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Formulation of Quantum Ergodicity: connects classical and quantum mechanics

Recent work on Quantum Ergodicity in configuration space: 

• nonergodic - (pseudo-) integrable systems

• Small scale Quantum Ergodicity



Billiards as a model system
planar billiards: motion in planar domain B (configuration space) 

angle of reflection = angle of incidence
Phase space (description of a particle):
S*B=BxS1 = { position x of point & direction vector ξ of motion} 



Reduced phase space 
Reduced phase space (Birkhoff):
only impacts matter; parametrize using boundary 
coordinate φ and angle θ of trajectory with tangent

Billiard map (φ,θ)→(Φ,Θ) 



Billiards in an ellipse

Billiard map (φ,θ)→(Φ,Θ)
The Billiards Simulation 
Bryn Mawr



Regular vs. chaotic motion
Square billiard Bunimovich stadium

Bunimovich stadium 



Classical ergodicity
The billiard flow  Φ is ergodic if for generic initial conditions (position, direction)= (x, ξ)𝜀𝜀𝑆𝑆∗𝐵𝐵 = 𝐵𝐵 × 𝑆𝑆1, the orbit 
{Φ𝑡𝑡(𝑥𝑥, 𝜉𝜉)} is uniformly distributed in phase space (in particular, is dense).
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Quantum mechanics
A particle at time t is described by its wave function Ψ(q,t)

|Ψ(q,t)|2 = probability density of particle in state Ψ

Stationary states: Ψ(q,t) = ψ(q)e-itE/ħ with ψ(q) an eigenfunction of Δ
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Time evolution is described by Schrödinger’s equation :

0|, ==∆− ∂DuEuu+ boundary condition

http://en.wikipedia.org/wiki/%C4%A6
http://en.wikipedia.org/wiki/File:InfiniteSquareWellAnimation.gif
http://en.wikipedia.org/wiki/File:InfiniteSquareWellAnimation.gif


The semi-classical eigenfunction hypothesis

The semi-classical eigenfunction hypothesis of M.V. Berry and A.Voros (~ 1977): 

“Each semi-classical eigenstate has a Wigner function concentrated on the region 
explored by a typical orbit over infinite times”.

In particular, for chaotic systems, “The wave functions cover phase space uniformly”

However…..“scars” were found by Heller and by McDonald & Kauffman (1984-88)

Scars: Concentration of eigenfunctions on unstable periodic orbits (controversial)

E. Heller: Scarred stadium mode

The semiclassical limit  ħ→0 & the correspondence principle:
“classical mechanics is a special case of quantum mechanics”.

If so, then: 

How is the dichotomy “regular vs. chaotic” manifested in Quantum Mechanics ?



A mathematical formulation
For a particle with wave function ψ, the expectation values of its position coordinates x1 , x2 are given by 
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“Likewise”, for any classical observable a(x,ξ) of position x=(x1, x2) and momentum ξ=(ξ1, ξ2), one can define a 
pseudo-differential operator Op(a) so that the expected value of the observable a “at the state ψ” is the diagonal 
matrix element  <Op(a)ψ,ψ>

A possible interpretation of the statement that “wave functions cover phase space uniformly” 
is that  the matrix elements converge to the classical average of a:
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Quantum Ergodicity 

Schnirelman (1974): For a Riemannian manifold M (or billiard) with ergodic
geodesic (billiard) flow, “most” eigenfunctions cover phase space uniformly: 
if {un } is an ONB consisting of eigenfunctions of the Laplacian, then there is a 
subsequence of density one s.t. for all observables a(p,q)

Zelditch (1987), Colin de Verdiere (1985), Gerard & Leichtnam (1993), Zelditch-Zworski (1996). 

One interpretation of “scars” is as possible exceptional subsequences 

ZR & Sarnak (1994): Conjecture that for negatively curved manifolds, no
exceptional subsequence  - Quantum Unique Ergodicity (QUE).

Progress: Ananthraman (2008), Lindenstrauss (2006)
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New directions in quantum ergodicity

Non-ergodic systems

Small scale QE



QE for billiards in rational polygons
We have seen that for ergodic systems, almost all stationary states are uniformly 
distributed in phase space (quantum ergodicity).
For integrable systems this is not necessarily true. My goal is to explore a 
“pseudo-integrable” case – billiards in rational polygons.



Rational polygons
A simply connected polygon is rational if all interior angles are rational multiples of π

More generally: A connected polygon is rational if the group Γ ⊆ 𝑂𝑂(2) generated 
by reflections in the sides is finite



Billiards in rational polygons

Conserved quantity:  Γ-orbit of tangent angle θ
boundary

tangent
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Extra constant of motion forces dynamics in phase space to be  confined to invariant surfaces

Phase space S*B=BxS1  is foliated by invariant surfaces - so non-ergodic 

The restriction of the flow to the invariant surface is called the “directional flow”. 



Quantum ergodicity in configuration space
Thm (J. Marklof & ZR, 2012): For  billiards in rational polygons, almost all 
eigenfunctions are uniformly distributed in configuration space.

i.e. given any ONB of eigenfunctions 𝑢𝑢𝑛𝑛, there is a density one subsequence  
so that for any subset Ω ⊆ 𝐵𝐵 of the billiard table, 
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Quantum vs. classical variance
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Penultimate step in proof of Quantum Ergodicity (for any billiard): For all T>0, 

• For ergodic case, the classical variance C(a,T) vanishes as T→∞ for all observables. 

• For rational polygons, the classical variance vanishes for isotropic observables:  a(x,ξ)=a0(x).

Classical variance of time-averaged observable
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Directional flows
Kerckhoff, Masur & Smilie 1986: almost all directional flows are uniquely ergodic
(analogue of Kronecker’s theorem on irrational rotations)
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In particular, for isotropic observables, we recover the average on configuration space for almost all directions
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Kronecker’s theorem

Kronecker’s theorem: An irrational line is uniformly distributed 
in the torus, i.e. time average=space average:  

For any nice function 𝑎𝑎0(𝑥𝑥) on the torus,
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conclusion
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The classical variance vanishes for isotropic observables

the quantum variance vanishes for isotropic observables:
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almost all eigenfunctions are uniformly distributed in configuration space
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Small scale Quantum Ergodicity 
In the physics literature, the semiclassical eigenfunction hypothesis is viewed as a distributional statement, in particular that 
it holds on any scale where the eigenfunctions still oscillates, i.e. any scale larger than the wavelength (Planck scale).

In configuration space that means that we want to to study averages of the probability amplitudes 𝜓𝜓𝑛𝑛 𝑥𝑥 2 on balls 

𝐵𝐵 𝑦𝑦, 𝑟𝑟𝑛𝑛 of size bigger than several wavelengths: 𝑟𝑟𝑛𝑛 ≫ 𝜆𝜆𝑛𝑛
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Understanding these averages is important for studying finer properties of the eigenfunctions, e.g. 
the structure of the nodal sets, 𝐿𝐿𝑝𝑝 norms,….

Zelditch (1994), Han (2014), Hezari & Riviere (2014): For a negatively curved manifold, there are 0<c<C so that for 
any ONB {𝜓𝜓𝑛𝑛} there is a density one subsequence so that for all logarithmically small balls, 
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Example: the flat torus

 Laplacian Δ= ∂2/∂x2 + ∂2/∂y2 . 
 Basis for eigenfunctions: ei(mx+ny), m,n εZ
 Eigenvalues E = m2+n2. 
 General eigenfunction
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Small scale quantum ergodicity on flat tori
S. Lester & ZR (August 2015): On the flat 2-dim torus, for any ONB of eigenfunctions, almost all 
eigenfunctions are uniformly distributed in configuration space in any ball B(y,r) of size up to the Planck scale: 
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Same statement in any dimension, except that we do not reach the Planck scale, instead require      𝑟𝑟𝑛𝑛 > 𝜆𝜆𝑛𝑛
1
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J. Bourgain (October 2015): On smaller scales  there are ONB’s where a positive proportion of eigenfunctions are not

uniformly distributed in some balls B(0,r), 𝑟𝑟𝑛𝑛 < 𝜆𝜆𝑛𝑛
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Hezari & Riviere (2014): fixed ball, 𝑟𝑟𝑛𝑛 > 𝜆𝜆𝑛𝑛
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QE in eigenspaces for high-dim tori
On 𝕋𝕋𝑑𝑑, the dimension of the λ-eigenspace is #{x12 + ⋯+ 𝑥𝑥𝑑𝑑2 = 𝜆𝜆} ≈ 𝜆𝜆

𝑑𝑑−2
2

THM (Lester & ZR): For d=3,4, for any ONB 𝜓𝜓𝑛𝑛,𝜆𝜆 of a λ-eigenspace, almost all elements are uniformly 
distributed in any ball of size 𝑟𝑟𝑛𝑛 > 𝜆𝜆𝑛𝑛

1/2(𝑑𝑑−1)

- same result as without restricting to eigenspaces! 
Arithmetic input: Statistics of lattice points in small caps on the sphere of radius λ in dimension d

For a lattice point 𝜇𝜇 2 = λ, let 

𝑛𝑛 𝜇𝜇;𝑌𝑌 ≔ #{𝜈𝜈 ∈ ℤ𝑑𝑑 ∶ 𝜈𝜈 2 = 𝜆𝜆, 𝜈𝜈 ≠ 𝜇𝜇}= # of other lattice points in a cap of size Y around µ. 

Then for small caps of size 𝑌𝑌 < 𝜆𝜆1/2(𝑑𝑑−1) ,
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- Expect this also holds for all 𝑑𝑑 ≥ 5



Summary

Formulation of Quantum Ergodicity: connects classical and quantum mechanics

Recent work on Quantum Ergodicity in configuration space: 

• nonergodic - (pseudo-) integrable systems

• Small scale Quantum Ergodicity

• Question: small scale QE for rational polygons?



Thank you for your attention!
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