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The Determinant, the Permanent and

Subpermanents

The Determinant:

det(A) =
∑

σ∈Sn
(−1)sign(σ) n∏

i=1
A(i, σ(i))

The Permanent:

per(A) =
∑

σ∈Sn

n∏
i=1
A(i, σ(i))

The sum of Subpermanents:

perm(A) =:
∑

|S|=|T |=m
per(AS,T ); per0(A) = 1.

The Matching Polynomial(the bipartite case):

MA(x) =: (−1)n
∑

0≤m≤n
perm(A)(−x)n−m

The P-characteristic Polynomial:

CA(t) =: per(tI + A)
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Why the permanent(and its relatives) is

interesting, important etc.

1. Theoretical Computer Science: Permanent

vs Determinant i.e. VP vs VNP; it is Sharp-P-

Complete; was and is a testing ground for many (ran-

domized,deterministic) algorithms and many more...

2. Combinatorics: number of perfect matchings,

number of matchings, number of matching of a given

size, number of permutations with restricted positions,

Latin Squares, Representation Theory...

3. The Monomer-Dimer Problem: Statistical Physics,

Chemistry, Yang-Baxter Theory.....

4. Computational Algebra : the Mixed Volume(a

generalization, will define later) counts(upper bounds)

the number of isolated solutions of systems of polyno-

mial equations,...
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5. Approximating the permanent(or just getting the

sign) of certain integer matrices is equivalent to Quan-

tum Computing.

6. If U is a complex unitary matrix, i.e UU ∗ = I , then

the polynomial

p(x1, ..., xn) = per(Udiag(x1, ..., xn)U ∗) is a generat-

ing function of Linear Quantum Optics distributions.

I.e. the coefficients of this homogeneous polynomial are

non-negative and sum to one:

p(x1, ..., xn) =
∑

ω1+...+ωn=n
aω1,...,ωnx

ω1
1 ...x

ωn
n ,

aω1,...,ωn ≥ 0 and ∑
ω1+...+ωn=n aω1,...,ωn = 1.

This polynomial happened to be doubly-stochastic:

∂

∂xi
p(1, 1, ..., 1) = 1, 1 ≤ i ≤ n.
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det(AB) = det(A)det(B),

what about the permanent?

Associate with a square matrix A the following prod-

uct polynomial: ∑
ω1+...ωn=n c

A
ω1,...,ωn

xω1
1 ...x

ωn
n =

= ProdA(x1, ..., xn) =:
∏

1≤i≤n

∑
1≤j≤n

A(i, j)xj.

Then [Augustin-Louis Cauchy, 1812]:

per(AB∗) =< ProdA, P rodB >F=

=:
∑

ω1+...+ωn=n
(
n∏
i=1
ωi!)c

A
ω1,...,ωn

cBω1,...,ωn
.

In other words the Fock Hilbert Space(thus the con-

nection to Linear Quantum Optics) appeared in 1812!

because of the permanent.

5



Fairly Inclusive Generalization of the Permanent (of

non-negative matrices):

Given a family A1, ..., Ak of n×n complex matrices,

define the following non-negative number

QP (A1, ..., Ak) =: || det(
∑

1≤i≤k
ziAi)||2F

The permanent of non-negatives matrices: Ai,j = a(i, j)eie
∗
j ;

The mixed discriminant: Ai,j = eiv
∗
i,j, vi,j ∈ Cn;

The permanent of PSD matrices: Ai,j are diagonal.
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Generalized Matching Polynomial:

Given a homogeneous polynomial p ∈ Hom+(m,n)

p(x1, ..., xm) =
∑

ω1+...ωm=n
aω1,...,ωmx

ω1
1 ...x

ωm
m

such that p(1, 1, ...., 1) = 1. Define the following uni-

variate polynomial

Mp(x) =
∑

ω1+...ωm=n
aω1,...,ωmx

n−|ω|+ ∏
ωi 6=0

(x− ωi),

where |ω|+ is the number of positive coordinates in the

vector (ω1, ..., ωm).
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Generalized Van Der Waerden-Schrijver like

inequalities(and conjectures):

the permanent is the mixed derivative(aka polarization)

of the product polynomial:

per(A) =
∂n

∂x1...∂xn
ProdA(0),

where ProdA(x1, ..., xn) = ∏
1≤i≤n

∑
1≤j≤nA(i, j)xj. The

mixed discriminant is the mixed derivative(aka polar-

ization) of the determinantal polynomial:

D(Q1, ..., Qn) =:
∂n

∂x1...∂xn
det(

∑
1≤j≤n

xjQj).

And the mixed volume is the mixed derivative of the

Minkowski(volume) polynomial.

Those observations had led to the following problem:

Given an evaluation oracle for a polynomial p ∈ Hom+(n, n),

to compute/approximate within relative error its mixed

derivative ∂n

∂x1...∂xn
p(0)... in poly(n, cmpl(p)) time, de-

terministic or randomized.
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Define the following two numbers:

C − Cap(p) = inf
RE(zi)>0

|p(z1, ..., zn)|∏
1≤i≤nRE(zi)

,

Cap(p) = inf
xi>0

|p(x1, ..., xn)|∏
1≤i≤n xi

Define also a sequence of polynomials(derivatives),

kind of “polynomial hierarchy”:

gn = p, qn−1 = [
p

xn
], ..., qi = [

p

xn...xi+1
], ...

Here the polynomial [ p
xn...xi+1

] = ∂n−i

∂xi+1...∂xn
p(x1, ..., xi, 0, ..., 0).

Always:

Cap(qn) ≥ Cap(qn−1) ≥ .... ≥ Cap(qi) ≥ ... ≥ [
p

xn...xi+1...x1
]

Note that per(A) = [ ProdA
xn...xi+1...x1

].

C−Cap(p) is “hard”, Cap(p) is “easy”(p ∈ Hom+(n, n)).

But if C − Cap(p) > 0(H-Stable polynomials)

then C − Cap(p) = Cap(p).
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The main result in this direction:

Suppose that p ∈ Hom(n, n) is H-Stable,

i.e. p(z1, ..., zn) 6= 0 if RE(zi) > 0, 1 ≤ i ≤ n, then

Cap(qi−1) ≥ G(degqi(i))Cap(qi), where

G(k) =
k − 1

k


k−1

Here degp(i) is the degree of ith variable in the poly-

nomial p.

It is easy to see that

degqi(i) ≤ min(i, degqn ({n, ..., i})−n+i) ≤ min(i, degqn(i)).

Moreover in the H-Stable case , given an evaluation

oracle for p = qn, the degrees degqi(i) can be computed

in poly-time via submodular minimization.
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This theory is powerful, cool, easy to understand and

to teach!!! The simplicity(and the power) is achieved

by giving up the matrix structure. The same happened

in the spectacular proof of Kadison-Singer...

Yet, when applied to the permanent it gives a poly-

time deterministic algorithm with the factor en−k log(n)

for any fixed k (the same factor for the mixed discrim-

inant and the mixed volume).

Essentially, the algorithm computes via the convex min-

imization Cap(qn−k log(n)).

To break en barrier we needed to get back to the

matrices/graphs. Not clear at all whether en barrier

can be broken for, say, the mixed discriminant.
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A few Notations

Ωn = The set of n×n Doubly Stochastic matrices, i.e.

of n × n non-negative matrices with row and column

sums all equal 1.

Λ(k, n) - the set of n × n matrices with non-negative

integer entries and row and column sums equal to k.

Note that k−1Λ(k, n) ⊂ Ωn.

Bool(k, n) ⊂ Λ(k, n) - the set of n × n boolean ma-

trices with non-negative integer entries and row and

column sums all equal to k.

Matrices from Λ(k, n) are adjacency matri-

ces of regular bipartite graphs with multiple

edges.

Note that 1
kBool(k, n) ⊂ 1

kΛ(k, n) ⊂ Ωn.
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Monomer-Dimer Problem, I will be talking

about

Definition 1:

1. α(m,n, k) =: minA∈Λ(k,n) perm(A).

2. Consider an integer sequence m(n) such that

m(n) ≤ n and limn→∞
m(n)
n = p ∈ [0, 1]:

β(p, k) =: lim
n→∞

log(α(m(n), n, k))

n
.

The problem is to compute (exactly) this thing β(p, k).

And the same problem for the boolean matrices.

The function β(p, k) is concave on [0, 1], moreover

β(p, k) + p log(p) is concave.
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If k = 1 things are simple:

A = I =



1 0 · · · 0
0 1 · · · 0
· · · · · · · · · · · ·
0 0 · · · 1


,

perm(I) =
(
n
m

)
and if limn→∞

m
n = p ∈ [0, 1] then

limn→∞
log((nm))

n = −(p log(p) + (1− p) log(1− p)).
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A, sort of, Concentration Conjecture

The idea, which goes back to Wilf[1966](credits Mark(Marek)

Kac) and Schrijver-Valiant[1981]: replace the minimum

by the average over some natural distribution on Λ(k, n).

Herbert Wilf’s distribution: P1 + ... + Pk, Pi are IID

uniformly distributed permutation matrices.

AV P (m,n, k) =: Eµ(k,n)perm(A);A ∈ Λ(k, n).

Schrijver-Valiant distribution: fix some equi-partition

∪1≤i≤nSi = [1, kn], where |Si| = k, 1 ≤ i ≤ n. Take a

random permutation σ ∈ Skn and construct the inter-

section matrix {A(i, j) = |Si ∪ σ(Sj)| : 1 ≤ i, j ≤ n}.

Define, assuming that m(n)
n → p ∈ [0, 1],

AAV P (p, k) =: lim
n→∞

log(AV P (m(n), n, k))

n
, p ∈ [0, 1].

Can be computed exactly:

AAV P (p, k) = p log

k
p

−2(1−p) log(1−p)+(k−p) log(1−p
k

)
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Conjecture 2: [Friedland≤ 2002-2005, most likely

had been stated somewhere a while ago.] The asymp-

totic exponential growth of the minimum is the same

as of the average:

β(p, k) = AAV P (p, k).

Conjecture 3: [Lu-Mohr-Szekely,2011] Let A ∈ Ωn.

Then the following (positive correlation) ineq. holds?

per(A) ≥ S(A)

S(A) =:
∏

1≤i≤n

∑
1≤j≤n

A(i, j)
∏
k 6=i

(1− A(k, j))
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Theorem 4 : Let A ∈ Ωn. Then the following

(new) inequalities hold:

per(A) ≥ F (A) =:
∏

1≤i,j≤n
(1− A(i, j))1−A(i,j); (1)

(Note that S(A) ≥ F (A), A ∈ Ωn.)

per(A) ≤ Cn ∏
1≤i,j≤n

(1− A(i, j))1−A(i,j), (2)

where C = max0≤x≤1
x

f−1(x)
e1−x

(1−x)1−x,

f (x) = 1 − (1 − x)ax, and 1 < a < e is the unique

solution of the equation − log(ae) = a
e.

We prove that C ≤ 2, but numerics give that C ≈

1.9022. Note the similarity of the definition of C with

the approximation constant in Goemans-Williamson al-

gorithm.
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This gives deterministic poly-time algorithm to ap-

proximate the permanent of general n×n nonnegative

matrices within the relative factor 1.9022n:

Step 1. Preprocessing, get so called indecomposable

ni × ni matrices Bi,
∑
i ni = n, such that

per(A) =
∏
i
per(Bi).

Step 2. Scale Bi to doubly-stochastic matrices

Bi ≈ Diag1,iDiDiag2,i, Di ∈ Ωni.

This step is based on STOC-98 paper by Linial, Samorod-

nitsky and Wigderson.

Step 3. Output

Est(per(A)) =
∏
i

det(Diag1,iDiag2,i)
∏
i
F (Di).
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Previous Conjectures or Questions

1. minA∈Ωn per(A) = per(1
nJn,n) = n!

nn

Van der Waerden (1926): Bang-Friedland(1977-78)-≥

e−n, Falikman(1979-1981),

Egorychev(1980-1981).

2. The case p = 1:

min
A∈Λ(k,n)

per(A) =?

Voorhove, 1980, k = 3; ≥ 6
(

4
3

)n−3
;

Schrijver,1998: ≥
k (

k−1
k

)k−1
n

L.G,2005: ≥ kn k!
kk

(
k−1
k

)(k−1)(n−k)
”hyperbolic polyno-

mials approach”, actually a vast generalization, goes

far beyond permanents.

3. minA∈Bool(k,n) per(A) =?

Exact values are known only for k = 2 or

k = n, n− 1, n− 2.

4. Friedland’ Conjecture holds for p = k
k+s, s = 0, 1, ...:
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Friedland-Gurvits [2006-2008], the second application

of my ”hyperbolic polynomials approach”.
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A story: in the beginning there was the

Scaling.

Let A be n× n non-negative matrix.

ri is the sum of ith row, cj is the sum of jth column.

R(A) = Diag( 1
r1
, ..., 1

rn
)A;C(A) = ADiag( 1

c1
, ..., 1

cn
).

The Scaling(many names for it) Algorithm :

...RCR(A)

When does it converge and to what limit?
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KLD(Q,A) = ∑
1≤i,j≤nQ(i, j) log

(
Q(i,j)
A(i,j)

)

The algorithm converges iff there exists a doubly stochas-

tic Q such that KLD(Q,A) is defined:

Supp(Q) ⊂ Supp(A). Which is equivalent to the pos-

itivity of the permanent: per(A) > 0. In this case the

limit is a doubly stochastic P :

KLD(P,A) = min
Q∈Ωn

KLD(Q,A).

Moreover the minimum is unique, it has the largest

support,

and if Supp(Q) = Supp(A) then

A = Diag(a1, ..., an)PDiag(b1, ..., bn);

−KLD(P,A) =
∑

1≤i≤n
log(ai) + log(bi).

Van Der Waerden Conjecture implies that

n!
nn = minQ∈Ωn per(Q) ≤ per(A)∏

1≤i≤n aibi
≤ maxQ∈Ωn per(Q).

max
Q∈Ωn

per(Q) = 1
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Essentially: convex relaxations of log(per(A)).

The Sinkhorn’s (matrix structure is respected!):

per(A) ≤ log(
∏
i
ai ·

∏
j
bj) = max

B∈Ωn

∑
1≤i,j≤i,j

bi,j log(
ai,j
bi,j

)

(3)

The “polynomial hierarchy” (matrix structure is lost!):

log(
∏
i
ai ·

∏
j
bj) = log(Cap(ProdA)), (4)

Cap(p) = inf
xi>0

p(x1, ..., xn)

x1...xn
.

Define a sequence of polynomials

gn = p, qn−1 = [
p

xn
], ..., qi = [

p

xn...xi+1
], ...

Here the polynomial [ p
xn...xi+1

] = ∂n−i

∂xi+1...∂xn
p(x1, ..., xi, 0, ..., 0).

Always:

Cap(qn) ≥ Cap(qn−1 ≥ .... ≥ Cap(qi) ≥ ...[
p

xn...xi+1...x1
].

Note that per(A) = [ ProdA
xn...xi+1...x1

].
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The main result in this direction:

Suppose that p ∈ Hom(n, n) is H-Stable,

i.e. p(z1, ..., zn) 6= 0 if RE(zi) > 0, 1 ≤ i ≤ n, then

Cap(qi−1) ≥ G(degqi(i))Cap(qi), where

G(k) =
(
k−1
k

)k−1
.

Here degp(i) is the degree of ith variable in the poly-

nomial p.

It is easy to see that

degqi(i) ≤ min(i, degqn ({n, ..., i})−n+i) ≤ min(i, degqn(i)).

Moreover in the H-Stable case , given an evaluation

oracle for p = qn, the degrees degqi(i) can be computed

in poly-time via submodular minimization.

24



Bethe Approximation.

Define for a pair (A,Q) of non-negative matrices the

following functional CW (Q,A) as

∑
1≤i,j≤n

log(1−Q(i, j))(1−Q(i, j))+
∑

1≤i,j≤n
Q(i, j) log

A(i, j)

Q(i, j)

 .

Theorem 5:

log(per(A)) ≥ max
Q∈Ωn

CW (Q,A)(≥ CW (P,A)∀P ∈ Ωn)

(5)

Corollary 6: If A ∈ Ωn then

per(A) ≥ F (A) =:
∏

1≤i,j≤n
(1− A(i, j))1−A(i,j). (6)

Theorem (5) has been conjectured(stated without a

proof) by Pascal Vontobel in 2010. Was motivated by

numerical evidences (Chertkov, Watanabe, Huang, Je-

bara, ...) and some simple examples.
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Theorem (5) is (essentially) equivalent to the follow-

ing Schrijver’s inequality(1998):

per(Ã) ≥ ∏
1≤i,j≤n

(1− A(i, j));A ∈ Ωn; (7)

where Ã(i, j) =: A(i, j)(1 − A(i, j)), 1 ≤ i, j ≤ n.

Very HARD PROOF!

Most of reseachers in the area know the famous corol-

lary of (7):

per(A) ≥ knG(k)n, (8)

where A ∈ Λ(k, n) and G(k) =
(
k−1
k

)k−1
.

My proofs of improved, generalized(non-regural, mixed

discriminants, etc.) versions of (8) are just simple, pe-

riod.

Very fortunate that they have appeared after Schrijver’s

1998 paper!
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Conjecture 7: If A ∈ Ωn then

F (A)

per(A)
≤ (
√

2)n.

If true it would provide a deterministic poly-time al-

gorithm to approximate the permanent with the factor

(
√

2)n.

There are several versions of this conjecture, it is true,

for instance, for regular graphs, i.e. for A ∈ 1
kΛ(k, n).
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Expressing perm and the matching

polynomial as a Single Permanent

Define the following 2n−m× 2n−m matrix

B =

 A Jn,n−m
(Jn,n−m)T 0

 .

Then

perm(A) = ((n−m)!)−2per(B).

So, there is FPRAS for perm(A), A ≥ 0.

Yet, there are situations (planar graphs, for example)

when per(A) is easy, but perm(A) is hard.

The matching polynomialMA(x) = (n!)−1per(C), where

C = (−1)n
 −xA I
Jn,n Jn,n

 .
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MSS-2013: Matching polynomials and the

existence of Ramunujan bipartite graphs of

an arbitrary degrees

Another expression for the matching polynomial, A is

a boolean matrix:

MA(x) = E±(Det(xI − A±AT
±), where

A±(i, j) = A(i, j)b(i, j), b(i, j) are IID with

Prob(b(i, j) = 1) = Prob(b(i, j) = −1) =
1

2
.

Heilmann-Lieb, Theory of monomer-dimer sys-

tems,1972 :

the roots of the matching polynomial MA(x) are real;

If A ∈ Bool(d, n) then the roots of MA(x2) are in

[−2
√
d− 1, 2

√
d− 1]...Alon-Boppana.....
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Kadison-Singer Problem: given independent ran-

dom rank one matrices XiX
∗
i , Xi ∈ Cn such that

∑
iE (XiX

∗
i ) = I and maxi tr (E(XiX

∗
i )) = ε.

Define the mixed characteristic polynomial(a gener-

alization of the bipartite matching polynomial):

p(x) = E
det(xI − ∑

i
XiX

∗
i )

 .

What is needed is a generalization of Heilmann-Lieb

bound.

MSS-2013: the roots are bounded by (1 +
√
ε)2.

In the Ramunujan graphs context: Xi = (Aei)±–ith

column of A with random signs.
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A Proof of Friedland’s Conjecture

Let A ∈ Λ(k, n). Consider the following 2n − m ×

2n−m matrix:

K =

 aA bJn,n−m
(bJn,n−m)T 0

 , (9)

where a = p
k, p = m

n , b = 1
n, and Jn,n−m is n× (n−m)

matrix of all ones.

It is easy to check that this matrixK is doubly-stochastic.

Importantly, the following identity holds:

perm(A) =
per(K)

amb2(n−m)((n−m)!)2
. (10)

Now, just apply the new lower bound

per(K) ≥ ∏
1≤i,j≤2n−m

(1−K(i, j))1−K(i,j), (11)

and play a bit with the Stirling Formula. Still can’t

believe it worked out!
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A Disproof of [Lu-Mohr-Szekely] Conjecture

The initial observation: Consider A ∈ Bool(k, n)

and construct the doubly-stochastic matrix K. For this

matrix K our (proved!) lower bound

F (K) =
∏

1≤i,j≤n
(1−K(i, j))1−K(i,j)

and [L-M-S] conjectured lower bound S(K) can be

computed explicitely and they are constant for fixed

k, n,m. The direct inspection shows that F (K) is

asymptotically ”close” to the average of per(K) over

random A ∈ Bool(k, n)(actually required a bit of ex-

tra care: the average was known only for random A ∈

Λ(k, n)).
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On the other hand S(K) happened to be far above

the average for large enough n. This gave the existence

of a doubly-stochastic K such that per(K) < S(K) by

a standard probabilistic argument. And it works for all

densities limn→∞
m
n = 0 < p < 1. But not for p = 1 or

p = 0!
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The simplification(initially overlooked): the

idea works even for k = 1. In this case there is no

need for the averaging for there is, up to permutations

of columns and rows, only one 1-regular matrix. I have

choosen p = .5, and it resulted in 135 × 135 counter-

example:

K =


1
2I90

1
90J90,45

( 1
90J90,45)T 0


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A Probabilistic Interpretation of the

permanent and the product polynomial

Let A be n × n stochastic matrix, i.e. the rows of A

are probabilistic distributions on {1, ..., n};

(e1, ..., en) is the standard basis inRn: e1 = (1, 0, ..., 0), ...

Let V =: (V1, ..., Vn) be a n-tuple of independent ran-

dom vectors: Prob(Vi = ek) = A(i, k); 1 ≤ i, k ≤ n.

The distribution of the sum V1 + ...+Vn coincides with

the vector of the coefficients of the product polynomial

ProdA(x1, ..., xn) =
∏

1≤i≤n

∑
1≤j≤n

A(i, j)xj,

i.e. the probability Prob(V1 + ... + Vn = (ω1, ..., ωn))

is the coefficient aω1,...,ωn of the monomial ∏
1≤i≤n x

ωi
i in

the polynomial ProdA. In particular, considering the

monomial x1 . . . xn

per(A) =
∂n

∂x1...∂xn
ProdA(0) = Prob(V1+...+Vn = e),

(12)
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where e = (1, 1, ..., 1) is the vector of all ones.

Note that the expected value E(V1 + ... + Vn) =

(c1, ..., cn), where cj is the sum of the jth column of A.

Thus in the doubly-stochastic case:

the expectation E(W ) = (1, 1, ..., 1),W =: V1+...+Vn

and the covariance matrix

E(WW T )− E(W )E(W )T = I − ATA.

per(A) = Prob(V1 + ... + Vn = E(V1 + ... + Vn)) =

= Prob(||V1 + ... + Vn − E(V1 + ... + Vn)||22 < 2),

and the lower bounds on the permanent of doubly-

stochastic matrices can be viewed as concentration in-

equalities for sums of independent random vectors. This

interpretation raises a number of natural questions...CLT...
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Define the following n events:

NEi = {(V1, ..., Vn) : Vi 6∈ {Vj, j 6= i}}; 1 ≤ i ≤ n.

Equivalent representation of the permanent of doubly-

stochastic A:

per(A) = Prob(∩1≤i≤nNEi). (13)

[Lu, Mohr, Szekely; 2011] noticed that Prob(NEi) =
∑

1≤j≤nA(i, j) ∏k 6=i(1−A(k, j) and conjectured the fol-

lowing beautiful positive correlation inequality for doubly-

stochastic matrices A ∈ Ωn:

per(A) ≥ S(A) =:
∏

1≤i≤n
Prob(NEi) =

=
∏

1≤i≤n

∑
1≤j≤n

A(i, j)
∏
k 6=i

(1− A(k, j))?

Another, Sidak-like, correlation conjecture:

per(A) = Prob(∩1≤j≤n{|(V1 + ...+ Vn)j − 1| < 1}) ≥

SID(A) =: ∏1≤j≤n Prob({|(V1 + ...+Vn)j− 1| < 1})?
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Why I called the Sidak-like: if (ξ1, ..., ξn) is a Gaus-

sian Vector with zero mean, i.e. its density

p(x1, ..., xn) = (2π)−n/2
√
det(Q−1)exp

(
−1

2 < Q−1X,X >
)

then Prob(∩1≤j≤n{|ξj| ≤ ai}) ≥ ∏
1≤j≤n Prob({|ξj| ≤

ai}).
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Why this new lower bound is so amazing?

If A ∈ Ωn then per(A) ≥ F (A) ≥ G(n)n > e−n,

where G(k) =
(
k−1
k

)k−1
:

just a bit worse than the Falikman-Egorychev exact

lower bound n!
nn .

Assume that A has at most k nonzero entries in each

column. Then:

per(A) ≥ F (A) ≥ G(k)n. Implies the following in-

equality for matrices B ∈ Λ(k, n):

per(B) = knper(
1

k
B) ≥ (kG(k))n.

This is the celebrated Schrijver’s result [1998].
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Let |col(j)| be the number of non-zero entries in jth

column.

Theorem 8: [2005 arxiv; 2006 STOC, 2008 EJC].

If A is a doubly-stochastic n× n matrix then

Per(A) ≥ ∏
2≤j≤n

G(min(|col(j)|, j)) ≥ ∏
2≤i≤n

G(j) =
n!

nn
.

My ”hyperbolic polynomials based” lower bound is stronger,

much more general, easy to prove, can be even applied

to the Mixed Volume.

Schrijver’s proof is very, very hard; ”frightening tech-

nicalities”, very narrow specialized to the permanent.

Yet, he proved much more and fortunatelly! clearly

stated that:

per(Ã) ≥ ∏
1≤i,j≤n

(1− A(i, j));

where Ã(i, j) =: A(i, j)(1− A(i, j)), 1 ≤ i, j ≤ n

and A is doubly-stochastic.
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A way to fix Sidak-like corellation inequality

Let p ∈ Hom+(n, n) be H-Stable and doubly-stochastic,

i.e. p(z1, ..., zn) 6= 0 if RE(zi) > 0, 1 ≤ i ≤ n and

∂
∂xi
p(1, 1, ..., 1) = 1, 1 ≤ i ≤ n.

Define pi ∈ Hom+(n− 1, n− 1),

pi =
∂

∂xi
p(xi = 0;xj, j 6= i); 1 ≤ i ≤ n.

Also define Cap(p) = infxi>0
p(x1,...,xn)∏

1≤i≤n xi
.

Conjecture 9:

∂n

∂x1...∂xn
p(0) ≥ ∏

1≤i≤n
Cap(pi)?

The (generally wrong) Sidak-like inequality:

∂n

∂x1...∂xn
p(0) ≥ ∏

1≤i≤n
pi(en−1),

note that

pi(en−1) = pi(1, 1, ..., 1) ≥ Cap(pi) = infxj>0,j 6=i
p(xj>0,j 6=i)∏

j 6=i xj
.
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Another conjecture: the same H-Stable and doubly-

stochastic polynomial p ∈ Hom+(n, n).

Define rt(i, j) as the jth root of the unvariate poly-

nomial p(te− ei), where e = e1 + ...+ en is the vector

of all ones.

Conjecture 10:

∂n

∂x1...∂xn
p(0) ≥ ∏

1≤i,j≤n
(1− rt(i, j))1−rt(i,j)
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Why this conjecture (9) is interesting?

Let A ∈ Ωn and define the following H-Stable and

doubly-stochastic polynomial:

ProdA(x1, ..., xn) = ∏
1≤i≤n

∑
1≤j≤nA(i, j)xj.

Then the following (elementary log-concavity reason-

ing) inequality holds:

Cap((ProdA)j) ≥
∏

1≤i≤n
(1− A(i, j))1−A(i,j).

So, it will give a hyperbolic proof and generalization of

the main new lower bound per(A) ≥ F (A);

will give better algorithms for the mixed discriminant

and, possibly, for the mixed volume.
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