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Self-interacting RW: definition and introduction

I G = (V ,E ) non-oriented locally finite graph

I We : N −→ R+, e ∈ E , weight functions

• Vertex SIRW (VSIRW) (Xn) on V : X0 = i0 and, if Xn = i , then

P(Xn+1 = j |Xk , k 6 n) = 1{j∼i}
W{i ,j}(Zn(j))∑
k∼Xn

W{i ,k}Zn(k)

where

Zn(j) =
n∑

k=0

1{Xk=j}.

• Edge SIRW (ESIRW): replace Zn(j), j ∼ i by

Zn({i , j}) =
n∑

k=0

1{{Xk−1,Xk}={i ,j}}



Self-Interacting RW: definition and introduction

• Edge and Vertex reinforced random walk (ERRW and VRRW):
(ESIRW and VSIRW) with We(n) = ae + n, ae > 0, e ∈ E
• ERRW introduced by Diaconis and Coppersmith in 1986 :
behavior of person in a new city

Applications and related questions

• Reinforcement learning in game theory (see e.g. Erev-Roth’95):
m people play repeatedly the same game, each having d possible
strategies, and reinforce on strategies according to payoff : for
instance creation of social networks, or of a new language (Kious
and T.’16, Hu, Skyrms and T.’16)
• Biology:

I Trail formation for ants, Schneirla’33

I model for aggregation of myxobacteria, with short range
interactions, Othmer and Stevens’97



Self-Interacting RW: definition and introduction

1048 HANS OTHMER AND ANGELA STEVENS

FIG. 2. Simulation of a random walk of one particle in two dimensions on a periodic 50 × 50
grid, using the rules of the simplified cellular automaton model and linear growth of the slime
(aj = 0.2, j = 1, 2, . . . ). The figure shows the sites visited after 3000 jumps. Clearly the particle
visits fewer sites as compared with Figure 1, which implies that these rules tend to produce stronger
localization.

FIG. 3. This figure shows the discrete density distribution for 1000 bacteria after 1000 jumps,
using Davis’s movement rules with a1 = 1 and aj = 1 + 1 +

�j−1
k=1 ak. The bacteria are interacting

only via the slime trails. The density of bacteria is coded as follows: black for one bacterium at a
grid point, dark gray for two to four bacteria, gray for five and six bacteria, and light gray for seven
and more bacteria located at the same grid point. All grid points that have been visited by at least
one bacterium are marked by smaller gray squares. All particles are quickly trapped in the sense
that they soon oscillate between two points.

the automaton the bacteria sense the slime on the nearest neighbors, whereas in

Davis’s case they sense the slime only at a distance of a half-step. This suggests that

aggregation, as opposed to mere localization, requires longer-range sensing than what

is suggested by Davis’s one particle result.

However, when these rules of slime production are tested in the full stochastic

cellular automaton, one finds that even this does not account for stable aggregation

AGGREGATION, BLOWUP, AND COLLAPSE 1049

FIG. 4. The density distribution using the rules for the simplified stochastic cellular automaton
for 1000 bacteria after 1000 time-steps with a1 = 1 and aj = 1 + 1 +

�j−1
k=1 ak. The localization

of the particles is stronger than in Figure 3, since more particles are trapped in most of the small
areas than before.

centers. The reasons for this must lie in additional factors suggested by the exper-

iments, such as (i) the persistence in the movement of the bacteria or (ii) contacts

between bacteria, which forces nearest neighbors to alter their gliding velocity.

1.3. Background on continuum descriptions of motion. In this paper we

will analyze continuous approximations of the various jump processes with a view

toward determining whether stable aggregation or blowup is possible without long-

range signaling. To understand where our analysis fits into different approaches to

modeling movement, let us first restrict attention to noninteracting particles. If the

forces are deterministic and individuals are regarded as point masses, their motion can

always be described by Newton’s laws, and this leads to a classification of movement

according to the properties of the forces involved. (Although the particles are regarded

as structureless, we admit the possibility that they can exert forces.) First, if the forces

are smooth bounded functions, the governing equations are smooth and the paths are

smooth functions of time. In a phase space description in which the fundamental

variables are position and velocity, Newton’s equations are

dx
dt

= v,(1)

m
dv
dt

= F.(2)

If we assume that the forces are independent of the velocity, then these are just the

characteristic equations for the hyperbolic equation

∂ρ

∂t
+ v · ∇xρ +

F
m

· ∇vρ = 0.(3)

Here ρ is the density of individuals, defined so that ρ(x,v, t)dxdv is the number of

individuals with position and velocity in the phase volume (dxdv) centered at (x,v).

Figure : Model with 1000 particles after 1000 iterations, We(n) = 2n:
reinforcement by edges on the left, by sites on the right (Othmer and
Stevens, 1997).
Black: 1 bacteria, dark grey 2 to 4, grey 5 or 6, light grey: 7 or more



Self-Interacting RW: preliminary remarks

• VRRW 6= ERRW. ae := 1.

On seven sites, at time k, Xk = 1 and

w w w w w w w
-3 -2 -1 0 1 2 3

0 0 n/2 n n/2 0 0

I VRRW: P(Xk+2 = 3 |Xi , i 6 k) ∼ 2/n2

I ERRW: P(Xk+2 = 3 |Xi , i 6 k) ∼ 1/(3n)



Self-Interacting RWs: preliminary remarks

• Edge or Vertex SIRW on 3 vertices, We(n) = W (n) = (n + 1)α,
α ∈ R.

I α < 1. Then Zn(1)/Zn(−1) −→ 1 a.s.
I α > 1 (more generally

∑
W (n)−1 <∞).

Then Z∞(1) <∞ or Z∞(−1) <∞ a.s.
I α = 1. Then Zn(1)/(Zn(1) + Zn(−1)) −→ β ∈ (0, 1) r.v.
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Figure : The walk can be represented by successive draws into the urn.

n 0 n 1 n 2 n 3

Let us now endow the set of all urn paths with a particular dynamics thus defining
a stochastic process. Fix wi i 0

0 the reinforcement weight sequence and
define the quantity π r, g wr

wr wg
which we shall understand as the probability of drawing

a red ball among r red and g green balls. Note that π r, g π g, r 1. For n 1, define
the increment of red (resp. green) balls at time n by ∆rn rn rn 1 (resp. ∆gn gn gn 1).
Then the dynamics is defined as follows: X Rn,Gn n is a Markov chain with X0

0,0 and the transition law

∆Rn 1 a Xn r, g Xn r,g
d
a π r, g aπ g, r d a

Xn r,g , a,0 a d;
∆Gn 1 d ∆Rn 1.

It is clear that X is an urn path with parameter d a.s. In words, ∆Rn 1 (and ∆Gn 1)
follows a binomial distribution B d,π r, g conditionally on Xn r, g : each of the d
balls added at time n is independently red with probability π Rn,Gn and green with
probability π Gn,Rn .

For n , denote by n the σ-field generated by the n first steps:

n σ X0,X1, . . . ,Xn .

This model can be linked with multiple Reinforced Random Walks. Consider the
following star shaped graph:

Suppose that there are d particles on the central vertex and at each step they jump over
one of the vertices with probability proportional to wi, where i is the number of time the
vertex has been visited by one of the particles since the begining, and then jump back
to the central vertex. This dynamic is equivalent to an urn process in which d balls are
added in the urn at each step and the balls could be of E different colours where E is the
number of edges (or the number of vertices different from the central one). In this paper
we will limit ourselves to two different colours, that is E 2:

Remark 1. This model is equivalent to the Interacting Urn Model [2] with d urns in the
case when the memory sharing is maximal, that is the correlation probability p 1. In
that setting all the d urns always draw their balls in the d urns combined. Therefore,
Theorem 2.3 answers an open question of [2].

2

Figure : The VSIRW can be represented by successive draws into the
urn: n-th draw, Gn and Rn numbers of balls of green and red color, then
probability to pick a green ball is W (Gn)/(W (Gn) + W (Rn)).



Vertex Self-Interacting RWs: localisation results

Let R ′ be the asymptotic range of the process:

R ′ := {v ∈ V s.t. Z∞(v) =∞}.

VRRW with We(n) = n + a, a > 0, e ∈ E .

Theorem (G = Z, T., ’04 and ’11, conjectured by Pemantle
and Volkov ’88, ’01)

P(|R ′| = 5) = 1.

Continuous-time version of RW in T.’11 used in other contexts:

I VSIRW with superlinear reinforcement (Basdevant, Schapira,
Singh ’12): localisation on 4 or 5 sites a.s., W (n) = n log log n

I Proof of conjecture of Erschler, Tóth and Werner (Kious ’16):
localisation of RWs with competing interactions: self-repelling
at distance 1 and self-attracting at distance 2.
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Vertex Self-Interacting RW: localisation results

VRRW with We(n) = be(ae + n), ae > 0, be > 0, e ∈ E .

Theorem (G arbitrary, Volkov ’03, Benäım and T., ’11)

If G is of bounded degree and under some assumptions on a, b,
then

P(|R ′| <∞) > 0.

• Generically, R ′ = S ∪ ∂S , where S is a complete d-partite graph
for some integer d > 1.
• Localisation sets are supports of equilibria of linear replicator
dynamics in population biology (Fisher, Wright, Haldane’1920-30)



Vertex Self-Interacting RW: localisation results

Figure : Two types of localisation on Z2 for the VRRW, respectively on
13 and 12 points. The seldom visited sites are green, and the other sites
divide up into their blue and red parts of the complete bipartite
subgraph.



Edge Self-Interacting RW: scaling and localisation results

Assume We(n) = W (n).

Lemma
If
∑

W (n)−1 =∞ and G connected, then R ′ = ∅ or R ′ = V a.s.

proof: Conditional Borel-Cantelli lemma. �
Theorem (Tóth’94-98, G = Z, W (n) = (n + 1)α)

Xt/t
ν converges to non-trivial (non-gaussian) law, where{

ν = 1/2 if α 6 0

ν = (1− α)/(2− α) if α ∈ (0, 1)

Theorem (Sellke’94, Limic’03, Limic-T.’07, Cotar-Thacker’15)

If
∑

W (n)−1 <∞ and G of bounded degree, then |R ′| = 2 a.s.



First results on Edge-Reinforced random walk (’86-’09)

I Partial exchangeability =⇒ ERRW is a RWRE

I Explicit computation of mixing measure:
Coppersmith-Diaconis ’86, Keane-Rolles ’00

I Pemantle ’88: recurrence/transience phase transition on trees

I Merkl Rolles ’09: recurrence on a 2d graph (but not Z2)
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ERRW and statistical physics: ERRW ←→ VRJP (I)

Let (We)e∈E be conductances on edges, We > 0.
VRJP (Ys)s>0 is a continuous-time process defined by Y0 = i0 and,
if Ys = i , then, conditionally to the past,

Y jumps to j ∼ i at rate Wi ,jLj(s),

with

Lj(s) = 1 +

∫ s

0
1{Yu=j}du.

Proposed by Werner and first studied on trees by Davis, Volkov
(’02,’04).



ERRW and statistical physics: ERRW ←→ VRJP (II)

Theorem (T. ’11, Sabot, T. ’11)

ERRW (Xn)n∈N with weights (ae)e∈E
”law”

=
VRJP (Yt)t>0 with conductances We ∼ Γ(ae) indep.

(at jump times)

I Similar equivalence applies to any linearly reinforced RW on
its continuous time version (initially proved for VRRW, T’. 11)
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ERRW ←→ VRJP : Rubin and Kendall

Theorem (T’.11, ST ’11)

I We ∼ Gamma(ae) independent, e ∈ E

I Y VRJP with conductances We .

Then (Yt)t>0 (at jump times) ”law”
= (Xn) .

Three ingredients :

I Rubin construction (Davis ’90, Sellke ’94) : (X̃t)
continuous-time version of (Xn).

I Kendall transform (’66): Representation of Yule process as
Poisson Point Process with Gamma random parameter after
change in time

I Another change of time



VRJP ←→ SuSy hyperbolic sigma model in QFT (I)

I G = (V ,E ) finite, N := |V |
I Fixed conductances (We).

I Pi0 law of (Ys)s>0 starting from i0 ∈ V

I Change time at vertices `i = L2i − 1, i ∈ V −→ (Zt)t>0

B(s) =
∑
i∈V

(Li (s)2 − 1), Zt = YB−1(t).

Theorem (ST ’11)

Under Pi0 , (Zt)t>0 is a mixture of Markov jump processes (MJPs)
starting from i0 with jump rate from i to j

1

2
Wi ,je

Uj−Ui .

Let Qi0,W be the mixing measure on U = (Ui )i∈V .



VRJP ←→ SuSy hyperbolic sigma model in QFT (II)

Theorem (ST ’11 continued)

The measure Qi0,W (du) has density on H0 = {(ui ),
∑

ui = 0}

N

(2π)(N−1)/2
eui0 e−H(W ,u)

√
D(W , u),

where
H(W , u) = 2

∑
{i ,j}∈E

Wi ,j sinh2 ((ui − uj)/2)

and
D(W , u) =

∑
T∈T

∏
{i ,j}∈T

W{i ,j}e
ui+uj ,

T is the set of (non-oriented) spanning trees of G.

Gibbs “measure” on supermanifold extension H2|2 of hyperbolic
plane with action AW (v , v) =

∑
i ,j Wij(vi − vj , vi − vj), taken in

horospherical coordinates after integration over fermionic variables.



VRJP ←→ Random Schrödinger operator ST-Zeng ’15 (I)

Let, for all i ∈ V ,

βi =
1

2

∑
j∼i

Wije
uj−ui + 1Ii0γ,

γ ∼ Γ(1/2) indep. of u.

I ∀i 6= i0, βi = jump rate from i

I β field 1-dependent: β|V1
and β|V2

are independent if
distG(V1,V2) > 2.

I On Zd with Wij = W constant, (βi )i∈V translation-invariant

I The marginals βi are such that (2βi )
−1 have inverse Gaussian

law.



VRJP ←→ Random Schrödinger: Range and law of β (II)

I V finite

I ∆ = (∆i ,j)i ,j∈V discrete Laplacian, letting Wi :=
∑

j∼i Wi ,j ,

∆i ,j :=

{
Wi ,j , if i ∼ j , i 6= j

−Wi , if i=j,

I Hβ := −∆ + 2(β −W ).

I Hβ > 0 (positive definite): =⇒ (Hβ)−1 has positive entries.

I β = (βi )i∈V has distribution

νW (dβ) =

√
2

π

|V |
1{Hβ>0}

e
∑

i∈V (Wi−βi )√
|Hβ|

∏
i∈V

dβi .



VRJP ←→ Random Schrödinger: Retrieve u from β (III)

I Set G = (Hβ)−1.
I Then

eui =
G (i0, i)

G (i0, i0)
,

where (ui )i∈V defined above and follows the law QW
i0

(du).

I Hence, time-changed VRJP starting from i0 mixture of
Markov jump processes with jump rate

1

2
Wi ,je

uj−ui =
1

2
Wi ,j

G (i0, j)

G (i0, i)



VRJP ←→ Dynkin’s isomorphism (ST’15)

Theorem (Generalized second Ray-Knight theorem)

For any u > 0, letting σu = inf{t > 0; `i0(t) > u},(
`i (σu) +

1

2
ϕ2
i

)
i∈V

under Pi0 ⊗ PG ,U , has the same law as(
1

2
(ϕi +

√
2u)2

)
i∈V

under PG ,U .

Let

Φi =
√
ϕ2
i + 2`i (σu).

Theorem (Sabot, T. ’14)

L (ϕ|Φ)

can be retrieved from a magnetized version of the reverse VRJP.



ERRW and statistical physics: implications

Using link of QFT and localisation/delocalisation results of
Disertori, Spencer, Zirnbauer ’10 :

Theorem (ST’12, Angel-Crawford-Kozma’12, G bded degree)

ERRW is positive recurrent at strong reinforcement, i.e. for ae is
uniformly small in e ∈ E.

Theorem (Disertori-ST’14, G = Zd , d > 3)

ERRW is transient at weak reinforcement, i.e. for ae uniformly
large in e ∈ E.

Using link with Random Schrödinger operator:

Theorem (Sabot-Zeng ’15,Merkl-Rolles ’09)

ERRW with constant weights ae = a is recurrent in dimension 2.
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