Kinetic transport in quasicrystals

September 2013

Jens Marklof*

University of Bristol
http://www.maths.bristol.ac.uk
joint work with Andreas Strömbergsson (Uppsala)
*supported by Royal Society and ERC

The Lorentz gas

The Boltzmann-Grad limit

- Consider the dynamics in the limit of small scatterer radius ρ
- $(\boldsymbol{q}(t), \boldsymbol{v}(t))=$ "microscopic" phase space coordinate at time t
- A dimensional argument shows that, in the limit $\rho \rightarrow 0$, the mean free path length (i.e., the average time between consecutive collisions) scales like $\rho^{-(d-1)}$ (= 1/total scattering cross section)
- We thus re-define position and time and use the "macroscopic" coordinates

$$
(\boldsymbol{Q}(t), \boldsymbol{V}(t))=\left(\rho^{d-1} \boldsymbol{q}\left(\rho^{-(d-1)} t\right), \boldsymbol{v}\left(\rho^{-(d-1)} t\right)\right)
$$

The linear Boltzmann equation

- Time evolution of initial data $(\boldsymbol{Q}, \boldsymbol{V})$:

$$
(\boldsymbol{Q}(t), \boldsymbol{V}(t))=\Phi_{\rho}^{t}(\boldsymbol{Q}, \boldsymbol{V})
$$

- Time evolution of a particle cloud with initial density $f \in L^{1}$:

$$
f_{t}^{(\rho)}(\boldsymbol{Q}, \boldsymbol{V}):=f\left(\Phi_{\rho}^{-t}(\boldsymbol{Q}, \boldsymbol{V})\right)
$$

In his 1905 paper Lorentz suggested that $f_{t}^{(\rho)}$ is governed, as $\rho \rightarrow 0$, by the linear Boltzmann equation:

$$
\left[\frac{\partial}{\partial t}+\boldsymbol{V} \cdot \nabla_{\boldsymbol{Q}}\right] f_{t}(\boldsymbol{Q}, \boldsymbol{V})=\int_{\mathrm{S}_{1}^{d-1}}\left[f_{t}\left(\boldsymbol{Q}, \boldsymbol{V}_{0}\right)-f_{t}(\boldsymbol{Q}, \boldsymbol{V})\right] \sigma\left(\boldsymbol{V}_{0}, \boldsymbol{V}\right) d \boldsymbol{V}_{0}
$$

where the collision kernel $\sigma\left(\boldsymbol{V}_{0}, \boldsymbol{V}\right)$ is the cross section of the individual scatterer. E.g.: $\sigma\left(\boldsymbol{V}_{0}, \boldsymbol{V}\right)=\frac{1}{4}\left\|\boldsymbol{V}_{0}-\boldsymbol{V}\right\|^{3-d}$ for specular reflection at a hard sphere

The linear Boltzmann equation-rigorous proofs

- Galavotti (Phys Rev 1969 \& report 1972): Poisson distributed hard-sphere scatterers
- Spohn (Comm Math Phys 1978): extension to more general random scatterer configurations and potentials
- Boldrighini, Bunimovich and Sinai (J Stat Phys 1983): prove convergence for almost every scatterer configuration
- Quantum: Spohn (J Stat Phys 1977): Gaussian random potentials, weak coupling limit \& small times; Erdös and Yau (Contemp Math 1998, Comm Pure Appl Math 2000): General random potentials, weak coupling limit; Eng and Erdös (Rev Math Phys 2005): Low density limit

The periodic Lorentz gas

The Boltzmann-Grad limit

- Recall: We are interested in the dynamics in the limit of small scatterer radius
- $(\boldsymbol{q}(t), \boldsymbol{v}(t))=$ "microscopic" phase space coordinate at time t
- Re-define position and time and use the "macroscopic" coordinates

$$
(\boldsymbol{Q}(t), \boldsymbol{V}(t))=\left(\rho^{d-1} \boldsymbol{q}\left(\rho^{-(d-1)} t\right), \boldsymbol{v}\left(\rho^{-(d-1)} t\right)\right)
$$

A limiting random process

A cloud of particles with initial density $f(\boldsymbol{Q}, \boldsymbol{V})$ evolves in time t to

$$
f_{t}^{(\rho)}(\boldsymbol{Q}, \boldsymbol{V})=\left[L_{\rho}^{t} f\right](\boldsymbol{Q}, \boldsymbol{V})=f\left(\Phi_{\rho}^{-t}(\boldsymbol{Q}, \boldsymbol{V})\right)
$$

Theorem A [JM \& Strömbergsson, Annals of Math 2011].
For every $t>0$ there exists a linear operator $L^{t}: \mathrm{L}^{1}\left(\mathrm{~T}^{1}\left(\mathbb{R}^{d}\right)\right) \rightarrow$ $\mathrm{L}^{1}\left(\mathrm{~T}^{1}\left(\mathbb{R}^{d}\right)\right)$, such that for every $f \in \mathrm{~L}^{1}\left(\mathrm{~T}^{1}\left(\mathbb{R}^{d}\right)\right)$ and any set $\mathcal{A} \subset \mathrm{T}^{1}\left(\mathbb{R}^{d}\right)$ with boundary of Liouville measure zero,

$$
\lim _{\rho \rightarrow 0} \int_{\mathcal{A}}\left[L_{\rho}^{t} f\right](\boldsymbol{Q}, \boldsymbol{V}) d \boldsymbol{Q} d \boldsymbol{V}=\int_{\mathcal{A}}\left[L^{t} f\right](\boldsymbol{Q}, \boldsymbol{V}) d \boldsymbol{Q} d \boldsymbol{V}
$$

The operator L^{t} thus describes the macroscopic diffusion of the Lorentz gas in the Boltzmann-Grad limit $\rho \rightarrow 0$.

Note: The family $\left\{L^{t}\right\}_{t \geq 0}$ does not form a semigroup.

A generalization of the linear Boltzmann equation

Consider extended phase space coordinates ($\boldsymbol{Q}, \boldsymbol{V}, \xi, \boldsymbol{V}_{+}$):
$(\boldsymbol{Q}, \boldsymbol{V}) \in \mathrm{T}^{1}\left(\mathbb{R}^{d}\right)$ - usual position and momentum
$\xi \in \mathbb{R}_{+}$- flight time until the next scatterer $V_{+} \in \mathrm{S}_{1}^{d-1}$ - velocity after the next hit

$$
\begin{aligned}
& {\left[\frac{\partial}{\partial t}+\boldsymbol{V} \cdot \nabla_{\boldsymbol{Q}}-\frac{\partial}{\partial \xi}\right] f_{t}\left(\boldsymbol{Q}, \boldsymbol{V}, \xi, \boldsymbol{V}_{+}\right) } \\
&=\int_{\mathrm{S}_{1}^{d-1}} f_{t}\left(\boldsymbol{Q}, \boldsymbol{V}_{0}, 0, \boldsymbol{V}\right) p_{0}\left(\boldsymbol{V}_{0}, \boldsymbol{V}, \xi, \boldsymbol{V}_{+}\right) d \boldsymbol{V}_{0}
\end{aligned}
$$

with a new collision kernel $p_{0}\left(\boldsymbol{V}_{0}, \boldsymbol{V}, \xi, \boldsymbol{V}_{+}\right)$, which can be expressed as a product of the scattering cross section of an individual scatterer and a ceratin transition probability for hitting a given point the next scatterer after time ξ. We obtain the original particle density via

$$
f_{t}(\boldsymbol{Q}, \boldsymbol{V})=\int_{0}^{\infty} \int_{\mathbf{S}_{1}^{d-1}} f_{t}\left(\boldsymbol{Q}, \boldsymbol{V}, \xi, \boldsymbol{V}_{+}\right) d \boldsymbol{V}_{+} d \xi
$$

Why "a generalization" of the linear Boltzmann equation?

$$
\begin{aligned}
& {\left[\frac{\partial}{\partial t}+\boldsymbol{V} \cdot \nabla_{\boldsymbol{Q}}-\frac{\partial}{\partial \xi}\right] f_{t}\left(\boldsymbol{Q}, \boldsymbol{V}, \xi, \boldsymbol{V}_{+}\right) } \\
&=\int_{\mathrm{S}_{1}^{d-1}} f_{t}\left(\boldsymbol{Q}, \boldsymbol{V}_{0}, 0, \boldsymbol{V}\right) p_{0}\left(\boldsymbol{V}_{0}, \boldsymbol{V}, \xi, \boldsymbol{V}_{+}\right) d \boldsymbol{V}_{0}
\end{aligned}
$$

Substituting in the above the transition density for the random (rather than periodic) scatterer configuration

$$
\begin{gathered}
f_{t}\left(\boldsymbol{Q}, \boldsymbol{V}, \xi, \boldsymbol{V}_{+}\right)=g_{t}(\boldsymbol{Q}, \boldsymbol{V}) \sigma\left(\boldsymbol{V}, \boldsymbol{V}_{+}\right) \mathrm{e}^{-\bar{\sigma} \xi}, \quad \bar{\sigma}=\operatorname{vol}\left(\mathcal{B}_{1}^{d-1}\right), \\
p_{0}\left(\boldsymbol{V}_{0}, \boldsymbol{V}, \xi, \boldsymbol{V}_{+}\right)=\sigma\left(\boldsymbol{V}, \boldsymbol{V}_{+}\right) \mathrm{e}^{-\bar{\sigma} \xi}
\end{gathered}
$$

yields the classical linear Boltzmann equation for $g_{t}(\boldsymbol{Q}, \boldsymbol{V})$.

The key theorem:

Joint distribution of path segments

Joint distribution for path segments

The following theorem proves the existence of a Markov process that describes the dynamics of the Lorentz gas in the Boltzmann-Grad limit.

Theorem B [JM \& Strömbergsson, Annals of Math 2011]. Fix an a.c. Borel probability measure \wedge on $T^{1}\left(\mathbb{R}^{d}\right)$. Then, for each $n \in \mathbb{N}$ there exists a probability density $\Psi_{n, \wedge}$ on $\mathbb{R}^{n d}$ such that, for any set $\mathcal{A} \subset \mathbb{R}^{n d}$ with boundary of Lebesgue measure zero,

$$
\begin{aligned}
& \lim _{\rho \rightarrow 0} \wedge\left(\left\{\left(\boldsymbol{Q}_{0}, \boldsymbol{V}_{0}\right) \in \mathrm{T}^{1}\left(\mathbb{R}^{d}\right):\left(\boldsymbol{S}_{1}, \ldots, \boldsymbol{S}_{n}\right) \in \mathcal{A}\right\}\right) \\
&=\int_{\mathcal{A}} \Psi_{n, \wedge}\left(\boldsymbol{S}_{1}^{\prime}, \ldots, \boldsymbol{S}_{n}^{\prime}\right) d \boldsymbol{S}_{1}^{\prime} \cdots d \boldsymbol{S}_{n}^{\prime},
\end{aligned}
$$

and, for $n \geq 3$,

$$
\Psi_{n, \wedge}\left(\boldsymbol{S}_{1}, \ldots, \boldsymbol{S}_{n}\right)=\Psi_{2, \wedge}\left(\boldsymbol{S}_{1}, \boldsymbol{S}_{2}\right) \prod_{j=3}^{n} \Psi\left(\boldsymbol{S}_{j-2}, \boldsymbol{S}_{j-1}, \boldsymbol{S}_{j}\right)
$$

where Ψ is a continuous probability density independent of \wedge (and the lattice).
Theorem A follows from Theorem B by standard probabilistic arguments.

First step: The distribution of free path lengths

References

- Polya (Arch Math Phys 1918): "Visibility in a forest" ($d=2$)
- Dahlquist (Nonlinearity 1997); Boca, Cobeli, Zaharescu (CMP 2000); Caglioti, Golse (CMP 2003); Boca, Gologan, Zaharescu (CMP 2003); Boca, Zaharescu (CMP 2007): Limit distributions for the free path lengths for various sets of initial data $(d=2)$
- Dumas, Dumas, Golse (J Stat Phys 1997): Asymptotics of mean free path lengths ($d \geq 2$)
- Bourgain, Golse, Wennberg (CMP 1998); Golse, Wennberg (CMP 2000): bounds on possible weak limits ($d \geq 2$)
- Boca \& Gologan (Annales I Fourier 2009), Boca (NY J Math 2010): honeycomb lattice
- JM \& Strömbergsson (Annals of Math 2010, 2011, GAFA 2011): proof of limit distribution and tail estimates in arbitrary dimension

Lattices

- $\mathcal{L} \subset \mathbb{R}^{d}$-euclidean lattice of covolume one
- recall $\mathcal{L}=\mathbb{Z}^{d} M$ for some $M \in \operatorname{SL}(d, \mathbb{R})$, therefore the homogeneous space $X_{1}=\mathrm{SL}(d, \mathbb{Z}) \backslash \mathrm{SL}(d, \mathbb{R})$ parametrizes the space of lattices of covolume one
- μ_{1}-right-SL (d, \mathbb{R}) invariant prob measure on X_{1} (Haar)

Affine lattices

- $\operatorname{ASL}(d, \mathbb{R})=\mathrm{SL}(n, \mathbb{R}) \ltimes \mathbb{R}^{d}$-the semidirect product group with multiplication law

$$
(M, \boldsymbol{x})\left(M^{\prime}, \boldsymbol{x}^{\prime}\right)=\left(M M^{\prime}, \boldsymbol{x} M^{\prime}+\boldsymbol{x}^{\prime}\right) .
$$

An action of $\operatorname{ASL}(d, \mathbb{R})$ on \mathbb{R}^{d} can be defined as

$$
\boldsymbol{y} \mapsto \boldsymbol{y}(M, \boldsymbol{x}):=\boldsymbol{y} M+\boldsymbol{x} .
$$

- the space of affine lattices is then represented by $X=\operatorname{ASL}(d, \mathbb{Z}) \backslash \operatorname{ASL}(d, \mathbb{R})$ where $\operatorname{ASL}(d, \mathbb{Z})=\operatorname{SL}(d, \mathbb{Z}) \ltimes \mathbb{Z}^{d}$, i.e.,

$$
\mathcal{L}=\left(\mathbb{Z}^{d}+\boldsymbol{\alpha}\right) M=\mathbb{Z}^{d}(1, \boldsymbol{\alpha})(M, \mathbf{0})
$$

- μ-right-ASL (d, \mathbb{R}) invariant prob measure on X

Let us denote by $\tau_{1}=\tau(\boldsymbol{q}, \boldsymbol{v})$ the free path length corresponding to the initial condition ($\boldsymbol{q}, \boldsymbol{v}$).

Theorem C [JM \& Strömbergsson, Annals of Math 2010]. Fix a lattice \mathcal{L}_{0} and the initial position \boldsymbol{q}. Let λ be any a.c. Borel probability measure on S_{1}^{d-1}. Then, for every $\xi>0$, the limit

$$
F_{\mathcal{L}_{0}, \boldsymbol{q}}(\xi):=\lim _{\rho \rightarrow 0} \lambda\left(\left\{\boldsymbol{v} \in \mathrm{~S}_{1}^{d-1}: \rho^{d-1} \tau_{1} \geq \xi\right\}\right)
$$

exists, is continuous in ξ and independent of λ. Furthermore

$$
F_{\mathcal{L}_{0}, \boldsymbol{q}}(\xi)= \begin{cases}F_{0}(\xi):=\mu_{1}\left(\left\{\mathcal{L} \in X_{1}: \mathcal{L} \cap \mathcal{Z}(\xi)=\emptyset\right\}\right) & \text { if } \boldsymbol{q} \in \mathcal{L}_{0} \\ F(\xi):=\mu(\{(\mathcal{L} \in X: \mathcal{L} \cap \mathcal{Z}(\xi)=\emptyset\}) & \text { if } \boldsymbol{q} \notin \mathbb{Q} \mathcal{L}_{0} .\end{cases}
$$

with the cylinder

$$
\mathcal{Z}(\xi)=\left\{\left(x_{1}, \ldots, x_{d}\right) \in \mathbb{R}^{d}: 0<x_{1}<\xi, x_{2}^{2}+\ldots+x_{d}^{2}<1\right\} .
$$

Idea of proof ($q=0$)

00000000000000000000000 0000000000000000000000 000000000000000000000000 000000000000000000000

 00000000000000000000000 0000000000000000000 00000000000000000000000 00000000000000000000000 0000000000000000000000

$$
=\lambda\left(\left\{\boldsymbol{v} \in \mathrm{S}_{1}^{d-1}: \text { no scatterer intersects ray }\left(\boldsymbol{v}, \rho^{-(d-1)} \xi\right)\right\}\right)
$$

Idea of proof $(q=0)$
 $+\quad+\quad+\quad+\quad+\quad+\quad+\quad+\quad+\quad+\quad+\quad+\quad+\quad+\quad+\quad+\quad+\quad+\quad+$ $+\quad+\quad+\quad+\quad+\quad+\quad+\quad+\quad+\quad+$ $++++++++++$

$+$

$$
\approx \lambda\left(\left\{\boldsymbol{v} \in \mathrm{S}_{1}^{d-1}: \mathbb{Z}^{d} \cap \mathcal{Z}\left(\boldsymbol{v}, \rho^{-(d-1)} \xi, \rho\right)=\emptyset\right\}\right)
$$

Idea of proof ($q=0$)

(Rotate by $K(\boldsymbol{v}) \in \mathrm{SO}(d)$ such that $\boldsymbol{v} \mapsto \boldsymbol{e}_{1}$)

Idea of proof $(q=0)$

Idea of proof $(q=0)$

(Apply $\left.D_{\rho}=\operatorname{diag}\left(\rho^{d-1}, \rho^{-1}, \ldots, \rho^{-1}\right) \in \operatorname{SL}(n, \mathbb{R})\right)$

Idea of proof ($q=0$)

The following Theorem shows that in the limit $\rho \rightarrow 0$ the lattice

$$
\mathbb{Z}^{d} K(\boldsymbol{v})\left(\begin{array}{cc}
\rho^{d-1} & 0 \\
t_{0} & \rho^{-1} 1
\end{array}\right)
$$

behaves like a random lattice with respect to Haar measure μ_{1}. Define a flow on $X_{1}=\mathrm{SL}(n, \mathbb{Z}) \backslash \mathrm{SL}(n, \mathbb{R})$ via right translation by

$$
\Phi^{t}=\left(\begin{array}{cc}
\mathrm{e}^{-(d-1) t} & 0 \\
\mathrm{t}_{0} & \mathrm{e}^{t} 1
\end{array}\right) .
$$

Theorem D. Fix any $M_{0} \in \operatorname{SL}(n, \mathbb{R})$. Let λ be an a.c. Borel probability measure on S_{1}^{d-1}. Then, for every bounded continuous function $f: X_{1} \rightarrow \mathbb{R}$,

$$
\lim _{t \rightarrow \infty} \int_{\mathrm{S}_{1}^{d-1}} f\left(M_{0} K(\boldsymbol{v}) \Phi^{t}\right) d \lambda(\boldsymbol{v})=\int_{X_{1}} f(M) d \mu_{1}(M) .
$$

Theorem D is a direct consequence of the mixing property for the flow Φ^{t}.
This concludes the proof of Theorem C when $q \in \mathcal{L}=\mathbb{Z}^{d} M_{0}$.
The generalization of Theorem D required for the full proof of Theorem C uses Ratner's classification of ergodic measures invariant under a unipotent flow. We exploit a close variant of a theorem by N. Shah (Proc. Ind. Acad. Sci. 1996) on the uniform distribution of translates of unipotent orbits.

Limiting densities for $d=3$

For random scatterer configuarions:
$\Phi(\xi)=\bar{\sigma} \mathrm{e}^{-\bar{\sigma} \xi}, \Phi_{0}(\xi)=\bar{\sigma} \mathrm{e}^{-\bar{\sigma} \xi}$ with $\bar{\sigma}=\operatorname{vol}\left(\mathcal{B}_{1}^{d-1}\right)$

Tail asymptotics [JM \& Strömbergsson, GAFA 2011].

$$
\begin{array}{lr}
\Phi(\xi)=\frac{\pi^{\frac{d-1}{2}}}{2^{d} d \Gamma\left(\frac{d+3}{2}\right) \zeta(d)} \xi^{-2}+O\left(\xi^{-2-\frac{2}{d}}\right) & \text { as } \xi \rightarrow \infty \\
\Phi_{0}(\xi)=0 & \text { for } \xi \text { sufficiently large } \\
\Phi(\xi)=\bar{\sigma}-\frac{\bar{\sigma}^{2}}{\zeta(d)} \xi+O\left(\xi^{2}\right) & \text { as } \xi \rightarrow 0 \\
\Phi_{0}(\xi)=\frac{\bar{\sigma}}{\zeta(d)}+O(\xi) & \text { as } \xi \rightarrow 0 . \\
\text { with } \bar{\sigma}=\operatorname{vol}\left(\mathcal{B}_{1}^{d-1}\right)=\frac{\pi^{(d-1) / 2}}{\Gamma((d+1) / 2) .}
\end{array}
$$

Quasicrystals

Cut and project

- $\mathbb{R}^{n}=\mathbb{R}^{d} \times \mathbb{R}^{m}, \pi$ and $\pi_{\text {int }}$ orthogonal projections onto $\mathbb{R}^{d}, \mathbb{R}^{m}$
- $\mathcal{L} \subset \mathbb{R}^{n}$ an (in general) affine lattice of full rank
- $\mathcal{A}:=\overline{\pi_{\text {int }}(\mathcal{L})}$ is an abelian subgroup of \mathbb{R}^{m}, with Haar measure $\mu_{\mathcal{A}}$
- $\mathcal{W} \subset \mathcal{A}$ a "regular window set" (i.e. bounded with non-empty interior, $\mu_{\mathcal{A}}(\partial \mathcal{W})=0$)
- $\mathcal{P}(\mathcal{W}, \mathcal{L})=\left\{\pi(\boldsymbol{y}): \boldsymbol{y} \in \mathcal{L}, \pi_{\text {int }}(\boldsymbol{y}) \in \mathcal{W}\right\} \subset \mathbb{R}^{d}$ is called a "regular cut-and-project set"
- $\mathcal{P}(\mathcal{W}, \mathcal{L})$ defines the locations of scatterers in our quasicrystal

Example: The Penrose tiling

(from: de Bruijn, Kon Nederl Akad Wetensch Proc Ser A, 1981)

Density

We have the following well known facts:

- $\mathcal{P}(\mathcal{W}, \mathcal{L})$ is a Delone set, i.e., uniformly discrete and relatively dense in \mathbb{R}^{d}
- For any bounded $\mathcal{D} \subset \mathbb{R}^{d}$ with boundary of Lebesgue measure zero,

$$
\lim _{T \rightarrow \infty} \frac{\#(\mathcal{P} \cap T \mathcal{D})}{T^{d}}=c_{\mathcal{L}} \operatorname{vol}(\mathcal{D}) \mu_{\mathcal{A}}(\mathcal{W})
$$

(the constant $c_{\mathcal{L}}$ is explicit)

Recall $\tau_{1}=\tau(\boldsymbol{q}, \boldsymbol{v})$ denotes the free path length corresponding to the initial condition ($\boldsymbol{q}, \boldsymbol{v}$).

Theorem E [JM \& Strömbergsson, 2013]. Fix a regular cut-and-project set \mathcal{P}_{0} and the initial position \boldsymbol{q}. Let λ be any a.c. Borel probability measure on S_{1}^{d-1}. Then, for every $\xi>0$, the limit

$$
F_{\mathcal{P}_{0}, \boldsymbol{q}}(\xi):=\lim _{\rho \rightarrow 0} \lambda\left(\left\{\boldsymbol{v} \in \mathrm{~S}_{1}^{d-1}: \rho^{d-1} \tau_{1} \geq \xi\right\}\right)
$$

exists, is continuous in ξ and independent of λ.
In analogy with Theorem C and the space of lattices, we will express $F_{\mathcal{P}_{0}, q}(\xi)$ in terms of a random variable in the space of quasicrystals.

Spaces of quasicrystals (I)

- Set $G=\operatorname{ASL}(n, \mathbb{R}), \Gamma=\operatorname{ASL}(n, \mathbb{Z})$.
- For $g \in G$, define an embedding of $\operatorname{SL}(d, \mathbb{R})$ in G by the map

$$
\varphi_{g}: \mathrm{SL}(d, \mathbb{R}) \rightarrow G, \quad A \mapsto g\left(\left(\begin{array}{cc}
A & 0 \\
0 & 1_{m}
\end{array}\right), 0\right) g^{-1}
$$

- It follows from Ratner's theorems that there exists a closed connected subgroup H_{g} ofc G such that
- $\Gamma \cap H_{g}$ is a lattice in H_{g}
- $\varphi_{g}(\mathrm{SL}(d, \mathbb{R})) \subset H_{g}$
- the closure of $\Gamma \backslash \Gamma \varphi_{g}(S L(d, \mathbb{R}))$ in $\Gamma \backslash G$ is given by $\Gamma \backslash \Gamma H_{g}$.
- Denote the unique right $-H_{g}$ invariant probability measure on $\Gamma \backslash \Gamma H_{g}$ by μ_{g}.

Spaces of quasicrystals (II)

- Given an affine lattice $\mathcal{L} \subset \mathbb{R}^{n}$ as above, choose $\delta>0$ and $g \in G$ so that $\mathcal{L}=\delta^{1 / n} \mathbb{Z}^{n} g$. Then $\mathcal{A}=\overline{\pi_{\text {int }}\left(\mathbb{Z}^{n} g\right)}$.
- Since $\Gamma \backslash\left\ulcorner H_{g}\right.$ is the closure of $\Gamma \backslash \Gamma \varphi_{g}(\mathrm{SL}(d, \mathbb{R}))$, it follows that $\pi_{\text {int }}\left(\mathbb{Z}^{n} h g\right) \subset$ \mathcal{A} for all $h \in H_{g}$, and $\overline{\pi_{\text {int }}\left(\mathbb{Z}^{n} h g\right)}=\mathcal{A}$ for almost all $h \in H_{g}$.

Spaces of quasicrystals (III)

- For each fixed $\delta>0$ and window $\mathcal{W} \subset \mathcal{A}$, the map from $\Gamma \backslash\left\ulcorner H_{g}\right.$ to the set of point sets in \mathbb{R}^{d}, $\Gamma \backslash\left\ulcorner h \mapsto \mathcal{P}\left(\delta^{1 / n} \mathbb{Z}^{n} h g, \mathcal{W}\right)\right.$ gives a natural parametrisation of a space of quasicrystals by $\Gamma \backslash\left\ulcorner H_{g}\right.$.
- Denote the image of this map by $\mathfrak{Q}_{g}=\mathfrak{Q}_{g}(\mathcal{W}, \delta)$, and define a probability measure on \mathfrak{Q}_{g} as the push-forward of μ_{g} (for which we will use the same symbol). This defines a random point process in \mathbb{R}^{d}.
- In the topology inherited from $\Gamma \backslash\left\ulcorner H_{g}\right.$, the space \mathfrak{Q}_{g} is the closure of the set $\{\mathcal{P}(\mathcal{L} h, \mathcal{W}): h \in \operatorname{SL}(d, \mathbb{R})\}$, with the (in general) affine lattice $\mathcal{L}=$ $\delta^{1 / n} \mathbb{Z}^{n} g$.

Theorem F [JM \& Strömbergsson, 2013].
For $\mathcal{P}_{0}=\mathcal{P}(\mathcal{L}, \mathcal{W})$ and initial position \boldsymbol{q}, pick $g \in G$ and $\delta>0$ such that $\mathcal{L}-(\boldsymbol{q}, 0)=\delta^{1 / n} \mathbb{Z}^{n} g$. Then

$$
F_{\mathcal{P}_{0}, \boldsymbol{q}}(\xi)=\mu_{g}\left(\left\{\mathcal{P} \in \mathfrak{Q}_{g}: \mathfrak{Z}_{\xi} \cap \mathcal{P}=\emptyset\right\}\right) .
$$

Examples

- If $\mathcal{P}_{0}=\mathcal{P}(\mathcal{L}, \mathcal{W})$, then for almost every \mathcal{L} in the space of lattices and $q \in$ \mathcal{P}_{0}, we have $H_{g}=\operatorname{SL}(n, \mathbb{R}), \Gamma \cap H_{g}=\operatorname{SL}(n, \mathbb{Z})$.
$F_{\mathcal{P}_{0}, \boldsymbol{q}}(\xi)$ is independent of \mathcal{P}_{0} and \boldsymbol{q} and has compact support.
- If $\mathcal{P}_{0}=\mathcal{P}(\mathcal{L}, \mathcal{W})$, then for almost every \mathcal{L} in the space of lattices and almost every \boldsymbol{q}, we have $H_{g}=\operatorname{ASL}(n, \mathbb{R}), \Gamma \cap H_{g}=\operatorname{ASL}(n, \mathbb{Z})$.
$F_{\mathcal{P}_{0}, q}(\xi) \asymp \xi^{-1}(\xi \rightarrow \infty)$ where the implied constants depend on n, \mathcal{W}, δ. Again $F_{\mathcal{P}_{0}, q}(\xi)$ is independent of \mathcal{P}_{0} and \boldsymbol{q}.
- If \mathcal{P}_{0} is the Penrose quasicrystal and $\boldsymbol{q} \in \mathcal{P}_{0}$, we have $H_{g}=\operatorname{SL}(2, \mathbb{R})^{2}$, $\Gamma \cap H_{g}=$ a congruence subgroup of the Hilbert modular group $\operatorname{SL}\left(n, \mathcal{O}_{K}\right)$, with \mathcal{O}_{K} the ring of integers of $K=\mathbb{Q}(\sqrt{5})$.
$F_{\mathcal{P}_{0}, q}(\xi) \asymp$ work in progress \ldots

Other aperiodic scatterer configurations: unions of lattices

- Consider now scatterer locations at the point set

$$
\mathcal{P}_{0}=\bigcup_{i=1}^{N} \mathcal{L}_{j}, \quad \mathcal{L}_{i}=\bar{n}_{i}^{-1 / d}\left(\mathbb{Z}^{d}+\boldsymbol{\omega}_{i}\right) M_{i}
$$

with $\boldsymbol{\omega}_{i} \in \mathbb{R}^{d}, M_{i} \in \mathrm{SL}(d, \mathbb{R})$ and $\bar{n}_{i}>0$ such that $\bar{n}_{1}+\ldots+\bar{n}_{N}=1$

- Let \mathcal{S} be the commensurator of $\operatorname{SL}(d, \mathbb{Z})$ in $\operatorname{SL}(d, \mathbb{R})$:

$$
\mathcal{S}=\left\{(\operatorname{det} T)^{-1 / d} T: T \in \mathrm{GL}(d, \mathbb{Q}), \operatorname{det} T>0\right\} .
$$

- We say that the matrices $M_{1}, \ldots, M_{N} \in \mathrm{SL}(n, \mathbb{R})$ are pairwise incommensurable if $M_{i} M_{j}^{-1} \notin \mathcal{S}$ for all $i \neq j$. A simple example is

$$
M_{i}=\zeta^{-i / d}\left(\begin{array}{cc}
\zeta^{i} & 0 \\
0 & 1_{d-1}
\end{array}\right), \quad i=1, \ldots, N
$$

where ζ is any positive number such that $\zeta, \zeta^{2}, \ldots, \zeta^{N-1} \notin \mathbb{Q}$.

Free path lengths for unions of lattices

Theorem G [JM \& Strömbergsson, 2013]. Let \mathcal{P}_{0} as on the previous slide with $M_{i} \in \mathrm{SL}(d, \mathbb{R})$ pairwise incommensurable. Let λ be any a.c. Borel probability measure on S_{1}^{d-1}. Then, for every $\xi>0$, the limit

$$
F_{\mathcal{P}_{0}, q}(\xi):=\lim _{\rho \rightarrow 0} \lambda\left(\left\{\boldsymbol{v} \in \mathrm{~S}_{1}^{d-1}: \rho^{d-1} \tau_{1} \geq \xi\right\}\right)
$$

exists. If for instance $\boldsymbol{\omega}_{i}-\bar{n}_{i}^{1 / d} \boldsymbol{q} M_{i}^{-1} \notin \mathbb{Q}^{d}$ for all i, then

$$
F_{\mathcal{P}_{0}, q}(\xi)=\prod_{i=1}^{N} F\left(\bar{n}_{i} \xi\right)
$$

where $F(\xi)$ is the distribution of free path length corresponding to a single lattice and generic initial point (as in Theorem C).

Recall $F(\xi) \sim C \xi^{-1}$ for $\xi \rightarrow \infty$. Thus

$$
F_{\mathcal{P}_{0}, \boldsymbol{q}}(\xi) \sim C^{N} \xi^{-N} .
$$

Key step in the proof: equidistribution in products

... is as before an equidistribution theorem that follows from Ratner's measure classification (again via Shah's theorem):

Theorem H [JM \& Strömbergsson, 2013]. Assume that $M_{1}, \ldots, M_{N} \in$ $\operatorname{SL}(n, \mathbb{R})$ are pairwise incommensurable, and $\boldsymbol{\alpha}_{1}, \ldots, \boldsymbol{\alpha}_{N} \notin \mathbb{Q}^{d}$ (for simplicity). Let λ be an a.c. Borel probability measure on S_{1}^{d-1}. Then

$$
\begin{aligned}
& \lim _{t \rightarrow \infty} \int_{\mathrm{S}_{1}^{d-1}} f\left(\left(1_{d}, \boldsymbol{\alpha}_{1}\right)\left(M_{1} K(\boldsymbol{v}) \Phi^{t}, \mathbf{0}\right), \ldots\right. \\
& \ldots,\left(1_{d}, \boldsymbol{\alpha}_{N}\right)\left.\left(M_{N} K(\boldsymbol{v}) \Phi^{t}, \mathbf{0}\right)\right) d \lambda(\boldsymbol{v}) \\
&=\int_{X^{N}} f\left(g_{1}, \ldots, g_{N}\right) d \mu\left(g_{1}\right) \cdots d \mu\left(g_{N}\right)
\end{aligned}
$$

Future work

