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Self-interacting RW: definition and introduction
» G = (V, E) non-oriented locally finite graph
» W, : N — Ry, e € E, weight functions
e Vertex SIRW (VSIRW) (X,) on V : Xy = ip and, if X, = i, then

o Wap(@0)
U S e, Wi ky Zn(K)

P(Xny1 =J| Xk, k < n)

where

Zn(i) = D>_ V=i
k=0
e Edge SIRW (ESIRW): replace Z,(j), j ~ i by

Zo({i3}) = Y 1 {Xer X b= (i}
k=0



Self-Interacting RW: definition and introduction

e Edge and reinforced random walk (ERRW and ):
(ESIRW and VSIRW) with W,.(n) = a. +n, ae >0, e € E

e ERRW introduced by Diaconis and Coppersmith in 1986 :
behavior of person in a new city

Applications and related questions

e Reinforcement learning in game theory (see e.g. Erev-Roth'95):
m people play repeatedly the same game, each having d possible
strategies, and reinforce on strategies according to payoff : for
instance creation of social networks, or of a new language (Kious
and T.'16, Hu, Skyrms and T.'16)

e Biology:

» Trail formation for ants, Schneirla’33

» model for aggregation of myxobacteria, with short range
interactions, Othmer and Stevens'97



Self-Interacting RW: definition and introduction
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Figure : Model with 1000 particles after 1000 iterations, We(n) = 2™
reinforcement by edges on the left, by sites on the right (Othmer and

Stevens, 1997).
Black: 1 bacteria, dark grey 2 to 4, grey 5 or 6, light grey: 7 or more



Self-Interacting RW: preliminary remarks

e VRRW # ERRW. a, := 1.

On seven sites, at time k, X, =1 and

0 0 n/2 n n/2
® @ @ @
-3 -2 -1 0 1

> :IP’(Xk+2:3|X,-,i<k)~2/n2

> ZP(Xk+2:3’X;, igk)wl/(?m)



Self-Interacting RWs: preliminary remarks

e Edge or Vertex SIRW on 3 vertices, We(n) = W(n) = (n+ 1)*,
aeR.
» a < 1. Then Z,(1)/Z,(—1) — 1 ass.
» a > 1 (more generally > W(n)~! < o).
Then Z(1) < 00 or Zo(—1) < o0 a.s.
> = 1. Then Zy(1)/(Zn(1) + Zn(~1)) — B € (0,1) r.v.

. o |00000
@0000
10 1 00000

Figure : The VSIRW can be represented by successive draws into the
urn: n-th draw, G, and R, numbers of balls of green and red color, then
probability to pick a green ball is W(G,)/(W(G,) + W(R,)).




Vertex Self-Interacting RWs: localisation results

Let R’ be the asymptotic range of the process:
R :={ve Vst Zo(v)=o0}

VRRW with W.(n) =n+a, a>0, e € E.

Theorem (G =7, T., '04 and '11, conjectured by Pemantle
and Volkov '88, '01)

P(|R| = 5) = 1.
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Let R’ be the asymptotic range of the process:
R :={ve Vst Zo(v)=o0}

VRRW with W.(n) =n+a, a>0, e € E.

Theorem (G =7, T., '04 and '11, conjectured by Pemantle
and Volkov '88, '01)

P(|R| = 5) = 1.

Continuous-time version of RW in T."11 used in other contexts:
» VSIRW with superlinear reinforcement (Basdevant, Schapira,
Singh "12): localisation on 4 or 5 sites a.s., W(n) = nloglogn

» Proof of conjecture of Erschler, Téth and Werner (Kious '16):
localisation of RWs with competing interactions: self-repelling
at distance 1 and self-attracting at distance 2.



Vertex Self-Interacting RW: localisation results

VRRW with We(n) = be(ae + n), ae >0, be >0, e € E.
Theorem (G arbitrary, Volkov '03, Benaim and T., '11)

If G is of bounded degree and under some assumptions on a, b,
then
P(|R'| < c0) > 0.

e Generically, R = SUOS, where S is a complete d-partite graph
for some integer d > 1.

e Localisation sets are supports of equilibria of linear replicator
dynamics in population biology (Fisher, Wright, Haldane'1920-30)



Vertex Self-Interacting RW: localisation results

Figure : Two types of localisation on Z? for the VRRW, respectively on
13 and 12 points. The seldom visited sites are green, and the other sites
divide up into their blue and red parts of the complete bipartite

subgraph.



Edge Self-Interacting RW: scaling and localisation results

Assume We(n) = W(n).

Lemma
IfS"W(n)~t =00 and G connected, then R' =) or R’ = V a.s.
PROOF: Conditional Borel-Cantelli lemma. O

Theorem (T6th'94-98, G = Z, W(n) = (n+ 1)%)

X:/t" converges to non-trivial (non-gaussian) law, where

{y:1/2 ifa <0
v=(1-a)/(2—a) ifaec(0,1)

Theorem (Sellke'94, Limic'03, Limic-T.'07, Cotar-Thacker'15)
If S>> W(n)~t < co and G of bounded degree, then |R'| =2 a.s.
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First results on Edge-Reinforced random walk ('86-'09)

v

Partial exchangeability =— ERRW is a RWRE

Explicit computation of mixing measure:
Coppersmith-Diaconis '86, Keane-Rolles '00

v

v

Pemantle '88: recurrence/transience phase transition on trees
Merkl Rolles '09: recurrence on a 2d graph (but not Z?)

v



ERRW and statistical physics: ERRW <— VRJP (1)

Let (We)ece be conductances on edges, W, > 0.
VRIP (Ys)s>0 is a defined by Yy = iy and,
if Ys =i, then, conditionally to the past,

Y jumps to j ~ i at rate W; ;L;(s),

with <
LJ(S) =1 +/ ]]_{yu:j}du.
0

Proposed by Werner and first studied on trees by Davis, Volkov
('02,'04).



ERRW and statistical physics: ERRW «— VRJP (lI)

Theorem (T. '11, Sabot, T. '11)

ERRW (X,)nen with weights (ae)ecE
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™ VRIP (Yt)t=0 with conductances W, ~ T (a.) indep.
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ERRW and statistical physics: ERRW «— VRJP (lI)

Theorem (T. '11, Sabot, T. '11)

ERRW (X,)nen with weights (ae)eck

uIaWH

~ VRJP(Yt)t=0 with conductances We ~ I'(ae) indep.

(at jump times)

» Similar equivalence applies to any linearly reinforced RW on
its continuous time version (initially proved for VRRW, T'. 11)



ERRW <— VRJP : Rubin and Kendall

Theorem (T'.11, ST '11)

» W, ~ Gamma(a.) independent, e € E
» Y VRJP with conductances W..

Then (Yi)t=o0 (at jump times) ”/a:W” (Xn) -
Three ingredients :
> Rubin construction (Davis '90, Sellke '94) : (X;)
continuous-time version of (Xp).

» Kendall transform ('66): Representation of Yule process as
Poisson Point Process with Gamma random parameter after
change in time

» Another change of time



VRJP <— SuSy hyperbolic sigma model in QFT (1)

» G =(V,E) finite, N := |V

» Fixed conductances ().

» 7 law of (Ys)s=o starting from iy & V/

» Change time at vertices (; = L2 —1,i € V — (Z¢)r=0

B(s) = (Li(s)> = 1), Zt= Yg-1(0).

iev

Theorem (ST '11)

Under P, (Z¢)¢>0 is a mixture of Markov jump processes (MJPs)
starting from iy with jump rate from i to j

1 U
EVV,'JeUJ Ul'

Let O be the mixing measure on U = (U;)icy .



VRJP <— SuSy hyperbolic sigma model in QFT (I1)

Theorem (ST '11 continued)
The measure O (du) has density on Ho — {(u;). > u; — 0}

where
HW,u)=2 > Wjsinh® ((u; — ;) /2)
{ij}cE
and
D(W, u) = Z H W{,-J}eu"—"_uj,
TeT {ij}eT

T is the set of (non-oriented) spanning trees of G.

Gibbs “measure” on supermanifold extension H212 of hyperbolic
plane with action Ay (v,v) = >_,; W(vi — vj,v; — v;), taken in
horospherical coordinates after integration over fermionic variables.



VRJP <— Random Schrodinger operator ST-Zeng '15 (1)

Let, forall i € V,
1 .
Bi=5 D Wie ™" + 1y,
i

v~ T(1/2) indep. of u.
Vi % iy, [; = jump rate from J

v

v

p field 1-dependent: B\, and f)y, are independent if
diStg(Vl, VQ) > 2.

On Z9 with W;; = W constant, (3;)icy translation-invariant
The marginals 3; are such that (23;)~! have

v

v



VRJP <— Random Schrodinger: Range and law of 3 (I1)

V finite
A = (Ajj)ijev discrete Laplacian, letting W; := 3. ; W,

v

v

i [y
-W;, ifi=j,
| 4 H/j = —A+2(ﬁ — W)
Hs >0 (positive definite): == (Hz)~! has positive entries.

B = (Bi)icv has

[V]
2 eZIEV(W /Bl
W(d/B) = \/; ]1{H6>0} \/W H dﬁl

iev

v

v



VRJP <— Random Schrodinger: Retrieve u from 3 (lII)

> Set G = (HB)_I.
» Then
eli — G(’bv ’)
G(io, o)’

where (u;)jev defined above and follows the law O (du).

» Hence, time-changed VRJP starting from iy mixture of
Markov jump processes with jump rate
1 G(’Ov./)

1
W el = Z W,
0 Vige 2" G i, 1)




VRJP <— Dynkin's isomorphism (ST'15)
Theorem (Generalized second Ray-Knight theorem)

For any u > 0, letting o, = inf{t > 0; £ (t) > u},

1
<€,~(au) + 2g0,2> under Pj; ® PCY  has the same law as
iev

1
(2(<p,- + \/2u)2> under PV,

iev

Let
P, = \/(,0,2 + 25,’(01,).

Theorem (Sabot, T. '14)

L(p|®)

can be retrieved from a magnetized version of the reverse VRJP.



ERRW and statistical physics: implications

Using link of QFT and localisation/delocalisation results of
Disertori, Spencer, Zirnbauer '10 :
Theorem (ST'12, Angel-Crawford-Kozma'l2, G bded degree)

ERRW is positive recurrent at strong reinforcement, i.e. for ae is
uniformly small in e € E.

Theorem (Disertori-ST'14, G = Z9, d > 3)

ERRW is transient at weak reinforcement, i.e. for ag uniformly
large in e € E.

Using link with Random Schrodinger operator:
Theorem (Sabot-Zeng '15,Merkl-Rolles '09)

ERRW with constant weights a. = a is recurrent in dimension 2.
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