
QUANTITATIVE DISTRIBUTIONAL ASPECTS OF

GENERIC DIAGONAL FORMS

• Quantitative Oppenheim theorem

• Eigenvalue spacing for rectangular billiards

• Pair correlation for higher degree diagonal forms
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EFFECTIVE ESTIMATES ON

INDEFINITE TERNARY FORMS

Theorem (Dani–Margulis) Let Q be an indefinite,

irrational, ternary quadratic form. Then the set

{Q(v) : v ∈ Z3 primitive}

is dense in the real line.

There is the following quantification obtained by an effective

version of Ratner’s theorem.
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Theorem (Lindenstrauss–Margulis) Let Q be a given

indefinite, ternary quadratic form with detQ = 1 and ε > 0.

Then, for T large enough, at least one of the following holds

• There is an integral quadratic form Q1 such that

|detQ1| < T ε and

‖Q− λQ1‖ � T−1 where λ = |detQ1|−1/3

• For any ξ ∈
[
− (logT )c, (logT )c

]
, there is primitive

v ∈ Z3,0 < ‖v‖ < TC such that

|Q(v)− ξ| � (logT )−c 3



Let Q be as above. For which functions A(N) → ∞ and δ(N) → 0
(depending on Q) does the statement

max
|ξ|<A(N)

min
x∈Z3

0<|x|<N

|Q(x)− ξ| < δ(N) (∗)

hold? In the [L-M] result, A(N) and δ(N) depend logarithmically on N .

Consider diagonal forms of signature (2, 1) Q(x) = x2
1 + α2x

2
2 − α3x

2
3 (α2, α3 > 0)

There is the stronger statement for one-parameter families

Theorem (B) Let α2 > 0 be fixed. For most α3 > 0, the following holds

(i) Assuming the Lindelöf hypothesis

min
x∈Z3,0<|x|<N

|Q(x)| � N−1+ε and (∗) holds provided A(N)δ(N)−2 � N1−ε

(ii) Unconditionally,

min
x∈Z3,0<|x|<N

|Q(x)| � N−
2
5+ε and (∗) holds assuming A(N)3δ(N)−

11
2 � N1−ε



REMARKS

• The statement

min
x∈Z3,0<|x|<N

|Q(x)| � N−1+ε

is essentially best possible

• For generic diagonal forms, i.e. considering both α2 and

α3 as parameters, (i) holds without need of Lindelöf

• Ghosh and Kelmer obtained similar results for generic

elements in the full space of indefinite ternary quadratic forms
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EIGENVALUE SPACINGS OF FLAT TORI

Berry–Tabor Conjecture: local statistics of ‘generic’ integrable quantum
Hamiltonian coincide with those of random numbers generated by
Poisson process

PAIR CORRELATION FOR 2D FLAT TORI

Γ ⊂ R2 lattice and M = R2/Γ associated flat torus.

Eigenvalues of M given by 4π2‖v‖2, v ∈ Γ∗ (= dual lattice). These are
the values at integral points of binary quadratic form B(m,n) =
4π2‖n1v1 + n2v2‖2, with {v1, v2} a Z-basis for Γ∗. Weyl law holds

|{j : λj(M) ≤ T}| ∼ cMT with cM = (area M )/4π

Distribution of local spacings λj − λk, j 6= k

R(a, b, T ) =
1

T

∣∣∣{(j, k) : j 6= k, λj ≤ T, λk ≤ T, a ≤ λj − λk ≤ b
}∣∣∣

where −∞ < a < b <∞.



According to the Berry–Tabor conjecture, λj − λk(j 6= k) should be
uniformly distributed on R. Thus for given a < b,

lim
T→∞

R(a, b, T ) = c2M(b− a) (∗)

Theorem (Sarnak, 1996) (∗) holds for a set of full measure in the
space of all tori.

Analytical approach which seems to require 2 parameters and not
applicable to rectangular billiards with eigenvalues αm2 + n2 (where

√
α

is the aspect ratio between height π and width π/
√
α).

Theorem (Eskin-Margulis-Mozes) (∗) holds for (weakly)
diophantine billiards, assuming 0 6∈ (a, b)

In particular (∗) is valid for rectangular billiards provided α is diophantine,
in the sense that ‖qα‖ > q−C for some C > 0.

Ergodic theory approach with no (or very poor) quantitative versions if we
let b− a→ 0 with T →∞.



MINIMAL GAP FUNCTION OF SPECTRUM

OF RECTANGULAR BILLIARD

For α irrational, we get simple spectrum 0 < λ1 < λ2 < · · · , with growth

|{j : λj ≤ T}| = |{(m,n);m,n ≥ 1, αm2 + n2 ≤ T}| ∼
π

4
√
α
T

Definition
δ

(α)
min(N) = min(λi+1 − λi : 1 ≤ i ≤ N)

For a Poisson sequence of N uncorrelated levels with unit mean spacing,
the smallest gap is almost surely of size ≈ 1

N .

8



Remark For the Gaussian unitary ensemble, on the scale of the mean
spacing, smallest eigenphase gap is ≈ N−1/3, while for the Gaussian
orthogonal ensemble, it is expected that the minimal gap is of size N−1/2.

Theorem (Bloomer–B–Radziwill–Rudnick) For almost all α > 0

• δ
(α)
min(N)� 1

N1−ε

• δ
(α)
min(N)� (logN)c

N with c = 1− log(e log 2)
log 2 = 0,086 . . . infinitely often
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PAIR CORRELATION FOR
GENERIC 3D RECTANGULAR BILLIARDS

Consider generic positive definite ternary quadratic form
Q(x) = x2

1 + αx2
2 + βx2

3 with α, β > 0. Restricting the variables to
Z ∩ [0, N ], mean spacing is O( 1

N ).

For T large and a < b, denote

R(a, b;T ) = T−3/2
∣∣∣{(m,n) ∈ Z3

+ × Z3
+ : m 6= n,Q(m) ≤ T,Q(n) ≤ T

and Q(m)−Q(n) ∈ [a, b]
}∣∣∣

and

c = lim
ε→0

1

ε

∣∣∣∣{(x, y) ∈ R3
+ × R3

+;Q(x) ≤ 1 and |Q(x)−Q(y)| <
ε

2

}∣∣∣∣
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Theorem (B) Let Q = Qα,β with α, β > 0 parameters.

Almost surely in α, β , the following holds. Fix 0 < ρ < 1.

Let T →∞ and a < b, |a|, |b| < O(1) such that

T−ρ < b− a < 1. Then

R(a, b;T ) ∼ cT
1
2(b− a)

Remark Vanderkam established the pair correlation

conjecture for generic four-dimensional flat tori using an

unfolding procedure.
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PAIR CORRELATION FOR

HOMOGENOUS FORMS OF DEGREE k

Let F (x1, . . . , xk) = xk1 +α2x
k
2 + · · ·+αkx

k
k with α2, . . . , αk > 0. Thus

average spacing between values of P is asymptotically constant. Define

R(a, b;T ) =
1

T

∣∣{(m,n) ∈ Zk+×Zk+ : m 6= n, F (m) ≤ T, F (n) ≤ T and F (m)−F (n) ∈ [a, b]
}∣∣

Theorem (B) Consider α2, . . . , αk as parameters. There is ρ > 0
such that almost surely in α2, . . . , αk the following statement holds. Let
T →∞ and |a|, |b| = O(1), b− a > T−ρ. Then

R(a, b;T ) ∼ c2(b− a) where c = |{x ∈ Rk+ : F (x) ≤ 1}|

Results of this type for generic elements in the full space of homogenous
forms were obtained by Vanderkam (1999) using Sarnak’s method.



QUANTITATIVE OPPENHEIM FOR 1-PARAMETER FAMILIES

Harmonic analysis approach but rather than expressing the problem
using Gauss sums, reformulate it multiplicatively and rely on Dirichlet sum
behavior. For instance, the sum ∑

n∼N
nit

is ‘small’ for say |t| > Nε; under the Lindelöf hypothesis one gets∣∣∣∣ ∑
n∼N

nit
∣∣∣∣� N

1
2(1 + |t|)ε

This permits to decompose in small and large t, where the small-t range
provides main term and large-t contribution is an error term.
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Consider one-parameter family

Qα(x) = x2
1 + x2

2 − αx
2
3 with α > 0 a parameter

Taking x1, x2, x3 ∼ N , condition |x2
1 + x2

2 − αx
2
3| < δ is rewritten as∣∣∣∣x2

1 + x2
2

αx2
3
− 1

∣∣∣∣ . δ

N2
or

∣∣∣ log(x2
1 + x2

2)− 2 logx3 − logα
∣∣∣ . δ

N2

The number of x1, x2, x3 ∼ N for which this inequality holds is then
expressed using Fourier transform as

1

T

∫
|t|<T

F1(t)F2(2t) eit logα dt with T =
N2

δ

F1(t) =
∑

x1,x2∼N
(x2

1 + x2
2)it (partial sum of Epstein zeta function)

F2(t) =
∑
x∼N

xit (partial sum of Riemann zeta function)



Split ∫
|t|<T

=
∫
|t|<N

1
2

+
∫
N

1
2<|t|<T

= (1) + (2)

Contribution of (1) amounts to

δ

N2
N

1
2

∑
x1,x2,x3∼N

1
[| log(x2

1+x2
2)−2 logx3−logα|<N−

1
2]
∼ δN

without further assumptions on α

To bound contribution of (2), average in α and use Parseval ⇒

1

T

[ ∫
N

1
2<|t|<T

|F1(t)|2|F2(t)|2dt
]1

2 ≤ T
1
2
(

max
N

1
2<|t|<T

|F2(t)|
)
.

(
1

T

∫
|t|<T

|F1(t)|2dt
)1

2
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Assuming Lindelöf

max
Nε<|t|<T

|F2(t)| � N
1
2T ε

For second factor
1

T

∫
|t|<T

|F1(t)|2dt

∼#
{

(x1, x2, x3, x4) ∈ Z4;xi ∼ N and | log(x2
1 + x2

2)− log(x2
3 + x2

4)| <
1

T

}
∼#

{
(x1, x2, x3, x4) ∈ Z4;xi ∼ N and |x2

1 + x2
2 − x

2
3 − x

2
4| <

N2

T
= δ

}
� N2+ε

This gives

cδN +O

(
δ

1
2

N
.N

1
2+εN1+ε

)
∼ δN provided N−1+ε < δ
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Unconditionally, one may show that a.s. in α

min
x∈Z3\{0}
|x|<N

|Qα(x)| � N−
2
5+ε

by bounding error term using distributional estimates. Main ingredients

• Large value estimate for Dirichlet polynomials

Lemma Define S(t) =
∑

n∼M
an nit where |an| ≤ 1. Then for T > M

mes [|t| < T : |S(t)| > V ]�Mε(M2V −2 +M4V −6T )

(due to Jutila, 1977)

Applied here with M = N2 and S(t) = F2(t)2.
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• Bounds on partial sums of the Epstein zeta function

Lemma For |t| > N2, one has the estimate∣∣∣∣ ∑
m,n∼N

(m2 + n2)it
∣∣∣∣� N |t|

1
3+ε

Follows the steps of Van der Corput’s third derivative estimate, i.e.(
1

6
,
2

3

)
is a (2-dim) exponent pair

Appears in a paper of V. Blomer on Epstein zeta functions where it is used
to establish a bound∣∣∣∣E(1

2
+ it

)∣∣∣∣� |t|13+ε where E(s) =
∑
x∈Z2

x6=0

Q(x)−s
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SMALL GAPS IN SPECTRUM OF RECTANGULAR BILLIARD

Recall that {λ1 < λ2 < · · · } = {αm2 + n2 : m,n ∈ Z}

δ
(α)
min(N) = min

i≤N
(λi+1 − λi)

In order to bound δ(α)
min(N), consider equivalently (M =

√
N)

min
{
n2

1 − n
2
2 + α(n2

3 − n
2
4)| : ni < M and (n1, n3) 6= (n2, n4)

}
or

min
{
|n1n2 − αn3n4| : 0 < ni < M

}
(∗)

Problem Is it true that (∗)� 1
M2−ε for all α?

In [B-B-R-R], this was shown for certain quadratic irrationals and also generically

Proposition (∗)� 1
M2−ε for almost all α.



SKETCH OF THE PROOF

Taking ni ∼M , condition

|n1n2 − αn3n4| < δ

is replaced by

| logn1 + logn2 − logn3 − logn4 − logα| <
δ

M2
=

1

T
This leads to evaluation of

1

T

∫
|t|<T

|F (t)|4 eit(logα)dt with F (t) =
∑
n∼M

nit

Split again ∫
|t|<T

=
∫
|t|<M

1
2

+
∫
M

1
2<|t|<T

= (1) + (2)

Contribution of (1) evaluated independently of α and gives cδM2

Contribution of (2) estimated in the α-mean and by Parseval bounded by
20



1

T

[ ∫
M

1
2<|t|<T

|F (t)|8dt
]1

2

Assuming Lindelöf, one obtains∫
M

1
2<|t|<T

|F (t)|8dt� T1+εM4

leading to the condition δM2 > T−
1
2+εM2, hence δ > M−2+ε.

The Lindelöf hypothesis may be avoided in the following way.

Replace ni ∼M by ni = n′in
′′
i with n′i ∼M

1−σ and n′′i ∼M
σ

(σ arbitrary small and fixed).

We obtain
1

T

∫
|t|<T

|F (t)|4|G(t)|4 eit(logα)dt

where

F (t) =
∑

n∼M1−σ
nit and G(t) =

∑
n∼Mσ

nit
21



Error term becomes

1

T

 ∫
M

1
2<|t|<T

|F (t)|8 |G(t)|8dt

1
2

Estimate∫
M

1
2<|t|<T

|F (t)|8 |G(t)|8 dt ≤
(

max
M

1
2<|t|<T

|G(t)|8
)
.
∫
|t|<T

|F (t)4|2dt

< M8σ(1−τ) (T +M4(1−σ))M4(1−σ) for some τ = τ(σ) > 0

This gives

δM2−ε +O

{(
T−

1
2 +

1

T
M2(1−σ)

)
M2+2σ−4στ

}
= δM2−ε +O

{
(δ

1
2M−1+2σ + δ)M2−4στ

}
and condition

δ > M−2+4σ
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The lower bound

Proposition For almost all α, letting c = 1− log(e log 2)
log 2 = 0.086 . . .

δ
(α)
min(N)�

(logN)c

N
infinitively often

uses K. Ford’s result

#
{
u.v : u, v ∈ Z+, u, v < N

1
2
}
� N(logN)−c(log logN)−2/3

and shows small deviation from expected Poisson statistics for the
eigenvalues.
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PAIR CORRELATION FOR HOMOGENOUS DIAGONAL FORMS

Recall that

F (x1, . . . , xk) = xk1 + α2x
k
2 + · · ·+ αkx

k
k (αi > 0)

and

R(a, b;T ) =
1

T

∣∣{(m,n) ∈ Zk+×Zk+;m 6= n, F (m) ≤ T, F (n) ≤ T andF (m)−F (n) ∈ [a, b]
}∣∣

A first step consists in a localization of the variables mi ∈ Ii, ni ∈ Ji

where Ii, Ji are intervals of size T
1
k−2ε satisfying a separation condition

dist (Ii, Ji) > T
1
k−ε.

Let ξ = a+b
2 and δ = b−a

2 . Evaluate

1

T

∣∣∣{(m,n) ∈ Zk×Zk;mi ∈ Ii, ni ∈ Ji and |F (m)−F (n)−ξ| < δ
}∣∣∣ (∗)

Condition |F (m)− F (n)− ξ| < δ is replaced by∣∣ log
(
mk

1−nk1+α2(mk
2−nk2)+· · ·+αk−1(mk

k−1−nkk−1)−ξ
)
−log(mk

k−nkk)−logαk
∣∣ < δ

αk∆
=

1

B

where ∆ ∼ mk
k − n

k
k for mk ∈ Ik, nk ∈ Jk



Evaluate (∗) by ∫
S1(t)S2(t) e−it logαk 1̂

[− 1
B ,

1
B ]

(t)dt (∗∗)

with
S1(t) =

∑
mi∈Ii,ni∈Ji

(
mk

1 − nk1 + α2(mk
2 − nk2) + · · ·+ αk−1(mk

k−1 − nkk−1)− ξ
)it

S2(t) =
∑

m∈Ik,n∈Jk

(mk − nk)it

Set B0 = αk∆
T1−κ and decompose 1

[− 1
B ,

1
B ]

= B0
B 1

[− 1
B0
, 1
B0

]
+(

1
[− 1

B ,
1
B ]
− B0

B 1
[− 1

B0
, 1
B0

]

)
producing in (∗∗) the main contribution and an

error term.

Evaluation of the error term uses pointwise bound on S2(t) and an estimate

1

T

∫
|t|<T

|S1(t)|2dt� T3−4
k+ε in average over α2, . . . , αk−1
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The following question seems open.

Problem It is true that for all α ∈ R

inf
m,n∈Z+

(m+ n)‖mnα‖ = 0 ?

26


