_1 = SL(n, \mathbb{Z}) \setminus SL(n, \mathbb{R})$ via right translation by

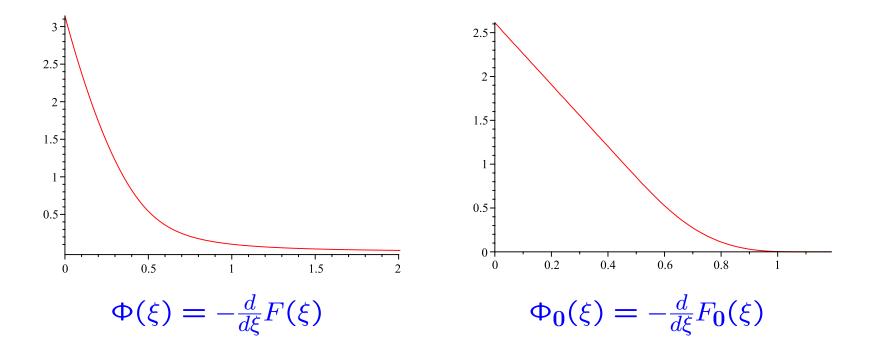
$$\Phi^t = \begin{pmatrix} e^{-(d-1)t} & 0\\ t_0 & e^t 1 \end{pmatrix}.$$

Theorem D. Fix any $M_0 \in SL(n, \mathbb{R})$. Let λ be an a.c. Borel probability measure on S_1^{d-1} . Then, for every bounded continuous function $f : X_1 \to \mathbb{R}$, $\lim_{t\to\infty} \int_{S_1^{d-1}} f(M_0 K(v) \Phi^t) d\lambda(v) = \int_{X_1} f(M) d\mu_1(M).$ Theorem D is a direct consequence of the mixing property for the flow Φ^t .

This concludes the proof of Theorem C when $q \in \mathcal{L} = \mathbb{Z}^d M_0$.

The generalization of Theorem D required for the full proof of Theorem C uses Ratner's classification of ergodic measures invariant under a unipotent flow. We exploit a close variant of a theorem by N. Shah (Proc. Ind. Acad. Sci. 1996) on the uniform distribution of translates of unipotent orbits.

Limiting densities for d = 3



For random scatterer configuarions:

 $\Phi(\xi) = \overline{\sigma} e^{-\overline{\sigma}\xi}, \Phi_0(\xi) = \overline{\sigma} e^{-\overline{\sigma}\xi} \text{ with } \overline{\sigma} = \operatorname{vol}(\mathcal{B}_1^{d-1})$

Tail asymptotics [JM & Strömbergsson, GAFA 2011].

$$\Phi(\xi) = \frac{\pi^{\frac{d-1}{2}}}{2^d d \, \Gamma(\frac{d+3}{2}) \, \zeta(d)} \, \xi^{-2} + O\left(\xi^{-2-\frac{2}{d}}\right) \qquad \text{as } \xi \to \infty$$

$$\Phi_0(\xi) = 0$$
 for ξ sufficiently large

$$\Phi(\xi) = \overline{\sigma} - \frac{\overline{\sigma}^2}{\zeta(d)} \xi + O(\xi^2) \qquad \text{as } \xi \to 0$$
$$\Phi_0(\xi) = \frac{\overline{\sigma}}{\zeta(d)} + O(\xi) \qquad \text{as } \xi \to 0.$$

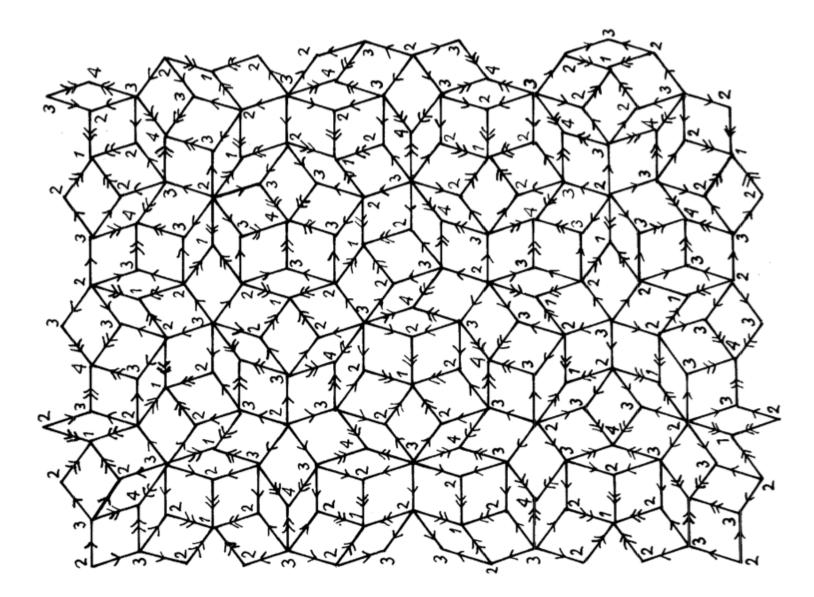
with
$$\overline{\sigma} = \operatorname{vol}(\mathcal{B}_1^{d-1}) = \frac{\pi^{(d-1)/2}}{\Gamma((d+1)/2)}$$
.

Quasicrystals

Cut and project

- $\mathbb{R}^n = \mathbb{R}^d \times \mathbb{R}^m$, π and π_{int} orthogonal projections onto \mathbb{R}^d , \mathbb{R}^m
- $\mathcal{L} \subset \mathbb{R}^n$ an (in general) affine lattice of full rank
- $\mathcal{A} := \overline{\pi_{int}(\mathcal{L})}$ is an abelian subgroup of \mathbb{R}^m , with Haar measure $\mu_{\mathcal{A}}$
- *W* ⊂ *A* a "regular window set"
 (i.e. bounded with non-empty interior, μ_A(∂W) = 0)
- $\mathcal{P}(\mathcal{W}, \mathcal{L}) = \{\pi(\boldsymbol{y}) : \boldsymbol{y} \in \mathcal{L}, \ \pi_{int}(\boldsymbol{y}) \in \mathcal{W}\} \subset \mathbb{R}^d$ is called a "regular cut-and-project set"
- $\mathcal{P}(\mathcal{W}, \mathcal{L})$ defines the locations of scatterers in our quasicrystal

Example: The Penrose tiling



(from: de Bruijn, Kon Nederl Akad Wetensch Proc Ser A, 1981)

Density

We have the following well known facts:

- $\mathcal{P}(\mathcal{W}, \mathcal{L})$ is a Delone set, i.e., uniformly discrete and relatively dense in \mathbb{R}^d
- For any bounded $\mathcal{D} \subset \mathbb{R}^d$ with boundary of Lebesgue measure zero,

$$\lim_{T \to \infty} \frac{\#(\mathcal{P} \cap T\mathcal{D})}{T^d} = c_{\mathcal{L}} \operatorname{vol}(\mathcal{D}) \mu_{\mathcal{A}}(\mathcal{W})$$

(the constant $c_{\mathcal{L}}$ is explicit)

Recall $\tau_1 = \tau(q, v)$ denotes the free path length corresponding to the initial condition (q, v).

Theorem E [JM & Strömbergsson, 2013]. Fix a regular cut-and-project set \mathcal{P}_0 and the initial position q. Let λ be any a.c. Borel probability measure on S_1^{d-1} . Then, for every $\xi > 0$, the limit

$$F_{\mathcal{P}_0,\boldsymbol{q}}(\xi) := \lim_{\rho \to 0} \lambda(\{\boldsymbol{v} \in \mathsf{S}_1^{d-1} : \rho^{d-1}\tau_1 \ge \xi\})$$

exists, is continuous in ξ and independent of λ .

In analogy with Theorem C and the space of lattices, we will express $F_{\mathcal{P}_0,q}(\xi)$ in terms of a random variable in the space of quasicrystals.

Spaces of quasicrystals (I)

- Set $G = ASL(n, \mathbb{R}), \Gamma = ASL(n, \mathbb{Z}).$
- For $g \in G$, define an embedding of $SL(d, \mathbb{R})$ in G by the map

$$\varphi_g : \mathsf{SL}(d,\mathbb{R}) \to G, \quad A \mapsto g\left(\begin{pmatrix} A & 0 \\ 0 & 1_m \end{pmatrix}, 0\right)g^{-1}.$$

- It follows from Ratner's theorems that there exists a closed connected subgroup H_g ofc G such that
 - $\Gamma \cap H_g$ is a lattice in H_g
 - $-\varphi_g(\mathsf{SL}(d,\mathbb{R}))\subset H_g$
 - the closure of $\Gamma \setminus \Gamma \varphi_g(\mathsf{SL}(d, \mathbb{R}))$ in $\Gamma \setminus G$ is given by $\Gamma \setminus \Gamma H_g$.
- Denote the unique right- H_g invariant probability measure on $\Gamma \setminus \Gamma H_g$ by μ_g .

Spaces of quasicrystals (II)

- Given an affine lattice $\mathcal{L} \subset \mathbb{R}^n$ as above, choose $\delta > 0$ and $g \in G$ so that $\mathcal{L} = \delta^{1/n} \mathbb{Z}^n g$. Then $\mathcal{A} = \overline{\pi_{int}(\mathbb{Z}^n g)}$.
- Since $\Gamma \setminus \Gamma H_g$ is the closure of $\Gamma \setminus \Gamma \varphi_g(SL(d, \mathbb{R}))$, it follows that $\overline{\pi_{int}(\mathbb{Z}^n hg)} \subset \mathcal{A}$ for all $h \in H_g$, and $\overline{\pi_{int}(\mathbb{Z}^n hg)} = \mathcal{A}$ for almost all $h \in H_g$.

Spaces of quasicrystals (III)

- For each fixed δ > 0 and window W ⊂ A, the map from Γ\ΓH_g to the set of point sets in ℝ^d, Γ\Γh → P(δ^{1/n}Zⁿhg, W) gives a natural parametrisation of a space of quasicrystals by Γ\ΓH_g.
- Denote the image of this map by $\mathfrak{Q}_g = \mathfrak{Q}_g(\mathcal{W}, \delta)$, and define a probability measure on \mathfrak{Q}_g as the push-forward of μ_g (for which we will use the same symbol). This defines a random point process in \mathbb{R}^d .
- In the topology inherited from $\Gamma \setminus \Gamma H_g$, the space \mathfrak{Q}_g is the closure of the set $\{\mathcal{P}(\mathcal{L}h, \mathcal{W}) : h \in \mathsf{SL}(d, \mathbb{R})\}$, with the (in general) affine lattice $\mathcal{L} = \delta^{1/n} \mathbb{Z}^n g$.

Theorem F [JM & Strömbergsson, 2013]. For $\mathcal{P}_0 = \mathcal{P}(\mathcal{L}, \mathcal{W})$ and initial position q, pick $g \in G$ and $\delta > 0$ such that $\mathcal{L} - (q, 0) = \delta^{1/n} \mathbb{Z}^n g$. Then $F_{\mathcal{P}_0, q}(\xi) = \mu_g(\{\mathcal{P} \in \mathfrak{Q}_g : \mathfrak{Z}_{\xi} \cap \mathcal{P} = \emptyset\}).$

Examples

• If $\mathcal{P}_0 = \mathcal{P}(\mathcal{L}, \mathcal{W})$, then for almost every \mathcal{L} in the space of lattices and $q \in \mathcal{P}_0$, we have $H_g = SL(n, \mathbb{R})$, $\Gamma \cap H_g = SL(n, \mathbb{Z})$.

 $F_{\mathcal{P}_0,q}(\xi)$ is independent of \mathcal{P}_0 and q and has compact support.

• If $\mathcal{P}_0 = \mathcal{P}(\mathcal{L}, \mathcal{W})$, then for almost every \mathcal{L} in the space of lattices and almost every q, we have $H_g = \mathsf{ASL}(n, \mathbb{R})$, $\Gamma \cap H_g = \mathsf{ASL}(n, \mathbb{Z})$.

 $F_{\mathcal{P}_0,\boldsymbol{q}}(\xi) \simeq \xi^{-1} \ (\xi \to \infty)$ where the implied constants depend on n, \mathcal{W}, δ . Again $F_{\mathcal{P}_0,\boldsymbol{q}}(\xi)$ is independent of \mathcal{P}_0 and \boldsymbol{q} .

• If \mathcal{P}_0 is the Penrose quasicrystal and $q \in \mathcal{P}_0$, we have $H_g = SL(2, \mathbb{R})^2$, $\Gamma \cap H_g = a$ congruence subgroup of the Hilbert modular group $SL(n, \mathcal{O}_K)$, with \mathcal{O}_K the ring of integers of $K = \mathbb{Q}(\sqrt{5})$.

 $F_{\mathcal{P}_0,\boldsymbol{q}}(\xi) \asymp \text{work in progress} \dots$

Other aperiodic scatterer configurations: unions of lattices

• Consider now scatterer locations at the point set

$$\mathcal{P}_0 = \bigcup_{i=1}^N \mathcal{L}_j, \qquad \mathcal{L}_i = \overline{n}_i^{-1/d} (\mathbb{Z}^d + \omega_i) M_i$$

with $\omega_i \in \mathbb{R}^d$, $M_i \in SL(d, \mathbb{R})$ and $\overline{n}_i > 0$ such that $\overline{n}_1 + \ldots + \overline{n}_N = 1$ • Let S be the commensurator of $SL(d, \mathbb{Z})$ in $SL(d, \mathbb{R})$:

 $\mathcal{S} = \{ (\det T)^{-1/d}T : T \in \mathsf{GL}(d, \mathbb{Q}), \det T > 0 \}.$

We say that the matrices M₁,..., M_N ∈ SL(n, ℝ) are pairwise incommensurable if M_iM_j⁻¹ ∉ S for all i ≠ j. A simple example is

$$M_i = \zeta^{-i/d} \begin{pmatrix} \zeta^i & 0\\ 0 & 1_{d-1} \end{pmatrix}, \quad i = 1, \dots, N,$$

where ζ is any positive number such that $\zeta, \zeta^2, \ldots, \zeta^{N-1} \notin \mathbb{Q}$.

Free path lengths for unions of lattices

Theorem G [JM & Strömbergsson, 2013]. Let \mathcal{P}_0 as on the previous slide with $M_i \in SL(d, \mathbb{R})$ pairwise incommensurable. Let λ be any a.c. Borel probability measure on S_1^{d-1} . Then, for every $\xi > 0$, the limit

$$F_{\mathcal{P}_0,\boldsymbol{q}}(\xi) := \lim_{\rho \to 0} \lambda(\{\boldsymbol{v} \in \mathsf{S}_1^{d-1} : \rho^{d-1}\tau_1 \ge \xi\})$$

exists. If for instance $\omega_i - \overline{n}_i^{1/d} q M_i^{-1} \notin \mathbb{Q}^d$ for all *i*, then

$$F_{\mathcal{P}_0,\boldsymbol{q}}(\xi) = \prod_{i=1}^N F(\overline{n}_i\xi)$$

where $F(\xi)$ is the distribution of free path length corresponding to a single lattice and generic initial point (as in Theorem C).

Recall $F(\xi) \sim C\xi^{-1}$ for $\xi \to \infty$. Thus

 $F_{\mathcal{P}_0,\boldsymbol{q}}(\xi) \sim C^N \xi^{-N}.$

Key step in the proof: equidistribution in products

... is as before an equidistribution theorem that follows from Ratner's measure classification (again via Shah's theorem):

Theorem H [JM & Strömbergsson, 2013]. Assume that $M_1, \ldots, M_N \in$ $SL(n, \mathbb{R})$ are pairwise incommensurable, and $\alpha_1, \ldots, \alpha_N \notin \mathbb{Q}^d$ (for simplicity). Let λ be an a.c. Borel probability measure on S_1^{d-1} . Then $\lim_{t \to \infty} \int_{S_1^{d-1}} f((1_d, \alpha_1)(M_1K(v)\Phi^t, 0), \ldots, \dots, (1_d, \alpha_N)(M_NK(v)\Phi^t, 0)) d\lambda(v)$ $= \int_{X^N} f(g_1, \ldots, g_N) d\mu(g_1) \cdots d\mu(g_N).$

Future work