QUANTITATIVE DISTRIBUTIONAL ASPECTS OF GENERIC DIAGONAL FORMS

- Quantitative Oppenheim theorem
- Eigenvalue spacing for rectangular billiards
- Pair correlation for higher degree diagonal forms

EFFECTIVE ESTIMATES ON INDEFINITE TERNARY FORMS

Theorem (Dani-Margulis) Let Q be an indefinite, irrational, ternary quadratic form. Then the set

$$
\left\{Q(v): v \in \mathbb{Z}^{3} \text { primitive }\right\}
$$

is dense in the real line.

There is the following quantification obtained by an effective version of Ratner's theorem.

Theorem (Lindenstrauss-Margulis) Let Q be a given indefinite, ternary quadratic form with $\operatorname{det} Q=1$ and $\varepsilon>0$. Then, for T large enough, at least one of the following holds

- There is an integral quadratic form Q_{1} such that $\left|\operatorname{det} Q_{1}\right|<T^{\varepsilon}$ and

$$
\left\|Q-\lambda Q_{1}\right\| \ll T^{-1} \text { where } \lambda=\left|\operatorname{det} Q_{1}\right|^{-1 / 3}
$$

- For any $\xi \in\left[-(\log T)^{c},(\log T)^{c}\right]$, there is primitive $v \in \mathbb{Z}^{3}, 0<\|v\|<T^{C}$ such that

$$
|Q(v)-\xi| \ll(\log T)^{-c}
$$

Let Q be as above. For which functions $A(N) \rightarrow \infty$ and $\delta(N) \rightarrow 0$ (depending on Q) does the statement

$$
\begin{equation*}
\max _{|\xi|<A(N)} \min _{\substack{x \in \mathbb{Z}^{3} \\ 0<|x|<N}}|Q(x)-\xi|<\delta(N) \tag{*}
\end{equation*}
$$

hold? In the [L-M] result, $A(N)$ and $\delta(N)$ depend logarithmically on N.
Consider diagonal forms of signature $(2,1) Q(x)=x_{1}^{2}+\alpha_{2} x_{2}^{2}-\alpha_{3} x_{3}^{2}\left(\alpha_{2}, \alpha_{3}>0\right)$
There is the stronger statement for one-parameter families
Theorem (B) Let $\alpha_{2}>0$ be fixed. For most $\alpha_{3}>0$, the following holds
(i) Assuming the Lindelöf hypothesis
$\min _{x \in \mathbb{Z}^{3}, 0<|x|<N}|Q(x)| \ll N^{-1+\varepsilon}$ and $(*)$ holds provided $A(N) \delta(N)^{-2} \ll N^{1-\varepsilon}$
(ii) Unconditionally,
$\min _{x \in \mathbb{Z}^{3}, 0<|x|<N}|Q(x)| \ll N^{-\frac{2}{5}+\varepsilon}$ and $(*)$ holds assuming $A(N)^{3} \delta(N)^{-\frac{11}{2}} \ll N^{1-\varepsilon}$

REMARKS

- The statement

$$
\min _{x \in \mathbb{Z}^{3}, 0<|x|<N}|Q(x)| \ll N^{-1+\varepsilon}
$$

is essentially best possible

- For generic diagonal forms, i.e. considering both α_{2} and α_{3} as parameters, (i) holds without need of Lindelöf
- Ghosh and Kelmer obtained similar results for generic elements in the full space of indefinite ternary quadratic forms

EIGENVALUE SPACINGS OF FLAT TORI

Berry-Tabor Conjecture: local statistics of 'generic' integrable quantum Hamiltonian coincide with those of random numbers generated by Poisson process

PAIR CORRELATION FOR 2D FLAT TORI

$\Gamma \subset \mathbb{R}^{2}$ lattice and $M=\mathbb{R}^{2} / \Gamma$ associated flat torus.
Eigenvalues of M given by $4 \pi^{2}\|v\|^{2}, v \in \Gamma^{*}$ (= dual lattice). These are the values at integral points of binary quadratic form $B(m, n)=$ $4 \pi^{2}\left\|n_{1} v_{1}+n_{2} v_{2}\right\|^{2}$, with $\left\{v_{1}, v_{2}\right\}$ a \mathbb{Z}-basis for Γ^{*}. Weyl law holds

$$
\left|\left\{j: \lambda_{j}(M) \leq T\right\}\right| \sim c_{M} T \text { with } c_{M}=(\text { area } M) / 4 \pi
$$

Distribution of local spacings $\lambda_{j}-\lambda_{k}, j \neq k$

$$
R(a, b, T)=\frac{1}{T}\left|\left\{(j, k): j \neq k, \lambda_{j} \leq T, \lambda_{k} \leq T, a \leq \lambda_{j}-\lambda_{k} \leq b\right\}\right|
$$

where $-\infty<a<b<\infty$.

According to the Berry-Tabor conjecture, $\lambda_{j}-\lambda_{k}(j \neq k)$ should be uniformly distributed on \mathbb{R}. Thus for given $a<b$,

$$
\begin{equation*}
\lim _{T \rightarrow \infty} R(a, b, T)=c_{M}^{2}(b-a) \tag{*}
\end{equation*}
$$

Theorem (Sarnak, 1996) (*) holds for a set of full measure in the space of all tori.

Analytical approach which seems to require 2 parameters and not applicable to rectangular billiards with eigenvalues $\alpha m^{2}+n^{2}$ (where $\sqrt{\alpha}$ is the aspect ratio between height π and width $\pi / \sqrt{\alpha}$).

Theorem (Eskin-Margulis-Mozes) (*) holds for (weakly) diophantine billiards, assuming $0 \notin(a, b)$

In particular (*) is valid for rectangular billiards provided α is diophantine, in the sense that $\|q \alpha\|>q^{-C}$ for some $C>0$.

Ergodic theory approach with no (or very poor) quantitative versions if we let $b-a \rightarrow 0$ with $T \rightarrow \infty$.

MINIMAL GAP FUNCTION OF SPECTRUM OF RECTANGULAR BILLIARD

For α irrational, we get simple spectrum $0<\lambda_{1}<\lambda_{2}<\cdots$, with growth

$$
\left|\left\{j: \lambda_{j} \leq T\right\}\right|=\left|\left\{(m, n) ; m, n \geq 1, \alpha m^{2}+n^{2} \leq T\right\}\right| \sim \frac{\pi}{4 \sqrt{\alpha}} T
$$

Definition

$$
\delta_{\min }^{(\alpha)}(N)=\min \left(\lambda_{i+1}-\lambda_{i}: 1 \leq i \leq N\right)
$$

For a Poisson sequence of N uncorrelated levels with unit mean spacing, the smallest gap is almost surely of size $\approx \frac{1}{N}$.

Remark For the Gaussian unitary ensemble, on the scale of the mean spacing, smallest eigenphase gap is $\approx N^{-1 / 3}$, while for the Gaussian orthogonal ensemble, it is expected that the minimal gap is of size $N^{-1 / 2}$.

Theorem (Bloomer-B-Radziwill-Rudnick) For almost all $\alpha>0$

- $\delta_{\text {min }}^{(\alpha)}(N) \ll \frac{1}{N^{1-\varepsilon}}$
- $\delta_{\min }^{(\alpha)}(N) \gg \frac{(\log N)^{c}}{N}$ with $c=1-\frac{\log (e \log 2)}{\log 2}=0,086 \ldots$ infinitely often

PAIR CORRELATION FOR GENERIC 3D RECTANGULAR BILLIARDS

Consider generic positive definite ternary quadratic form $Q(x)=x_{1}^{2}+\alpha x_{2}^{2}+\beta x_{3}^{2}$ with $\alpha, \beta>0$. Restricting the variables to $\mathbb{Z} \cap[0, N]$, mean spacing is $O\left(\frac{1}{N}\right)$.

For T large and $a<b$, denote

$$
\begin{aligned}
& R(a, b ; T)=T^{-3 / 2} \mid\left\{(m, n) \in \mathbb{Z}_{+}^{3} \times \mathbb{Z}_{+}^{3}: m \neq n, Q(m) \leq T, Q(n) \leq T\right. \\
& \text { and } Q(m)-Q(n) \in[a, b]\} \mid
\end{aligned}
$$

and

$$
\left.c=\lim _{\varepsilon \rightarrow 0} \frac{1}{\varepsilon} \left\lvert\,\left\{(x, y) \in \mathbb{R}_{+}^{3} \times \mathbb{R}_{+}^{3} ; Q(x) \leq 1 \text { and }|Q(x)-Q(y)|<\frac{\varepsilon}{2}\right\}\right. \right\rvert\,
$$

Theorem (B) Let $Q=Q_{\alpha, \beta}$ with $\alpha, \beta>0$ parameters.

 Almost surely in α, β, the following holds. Fix $0<\rho<1$.Let $T \rightarrow \infty$ and $a<b,|a|,|b|<O(1)$ such that $T^{-\rho}<b-a<1$. Then

$$
R(a, b ; T) \sim c T^{\frac{1}{2}}(b-a)
$$

Remark Vanderkam established the pair correlation conjecture for generic four-dimensional flat tori using an unfolding procedure.

PAIR CORRELATION FOR HOMOGENOUS FORMS OF DEGREE k

Let $F\left(x_{1}, \ldots, x_{k}\right)=x_{1}^{k}+\alpha_{2} x_{2}^{k}+\cdots+\alpha_{k} x_{k}^{k}$ with $\alpha_{2}, \ldots, \alpha_{k}>0$. Thus average spacing between values of P is asymptotically constant. Define
$\left.\left.R(a, b ; T)=\frac{1}{T} \right\rvert\,\left\{(m, n) \in \mathbb{Z}_{+}^{k} \times \mathbb{Z}_{+}^{k}: m \neq n, F(m) \leq T, F(n) \leq T\right.$ and $\left.F(m)-F(n) \in[a, b]\right\} \right\rvert\,$

Theorem (B) Consider $\alpha_{2}, \ldots, \alpha_{k}$ as parameters. There is $\rho>0$ such that almost surely in $\alpha_{2}, \ldots, \alpha_{k}$ the following statement holds. Let $T \rightarrow \infty$ and $|a|,|b|=O(1), b-a>T^{-\rho}$. Then

$$
R(a, b ; T) \sim c^{2}(b-a) \text { where } c=\left|\left\{x \in \mathbb{R}_{+}^{k}: F(x) \leq 1\right\}\right|
$$

Results of this type for generic elements in the full space of homogenous forms were obtained by Vanderkam (1999) using Sarnak's method.

QUANTITATIVE OPPENHEIM FOR 1-PARAMETER FAMILIES

Harmonic analysis approach but rather than expressing the problem using Gauss sums, reformulate it multiplicatively and rely on Dirichlet sum behavior. For instance, the sum

$$
\sum_{n \sim N} n^{i t}
$$

is 'small' for say $|t|>N^{\varepsilon}$; under the Lindelöf hypothesis one gets

$$
\left|\sum_{n \sim N} n^{i t}\right| \ll N^{\frac{1}{2}}(1+|t|)^{\varepsilon}
$$

This permits to decompose in small and large t, where the small- t range provides main term and large- t contribution is an error term.

Consider one-parameter family

$$
Q_{\alpha}(x)=x_{1}^{2}+x_{2}^{2}-\alpha x_{3}^{2} \text { with } \alpha>0 \text { a parameter }
$$

Taking $x_{1}, x_{2}, x_{3} \sim N$, condition $\left|x_{1}^{2}+x_{2}^{2}-\alpha x_{3}^{2}\right|<\delta$ is rewritten as

$$
\left|\frac{x_{1}^{2}+x_{2}^{2}}{\alpha x_{3}^{2}}-1\right| \lesssim \frac{\delta}{N^{2}} \text { or }\left|\log \left(x_{1}^{2}+x_{2}^{2}\right)-2 \log x_{3}-\log \alpha\right| \lesssim \frac{\delta}{N^{2}}
$$

The number of $x_{1}, x_{2}, x_{3} \sim N$ for which this inequality holds is then expressed using Fourier transform as

$$
\begin{gathered}
\frac{1}{T} \int_{|t|<T} F_{1}(t) \overline{F_{2}(2 t)} e^{i t \log \alpha} d t \text { with } T=\frac{N^{2}}{\delta} \\
F_{1}(t)=\sum_{x_{1}, x_{2} \sim N}\left(x_{1}^{2}+x_{2}^{2}\right)^{i t} \\
\text { (partial sum of Epstein zeta function) } \\
F_{2}(t)=\sum_{x \sim N} x^{i t} \\
\text { (partial sum of Riemann zeta function) }
\end{gathered}
$$

Split

$$
\int_{|t|<T}=\int_{|t|<N^{\frac{1}{2}}}+\int_{N^{\frac{1}{2}<|t|<T}}=\text { (1) }+ \text { (2) }
$$

Contribution of (1) amounts to

$$
\frac{\delta}{N^{2}} N^{\frac{1}{2}} \sum_{x_{1}, x_{2}, x_{3} \sim N} 1_{\left[\left|\log \left(x_{1}^{2}+x_{2}^{2}\right)-2 \log x_{3}-\log \alpha\right|<N^{-\frac{1}{2}}\right]} \sim \delta N
$$

without further assumptions on α
To bound contribution of (2), average in α and use Parseval \Rightarrow

$$
\frac{1}{T}\left[\int_{N^{\frac{1}{2}}<|t|<T}\left|F_{1}(t)\right|^{2}\left|F_{2}(t)\right|^{2} d t\right]^{\frac{1}{2}} \leq T^{\frac{1}{2}}\left(\max _{N^{\frac{1}{2}}<|t|<T}\left|F_{2}(t)\right|\right) \cdot\left(\frac{1}{T} \int_{|t|<T}\left|F_{1}(t)\right|^{2} d t\right)^{\frac{1}{2}}
$$

Assuming Lindelöf

$$
\max _{N^{\varepsilon}<|t|<T}\left|F_{2}(t)\right| \ll N^{\frac{1}{2}} T^{\varepsilon}
$$

For second factor

$$
\begin{aligned}
& \frac{1}{T} \\
& \quad \int_{|t|<T}\left|F_{1}(t)\right|^{2} d t \\
& \quad \sim \#\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in \mathbb{Z}^{4} ; x_{i} \sim N \text { and }\left|\log \left(x_{1}^{2}+x_{2}^{2}\right)-\log \left(x_{3}^{2}+x_{4}^{2}\right)\right|<\frac{1}{T}\right\} \\
& \\
& \sim \#\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in \mathbb{Z}^{4} ; x_{i} \sim N \text { and }\left|x_{1}^{2}+x_{2}^{2}-x_{3}^{2}-x_{4}^{2}\right|<\frac{N^{2}}{T}=\delta\right\} \\
& \\
& \ll N^{2+\varepsilon}
\end{aligned}
$$

This gives

$$
c \delta N+O\left(\frac{\delta^{\frac{1}{2}}}{N} \cdot N^{\frac{1}{2}+\varepsilon} N^{1+\varepsilon}\right) \sim \delta N \text { provided } N^{-1+\varepsilon}<\delta
$$

Unconditionally, one may show that a.s. in α

$$
\min _{\substack{x \in \mathbb{Z}^{3} \backslash\{0\} \\|x|<N}}\left|Q_{\alpha}(x)\right| \ll N^{-\frac{2}{5}+\varepsilon}
$$

by bounding error term using distributional estimates. Main ingredients

- Large value estimate for Dirichlet polynomials

Lemma Define $S(t)=\sum_{n \sim M} a_{n} n^{i t}$ where $\left|a_{n}\right| \leq 1$. Then for $T>M$

$$
\operatorname{mes}[|t|<T:|S(t)|>V] \ll M^{\varepsilon}\left(M^{2} V^{-2}+M^{4} V^{-6} T\right)
$$

(due to Jutila, 1977)
Applied here with $M=N^{2}$ and $S(t)=F_{2}(t)^{2}$.

- Bounds on partial sums of the Epstein zeta function

Lemma For $|t|>N^{2}$, one has the estimate

$$
\left|\sum_{m, n \sim N}\left(m^{2}+n^{2}\right)^{i t}\right| \ll N|t|^{\frac{1}{3}+\varepsilon}
$$

Follows the steps of Van der Corput's third derivative estimate, i.e.
$\left(\frac{1}{6}, \frac{2}{3}\right)$ is a (2-dim) exponent pair
Appears in a paper of V . Blomer on Epstein zeta functions where it is used to establish a bound

$$
\left|E\left(\frac{1}{2}+i t\right)\right| \ll|t|^{\frac{1}{3}+\varepsilon} \text { where } E(s)=\sum_{\substack{x \in \mathbb{Z}^{2} \\ x \neq 0}} Q(x)^{-s}
$$

SMALL GAPS IN SPECTRUM OF RECTANGULAR BILLIARD

Recall that $\left\{\lambda_{1}<\lambda_{2}<\cdots\right\}=\left\{\alpha m^{2}+n^{2}: m, n \in \mathbb{Z}\right\}$

$$
\delta_{\min }^{(\alpha)}(N)=\min _{i \leq N}\left(\lambda_{i+1}-\lambda_{i}\right)
$$

In order to bound $\delta_{\min }^{(\alpha)}(N)$, consider equivalently $(M=\sqrt{N})$

$$
\min \left\{n_{1}^{2}-n_{2}^{2}+\alpha\left(n_{3}^{2}-n_{4}^{2}\right) \mid: n_{i}<M \text { and }\left(n_{1}, n_{3}\right) \neq\left(n_{2}, n_{4}\right)\right\}
$$

or

$$
\begin{equation*}
\min \left\{\left|n_{1} n_{2}-\alpha n_{3} n_{4}\right|: 0<n_{i}<M\right\} \tag{*}
\end{equation*}
$$

Problem Is it true that $(*) \ll \frac{1}{M^{2-\varepsilon}}$ for all α ?
In [B-B-R-R], this was shown for certain quadratic irrationals and also generically

Proposition $(*) \ll \frac{1}{M^{2-\varepsilon}}$ for almost all α.

SKETCH OF THE PROOF

Taking $n_{i} \sim M$, condition

$$
\left|n_{1} n_{2}-\alpha n_{3} n_{4}\right|<\delta
$$

is replaced by

$$
\left|\log n_{1}+\log n_{2}-\log n_{3}-\log n_{4}-\log \alpha\right|<\frac{\delta}{M^{2}}=\frac{1}{T}
$$

This leads to evaluation of

$$
\frac{1}{T} \int_{|t|<T}|F(t)|^{4} e^{i t(\log \alpha)} d t \text { with } F(t)=\sum_{n \sim M} n^{i t}
$$

Split again

$$
\int_{|t|<T}=\int_{|t|<M^{\frac{1}{2}}}+\int_{M^{\frac{1}{2}<|t|<T}}=\text { (1) }+ \text { (2) }
$$

Contribution of (1) evaluated independently of α and gives $c \delta M^{2}$
Contribution of (2) estimated in the α-mean and by Parseval bounded by

$$
\frac{1}{T}\left[\int_{M^{\frac{1}{2}}<|t|<T}|F(t)|^{8} d t\right]^{\frac{1}{2}}
$$

Assuming Lindelöf, one obtains

$$
\int_{M^{\frac{1}{2}<|t|<T}}|F(t)|^{8} d t \ll T^{1+\varepsilon} M^{4}
$$

leading to the condition $\delta M^{2}>T^{-\frac{1}{2}+\varepsilon} M^{2}$, hence $\delta>M^{-2+\varepsilon}$.
The Lindelöf hypothesis may be avoided in the following way.
Replace $n_{i} \sim M$ by $n_{i}=n_{i}^{\prime} n_{i}^{\prime \prime}$ with $n_{i}^{\prime} \sim M^{1-\sigma}$ and $n_{i}^{\prime \prime} \sim M^{\sigma}$ (σ arbitrary small and fixed).

We obtain

$$
\frac{1}{T} \int_{|t|<T}|F(t)|^{4}|G(t)|^{4} e^{i t(\log \alpha)} d t
$$

where

$$
F(t)=\sum_{n \sim M^{1-\sigma}} n^{i t} \text { and } G(t)=\sum_{n \sim M^{\sigma}} n^{i t}
$$

Error term becomes

$$
\frac{1}{T}\left[\int_{M^{\frac{1}{2}}<|t|<T}|F(t)|^{8}|G(t)|^{8} d t\right]^{\frac{1}{2}}
$$

Estimate

$$
\begin{aligned}
& \int_{M^{\frac{1}{2}}<|t|<T}|F(t)|^{8}|G(t)|^{8} d t \leq\left(\max _{M^{\frac{1}{2}}<|t|<T}|G(t)|^{8}\right) \cdot \int_{|t|<T}\left|F(t)^{4}\right|^{2} d t \\
&<M^{8 \sigma(1-\tau)}\left(T+M^{4(1-\sigma)}\right) M^{4(1-\sigma)} \text { for some } \tau=\tau(\sigma)>0
\end{aligned}
$$

This gives

$$
\begin{gathered}
\delta M^{2-\varepsilon}+O\left\{\left(T^{-\frac{1}{2}}+\frac{1}{T} M^{2(1-\sigma)}\right) M^{2+2 \sigma-4 \sigma \tau}\right\} \\
=\delta M^{2-\varepsilon}+O\left\{\left(\delta^{\frac{1}{2}} M^{-1+2 \sigma}+\delta\right) M^{2-4 \sigma \tau}\right\}
\end{gathered}
$$

and condition

$$
\delta>M^{-2+4 \sigma}
$$

The lower bound
Proposition For almost all α, letting $c=1-\frac{\log (\log 2)}{\log 2}=0.086 \ldots$

$$
\delta_{\min }^{(\alpha)}(N) \gg \frac{(\log N)^{c}}{N} \text { infinitively often }
$$

uses K. Ford's result
$\#\left\{u . v: u, v \in \mathbb{Z}_{+}, u, v<N^{\frac{1}{2}}\right\} \asymp N(\log N)^{-c}(\log \log N)^{-2 / 3}$
and shows small deviation from expected Poisson statistics for the eigenvalues.

PAIR CORRELATION FOR HOMOGENOUS DIAGONAL FORMS

Recall that

$$
F\left(x_{1}, \ldots, x_{k}\right)=x_{1}^{k}+\alpha_{2} x_{2}^{k}+\cdots+\alpha_{k} x_{k}^{k} \quad\left(\alpha_{i}>0\right)
$$

and
$\left.\left.R(a, b ; T)=\frac{1}{T} \right\rvert\,\left\{(m, n) \in \mathbb{Z}_{+}^{k} \times \mathbb{Z}_{+}^{k} ; m \neq n, F(m) \leq T, F(n) \leq T\right.$ and $\left.F(m)-F(n) \in[a, b]\right\} \right\rvert\,$
A first step consists in a localization of the variables $m_{i} \in I_{i}, n_{i} \in J_{i}$ where I_{i}, J_{i} are intervals of size $T^{\frac{1}{k}-2 \varepsilon}$ satisfying a separation condition $\operatorname{dist}\left(I_{i}, J_{i}\right)>T^{\frac{1}{k}-\varepsilon}$.

Let $\xi=\frac{a+b}{2}$ and $\delta=\frac{b-a}{2}$. Evaluate
$\left.\left.\frac{1}{T} \right\rvert\,\left\{(m, n) \in \mathbb{Z}^{k} \times \mathbb{Z}^{k} ; m_{i} \in I_{i}, n_{i} \in J_{i}\right.$ and $\left.|F(m)-F(n)-\xi|<\delta\right\} \right\rvert\,$
Condition $|F(m)-F(n)-\xi|<\delta$ is replaced by
$\left|\log \left(m_{1}^{k}-n_{1}^{k}+\alpha_{2}\left(m_{2}^{k}-n_{2}^{k}\right)+\cdots+\alpha_{k-1}\left(m_{k-1}^{k}-n_{k-1}^{k}\right)-\xi\right)-\log \left(m_{k}^{k}-n_{k}^{k}\right)-\log \alpha_{k}\right|<\frac{\delta}{\alpha_{k} \Delta}=\frac{1}{B}$
where $\Delta \sim m_{k}^{k}-n_{k}^{k}$ for $m_{k} \in I_{k}, n_{k} \in J_{k}$

Evaluate (*) by

$$
\begin{equation*}
\int S_{1}(t) \overline{S_{2}(t)} e^{-i t \log \alpha_{k}} \widehat{1}_{\left[-\frac{1}{B}, \frac{1}{B}\right]}(t) d t \tag{**}
\end{equation*}
$$

with

$$
\begin{aligned}
& S_{1}(t)=\sum_{m_{i} \in I_{i}, n_{i} \in J_{i}}\left(m_{1}^{k}-n_{1}^{k}+\alpha_{2}\left(m_{2}^{k}-n_{2}^{k}\right)+\cdots+\alpha_{k-1}\left(m_{k-1}^{k}-n_{k-1}^{k}\right)-\xi\right)^{i t} \\
& S_{2}(t)=\sum_{m \in I_{k}, n \in J_{k}}\left(m^{k}-n^{k}\right)^{i t}
\end{aligned}
$$

Set $B_{0}=\frac{\alpha_{k} \Delta}{T^{1-\kappa}}$ and decompose $1_{\left[-\frac{1}{B}, \frac{1}{B}\right]}=\frac{B_{0}}{B} 1_{\left[-\frac{1}{B_{0}}, \frac{1}{B_{0}}\right]}+$
$\left(1_{\left[-\frac{1}{B}, \frac{1}{B}\right]}-\frac{B_{0}}{B} 1_{\left[-\frac{1}{B_{0}}, \frac{1}{B_{0}}\right]}\right)$ producing in (**) the main contribution and an error term.

Evaluation of the error term uses pointwise bound on $S_{2}(t)$ and an estimate

$$
\frac{1}{T} \int_{|t|<T}\left|S_{1}(t)\right|^{2} d t \ll T^{3-\frac{4}{k}+\varepsilon} \text { in average over } \alpha_{2}, \ldots, \alpha_{k-1}
$$

The following question seems open.

Problem It is true that for all $\alpha \in \mathbb{R}$

$$
\inf _{m, n \in \mathbb{Z}_{+}}(m+n)\|m n \alpha\|=0
$$

