Short Proofs are Hard to Find

lan Mertz

University of Toronto
Joint work w/ Toni Pitassi, Hao Wei

IAS, December 5, 2017

Proof complexity

```
*54.43. 卜: \(\alpha, \beta \in 1 . \supset: \alpha \cap \beta=\Lambda . \equiv . \alpha \cup \beta \in 2\)
    Dem.
    ト. *5 4 -26. วト: \(\alpha=\iota^{\prime} x . \beta=\iota^{\prime} y\). Ј: \(\alpha \cup \beta \in 2 . \equiv . x \neq y\).
    [*51-231] \(\quad \equiv . t^{f} x \cap \iota^{f} y=\Lambda\).
[*13•12] \(\equiv . \alpha \cap \beta=\Lambda\)
ト.(1).*11.11.35.)
        \(\vdash: \cdot\left(\mathrm{g}^{x}, y\right), \alpha=\iota^{\boldsymbol{f}} x \cdot \beta=\iota^{\prime} y, \supset: \alpha \cup \beta \in 2 . \equiv . \alpha \cap \beta=\Lambda\)
        ト.(2).*11.54.*52'1. วト. Prop
```

From this proposition it will follow，when arithmetical addition has been defined，that $1+1=2$ ．

Proof complexity

```
*5443. 卜: \(\alpha, \beta \in 1 . \supset: \alpha \cap \beta=\Lambda . \equiv . \alpha \cup \beta \in 2\)
    Dem.
    ト. *54 26. つト: \(\alpha=\iota^{\prime} x . \beta=\iota^{\prime} y\). Ј: \(\alpha \cup \beta \in 2 . \equiv . x \neq y\).
    [*51.231] \(\quad \equiv . t^{f} x \cap \iota^{f} y=\Lambda\).
    [*13•12] \(\equiv . \alpha \cap \beta=\Lambda\)
    ト.(1).*11-11.35.)
        \(\vdash: \cdot\left(\mathrm{g}^{x}, y\right), \alpha=\iota^{6} x \cdot \beta=\iota^{\prime} y, \supset: \alpha \cup \beta \in 2 . \equiv . \alpha \cap \beta=\Lambda\)
        \(\vdash\).(2).*11.54.*52-1 . วト. Prop
```

From this proposition it will follow，when arithmetical addition has been defined，that $1+1=2$ ．

How long is the shortest \mathcal{P}－proof of τ ？

Proof complexity

```
*5443. 卜: \(\alpha, \beta \in 1 . \supset: \alpha \cap \beta=\Lambda . \equiv . \alpha \cup \beta \in 2\)
    Dem.
    ト. \(* 54 \cdot 26\). วト: \(\alpha=\iota^{\prime} x . \beta=\iota^{\prime} y\). ว: \(\alpha \cup \beta \in 2 . \equiv . x \neq y\).
    [*51.231] \(\quad \equiv . t^{f} x \cap \iota^{f} y=\Lambda\).
    [*13•12] \(\equiv . \alpha \cap \beta=\Lambda\)
    ト.(1).*11-11.35.)
        \(\vdash: \cdot\left(\mathrm{g}^{x}, y\right), \alpha=\iota^{6} x \cdot \beta=\iota^{\prime} y, \supset: \alpha \cup \beta \in 2 . \equiv . \alpha \cap \beta=\Lambda\)
        \(\vdash\).(2).*11.54.*52-1 . วト. Prop
```

From this proposition it will follow，when arithmetical addition has been defined，that $1+1=2$ ．

How long is the shortest \mathcal{P}－proof of τ ？

Can we find short \mathcal{P}－proofs of τ ？

Proof complexity

```
*5443. 卜: \(\alpha, \beta \in 1 . \supset: \alpha \cap \beta=\Lambda . \equiv . \alpha \cup \beta \in 2\)
    Dem.
    ト. \(* 54-26\). วト: \(\alpha=\iota^{\prime} x . \beta=\iota^{\prime} y\). ว: \(\alpha \cup \beta \in 2 . \equiv . x \neq y\).
    [*51.231] \(\quad \equiv . t^{f} x \cap \iota^{f} y=\Lambda\).
    [*13•12] \(\equiv . \alpha \cap \beta=\Lambda\)
    ト.(1).*11-11.35.)
        \(\vdash: \cdot\left(\mathrm{g}^{x}, y\right), \alpha=\iota^{6} x \cdot \beta=\iota^{\boldsymbol{c}} y . \supset: \alpha \cup \beta \in 2 . \equiv . \alpha \cap \beta=\Lambda\)
        \(\vdash\).(2).*11.54.*52-1 . วト. Prop
```

From this proposition it will follow，when arithmetical addition has been defined，that $1+1=2$ ．

How long is the shortest \mathcal{P}－proof of τ ？

Can we find short \mathcal{P}－proofs of τ ？

Proof systems

Propositional proof system [Cook-Reckhow]

A propositional proof system is an onto map from proofs to tautologies checkable in polynomial time.

Proof systems

Propositional proof system [Cook-Reckhow]
A propositional proof system is an onto map from refutations to unsatisfiable formulas checkable in polynomial time.

Proof systems

Propositional proof system [Cook-Reckhow]
A propositional proof system is an onto map from refutations to unsatisfiable formulas checkable in polynomial time.

Polynomially-bounded PPS [Cook-Reckhow]
A PPS \mathcal{P} is polynomially bounded if for every unsatisfiable k-CNF τ with n variables and $\operatorname{poly}(n)$ clauses $(k=O(\log n))$, there exists a \mathcal{P}-proof π such that $|\pi| \leq \operatorname{poly}(n)$.

Proof systems

Propositional proof system [Cook-Reckhow]
A propositional proof system is an onto map from refutations to unsatisfiable formulas checkable in polynomial time.

Polynomially-bounded PPS [Cook-Reckhow]
A PPS \mathcal{P} is polynomially bounded if for every unsatisfiable k-CNF τ with n variables and poly (n) clauses $(k=O(\log n))$, there exists a \mathcal{P}-proof π such that $|\pi| \leq \operatorname{poly}(n)$.

Theorem (Cook-Reckhow)
$N P=$ coNP iff there exists a polynomially-bounded PPS

Resolution

Relations between proof systems

Automatizability

Automatizability [Bonet-Pitassi-Raz]

A proof system \mathcal{P} is automatizable if there exists an algorithm A: UNSAT $\rightarrow \mathcal{P}$ that takes as input τ and returns a \mathcal{P}-refutation of τ in time poly (n, S), where $S:=S_{\mathcal{P}}(\tau)$.

Automatizability

Automatizability [Bonet-Pitassi-Raz]

A proof system \mathcal{P} is f-automatizable if there exists an algorithm A : UNSAT $\rightarrow \mathcal{P}$ that takes as input τ and returns a \mathcal{P}-refutation of τ in time $f(n, S)$, where $S:=S_{\mathcal{P}}(\tau)$.

Automatizability

Automatizability [Bonet-Pitassi-Raz]

A proof system \mathcal{P} is f-automatizable if there exists an algorithm A: UNSAT $\rightarrow \mathcal{P}$ that takes as input τ and returns a \mathcal{P}-refutation of τ in time $f(n, S)$, where $S:=S_{\mathcal{P}}(\tau)$.

Automatizability is connnected to many problems in computer science...

- theorem proving and SAT solvers
([Davis-Putnam-Logemann-Loveland], [Pipatsrisawat-Darwiche])
- algorithms for PAC learning ([Kothari-Livni],
[Alekhnovich-Braverman-Feldman-Klivans-Pitassi])
- algorithms for unsupervised learning ([Bhattiprolu-Guruswami-Lee])
- approximation algorithms (many works...)

Known automatizability results

- any polynomially bounded PPS is not automatizable if NP $\nsubseteq \mathrm{P} /$ poly ([Ajtai]; [Impagliazzo],[BPR])

Known automatizability results

- any polynomially bounded PPS is not automatizable if NP $\nsubseteq \mathrm{P} /$ poly ([Ajtai]; [Impagliazzo],[BPR])
- approximating $S_{\mathcal{P}}(\tau)$ to within $2^{\log ^{1-o(1)} n}$ is NP-hard ([Alekhnovich-Buss-Moran-Pitassi])

Known automatizability results

- any polynomially bounded PPS is not automatizable if NP $\nsubseteq \mathrm{P} /$ poly ([Ajtai]; [Impagliazzo],[BPR])
- approximating $S_{\mathcal{P}}(\tau)$ to within $2^{\log ^{1-o(1)} n}$ is NP-hard ([Alekhnovich-Buss-Moran-Pitassi])
- lower bounds against strong (Frege/Extended Frege) systems under cryptographic assumptions ([Bonet-Domingo-Gavaldà-Maciel-Pitassi],[BPR],[Krajíček-Pudlák])

Known automatizability results

- first lower bounds against automatizability for Res, TreeRes by [Alekhnovich-Razborov]

Known automatizability results

- first lower bounds against automatizability for Res, TreeRes by [Alekhnovich-Razborov]
- extended to Nullsatz, PC by [Galesi-Lauria]

Known automatizability results

- first lower bounds against automatizability for Res, TreeRes by [Alekhnovich-Razborov]
- extended to Nullsatz, PC by [Galesi-Lauria]

Rest of this talk: a new version of $[A R]+[G L]$

- simplified
- stronger lower bounds (near quasipolynomial)
- works for more systems (Res, TreeRes, Nullsatz, PC, Res(k))

Our results

Theorem (Main Theorem for GapETH)
Assuming GapETH, \mathcal{P} is not $n^{\tilde{\tilde{o}}(\log \log S)}$-automatizable for $\mathcal{P}=$ Res, TreeRes, Nullsatz, PC.

Theorem (Main Theorem for ETH)
Assuming ETH, \mathcal{P} is not $n^{\tilde{o}\left(\log ^{1 / 7-o(1)} \log S\right)}$-automatizable for $\mathcal{P}=$ Res, TreeRes, Nullsatz, PC.

Our results

Theorem (Main Theorem for GapETH)
Assuming GapETH, \mathcal{P} is not $n^{\tilde{o}(\log \log S)}$-automatizable for $\mathcal{P}=$ Res, TreeRes, Nullsatz, PC.

Known automatizability results

System	Assumption	Result	Ref
Any PPS	NP-hard	$2^{\log ^{1-o(1)} n}$	[ABMP]
Any poly PPS	NP $\nsubseteq \mathrm{P} /$ poly	superpoly (n, S)	[A]; [I],[BPR]
AC^{0}-Frege	Diffie-Hellman requires circuits of size $2^{n^{\epsilon}}$	superpoly (n, S)	[BDGMP]
Frege	Factoring Blum integers requires circuits of size $n^{\omega(1)}$	superpoly (n, S)	[BPR]
E. Frege	Discrete log is not in P/poly	superpoly (n, S)	[KP]
Res, TreeRes	$\mathrm{W}[\mathrm{P}] \neq \mathrm{FPT}$	superpoly (n, S)	[AR]
Nullsatz, PC	$\mathrm{W}[\mathrm{P}] \neq \mathrm{FPT}$	superpoly (n, S)	[GL]
Res, TreeRes, Nullsatz, PC	GapETH ETH	$\begin{aligned} & n^{\tilde{\Omega}(\log \log S)} \\ & n^{\tilde{\Omega}\left(\log ^{1 / 7-o(1)} \log S\right)} \end{aligned}$	this work

A note on width automatizability

Theorem (Observation)
If τ has a width d TreeRes or Res refutation, it can be found in time $n^{O(d)}$.
Proof: brute force (repeatedly resolve all pairs of available clauses)

A note on width automatizability

Theorem (Clegg-Edmonds-Impagliazzo)
If τ has a degree d Nullsatz or PC refutation, it can be found in time $n^{O(d)}$.

Proof: Groebner basis algorithm

A note on width automatizability

Theorem (Sherali-Adams; Shor, Parrilo-Lasserre)
If τ has a degree $d \mathrm{SA}$ or SoS refutation, it can be found in time $n^{O(d)}$.
Proof: linear/semidefinite programming

A note on width automatizability

Theorem (BP; CEI; SA; S, PL)
If τ has a width d TreeRes or Res refutation, it can be found in time $n^{O(d)}$. If τ has a degree d Nullsatz, PC, SA, or SoS refutation, it can be found in time $n^{O(d)}$.

Theorem (Bonet-Galesi; Lauria-Nordström, Atserias-Lauria-Nordström)
There exist τ such that $w_{\mathcal{P}}(\tau)=O(d)$ and $S_{\mathcal{P}}(\tau)=n^{\Omega(d)}$ for $\mathcal{P}=$ TreeRes, Res.
There exist τ such that $\operatorname{deg}_{\mathcal{P}}(\tau)=O(d)$ and $S_{\mathcal{P}}(\tau)=n^{\Omega(d)}$ for $\mathcal{P}=$ Nullsatz, PC, SA, SoS.

A note on width automatizability

Theorem (BP; CEI; SA; S, PL)
If τ has a width d TreeRes or Res refutation, it can be found in time $n^{O(d)}$. If τ has a degree d Nullsatz, PC, SA, or SoS refutation, it can be found in time $n^{O(d)}$.

Theorem (Bonet-Galesi; Lauria-Nordström, Atserias-Lauria-Nordström)
There exist τ such that $w_{\mathcal{P}}(\tau)=O(d)$ and $S_{\mathcal{P}}(\tau)=n^{\Omega(d)}$ for $\mathcal{P}=$ TreeRes, Res.
There exist τ such that $\operatorname{deg}_{\mathcal{P}}(\tau)=O(d)$ and $S_{\mathcal{P}}(\tau)=n^{\Omega(d)}$ for $\mathcal{P}=$ Nullsatz, PC, SA, SoS.

Important: does not mean that automatizability is resolved, because $S_{\mathcal{P}}=n^{O(d)}$ may not be tight.

A note on width automatizability

Theorem (Ben-Sasson-Wigderson) $w(\tau) \leq \log S(\tau)$ for TreeRes and $w(\tau) \leq \sqrt{n \log S(\tau)}$ for Res.

A note on width automatizability

Theorem (Ben-Sasson-Wigderson)
$w(\tau) \leq \log S(\tau)$ for TreeRes and $w(\tau) \leq \sqrt{n \log S(\tau)}$ for Res.

Theorem (BP)
TreeRes is $n^{O(\log S)}$-automatizable.
Res is $n^{O(\sqrt{n \log S})}$-automatizable.

A note on width automatizability

Theorem (Ben-Sasson-Wigderson)
$w(\tau) \leq \log S(\tau)$ for TreeRes and $w(\tau) \leq \sqrt{n \log S(\tau)}$ for Res.

Theorem (BP)
TreeRes is $n^{O(\log S)}$-automatizable.
Res is $n^{O(\sqrt{n \log S})}$-automatizable.
Nullsatz is $n^{O(\log S)}$-automatizable, no other upper bounds known.

Getting an automatizability lower bound

Recipe:

(1) Hard gap problem G
(2) Turn an instance of G into a tautology τ such that

- "yes" instances have small proofs
- "no" instances have no small proofs
(3) Run automatizing algorithm Aut on τ and see how long the output is

Getting an automatizability lower bound

Recipe:

(1) Hard gap problem G
(2) Turn an instance of G into a tautology τ such that

- "yes" instances have small proofs
- "no" instances have no small proofs
(3) Run automatizing algorithm Aut on τ and see how long the output is

Gap hitting set

- $\mathcal{S}=\left\{S_{1} \ldots S_{n}\right\}$ over [$\left.n\right]$
- hitting set: $H \subseteq[n]$ s.t. $H \cap S_{i} \neq \emptyset$ for all $i \in[n]$
- $\gamma(\mathcal{S})$ is the size of the smallest such H
- Gap hitting set: given \mathcal{S}, distinguish whether $\gamma(\mathcal{S}) \leq k$ or $\gamma(\mathcal{S})>k^{2}$

Theorem (CCKLMNT)
Assuming GapETH the gap hitting set problem cannot be solved in time $n^{\circ(k)}$ for $k=\tilde{O}(\log \log n)$

Getting an automatizability lower bound

Recipe:

(1) Hard gap problem G
(2) Turn an instance of G into a tautology τ such that

- "yes" instances have small proofs
- "no" instances have no small proofs
(3) Run automatizing algorithm Aut on τ and see how long the output is

From gap hitting set to automatizability

Theorem (Main Technical Lemma)
For $k=\tilde{O}(\log \log n)$, there exists a polytime algorithm mapping \mathcal{S} to $\tau_{\mathcal{S}}$ s.t.

- if $\gamma(\mathcal{S}) \leq k$ then $S_{\mathcal{P}}\left(\tau_{\mathcal{S}}\right) \leq n^{O(1)}$
- if $\gamma(\mathcal{S})>k^{2}$ then $S_{\mathcal{P}}\left(\tau_{\mathcal{S}}\right) \geq n^{\Omega(k)}$ where $\mathcal{P} \in\{$ TreeRes, Res, Nullsatz, PC $\}$.

Getting an automatizability lower bound

Recipe:

(1) Hard gap problem G
(2) Turn an instance of G into a tautology τ such that

- "yes" instances have small proofs
- "no" instances have no small proofs
(3) Run automatizing algorithm Aut on τ and see how long the output is

Proof of main theorem

Theorem (Main Theorem)
Assuming GapETH, \mathcal{P} is not $n^{\tilde{0}(\log \log S)}$-automatizable.
Proof: Let Aut be the automatizing algorithm for \mathcal{P} running in time $f(n, S)=n^{\tilde{o}(\log \log S)}$, and let $k=\tilde{\Theta}(\log \log n)$.

Proof of main theorem

Theorem (Main Theorem)
Assuming GapETH, \mathcal{P} is not $n^{\tilde{o}(\log \log S)}$-automatizable.
Proof: Let Aut be the automatizing algorithm for \mathcal{P} running in time $f(n, S)=n^{\tilde{o}(\log \log S)}$, and let $k=\tilde{\Theta}(\log \log n)$.

Proof of main theorem

Theorem (Main Theorem)
Assuming GapETH, \mathcal{P} is not $n^{\tilde{o}(\log \log S)}$-automatizable.
Proof: Let Aut be the automatizing algorithm for \mathcal{P} running in time $f(n, S)=n^{\tilde{o}(\log \log S)}$, and let $k=\tilde{\Theta}(\log \log n)$.

Theorem (Main Technical Lemma)

- if $\gamma(\mathcal{S}) \leq k$ then $S \leq n^{O(1)}$
- if $\gamma(\mathcal{S})>k^{2}$ then $S \geq n^{\Omega(k)}$

Proof of main theorem

Theorem (Main Theorem)
Assuming GapETH, \mathcal{P} is not $n^{\tilde{o}(\log \log S)}$-automatizable.
Proof: Let Aut be the automatizing algorithm for \mathcal{P} running in time $f(n, S)=n^{\tilde{o}(\log \log n)}=n^{o(k)}$, and let $k=\tilde{\Theta}(\log \log n)$.

Theorem (Main Technical Lemma)

- if $\gamma(\mathcal{S}) \leq k$ then $S \leq n^{O(1)}$
- if $\gamma(\mathcal{S})>k^{2}$ then $S \geq n^{\Omega(k)}$

Proof of main theorem

Theorem (Main Theorem)
Assuming GapETH, \mathcal{P} is not $n^{\tilde{o}(\log \log S)}$-automatizable.
Proof: Let Aut be the automatizing algorithm for \mathcal{P} running in time $f(n, S)=n^{\tilde{o}(\log \log S)}$, and let $k=\tilde{\Theta}(\log \log n)$.

Theorem (Main Technical Lemma)

- if $\gamma(\mathcal{S}) \leq k$ then $S \leq n^{O(1)}$
- if $\gamma(\mathcal{S})>k^{2}$ then $S \geq n^{\Omega(k)}$

Proof of main theorem

Theorem (Main Theorem)
Assuming GapETH, \mathcal{P} is not $n^{\tilde{o}(\log \log S)}$-automatizable.
Proof: Let Aut be the automatizing algorithm for \mathcal{P} running in time $f(n, S)=n^{\tilde{o}(\log \log S)}$, and let $k=\tilde{\Theta}(\log \log n)$.

Theorem (CCKLMNT)
Assuming GapETH the gap hitting set problem cannot be solved in time $n^{o(k)}$ for $k=\tilde{O}(\log \log n)$

For the rest of the talk...

- fix $k=\tilde{\Theta}(\log \log n)$
- $m=n^{1 / k}(k \log m=\log n)$
- $k \leq \frac{\log m}{4}$

Detour: universal sets

- $A_{m \times m}$ is (m, q)-universal if for all $I \subseteq[m],|I| \leq q$, all $2^{|/|}$possible column vectors appear in A restricted to the rows I
- additional requirement: for all $J \subseteq[m],|J| \leq q$, all $2^{|J|}$ possible row vectors appear in A restricted to the columns J
- fix some such A as a gadget
 (constructions like the Paley graph work for $q=\frac{\log m}{4}$)

Defining $\tau_{\mathcal{S}}$

Defining $\tau_{\mathcal{S}}$

- $\operatorname{Mat}(\mathcal{S})_{n \times n}$ is the matrix whose columns are the indicator vectors of \mathcal{S}
- $\vec{x}=x_{1} \ldots x_{n}$ where $x_{i} \in\{0,1\}^{\log m}$ ($n \log m$ variables total), $\vec{y}=y_{1} \ldots y_{m}$ where $y_{j} \in\{0,1\}^{\log n}(m \log n$ variables total)
- $x_{i}=\alpha_{i} \rightarrow M_{\alpha}[i, j]=A\left[\alpha_{i}, j\right]$ (treat α_{i} as an element of $[m]$)
- $y_{j}=\beta_{j} \rightarrow N_{\beta}[i, j]=\operatorname{Mat}(\mathcal{S})\left[i, \beta_{j}\right]$ (treat β_{j} as an element of $[n]$)

Defining $\tau_{\mathcal{S}}$

$\tau_{\mathcal{S}}$ will state that there exist $\vec{\alpha}, \vec{\beta}$ such that there is no i, j where $M_{\alpha}[i, j]=N_{\beta}[i, j]=1$

Defining $\tau_{\mathcal{S}}$

$\tau_{\mathcal{S}}$ will state that there exist $\vec{\alpha}, \vec{\beta}$ such that there is no i, j where $M_{\alpha}[i, j]=N_{\beta}[i, j]=1$

Defining $\tau_{\mathcal{S}}$

$\tau_{\mathcal{S}}$ will state that there exist $\vec{\alpha}, \vec{\beta}$ such that there is no i, j where $M_{\alpha}[i, j]=N_{\beta}[i, j]=1$

- for every $i, j, \alpha_{i}, \beta_{j}$ such that $A\left[\alpha_{i}, j\right]=\operatorname{Mat}(\mathcal{S})\left[i, \beta_{j}\right]=1$,

$$
\overline{x_{i}^{\alpha_{i}} \wedge y_{j}^{\beta_{j}}}
$$

- all clauses have width $\log m+\log n$
- $n m 2^{\log n} 2^{\log m}=n^{2} m^{2}$ clauses

Defining $\tau_{\mathcal{S}}$

$\tau_{\mathcal{S}}$ will state that there exist $\vec{\alpha}, \vec{\beta}$ such that there is no i, j where $M_{\alpha}[i, j]=N_{\beta}[i, j]=1$

- for every $i, j, \alpha_{i}, \beta_{j}$ such that $A\left[\alpha_{i}, j\right]=\operatorname{Mat}(\mathcal{S})\left[i, \beta_{j}\right]=1$,

$$
\overline{x_{i}^{\alpha_{i}} \wedge y_{j}^{\beta_{j}}}
$$

- all clauses have width $\log m+\log n$
- $n m 2^{\log n} 2^{\log m}=n^{2} m^{2}$ clauses

Lemma

$\tau_{\mathcal{S}}$ is unsatisfiable when $\gamma(\mathcal{S}) \leq \frac{\log m}{4}$.

Defining $\tau_{\mathcal{S}}$

Lemma

$\tau_{\mathcal{S}}$ is unsatisfiable when $\gamma(\mathcal{S}) \leq \frac{\log m}{4}$.

Defining $\tau_{\mathcal{S}}$

Lemma

$\tau_{\mathcal{S}}$ is unsatisfiable when $\gamma(\mathcal{S}) \leq \frac{\log m}{4}$.
Proof: Let $H=\left\{i_{1} \ldots i_{\gamma}\right\}$ be a hitting set of size $\gamma:=\gamma(\mathcal{S})$.

Defining $\tau_{\mathcal{S}}$

Lemma

$\tau_{\mathcal{S}}$ is unsatisfiable when $\gamma(\mathcal{S}) \leq \frac{\log m}{4}$.
Proof: Let $H=\left\{i_{1} \ldots i_{\gamma}\right\}$ be a hitting set of size $\gamma:=\gamma(\mathcal{S})$. $\left\{\alpha_{i_{1}} \ldots \alpha_{i_{\gamma}}\right\}$ is a set of at most $\frac{\log m}{4}$ rows from $A\left(\gamma \leq \frac{\log m}{4}\right)$.

Defining $\tau_{\mathcal{S}}$

Lemma

$\tau_{\mathcal{S}}$ is unsatisfiable when $\gamma(\mathcal{S}) \leq \frac{\log m}{4}$.
Proof: Let $H=\left\{i_{1} \ldots i_{\gamma}\right\}$ be a hitting set of size $\gamma:=\gamma(\mathcal{S})$. $\left\{\alpha_{i_{1}} \ldots \alpha_{i_{\gamma}}\right\}$ is a set of at most $\frac{\log m}{4}$ rows from $A\left(\gamma \leq \frac{\log m}{4}\right)$. There exists some $j \in[m]$ such that $M_{\alpha}[i, j]=1$ for all $i \in H$ (universal property of A).

Defining $\tau_{\mathcal{S}}$

Lemma

$\tau_{\mathcal{S}}$ is unsatisfiable when $\gamma(\mathcal{S}) \leq \frac{\log m}{4}$.
Proof: Let $H=\left\{i_{1} \ldots i_{\gamma}\right\}$ be a hitting set of size $\gamma:=\gamma(\mathcal{S})$. $\left\{\alpha_{i_{1}} \ldots \alpha_{i_{\gamma}}\right\}$ is a set of at most $\frac{\log m}{4}$ rows from $A\left(\gamma \leq \frac{\log m}{4}\right)$. There exists some $j \in[m]$ such that $M_{\alpha}[i, j]=1$ for all $i \in H$ (universal property of A).
There must be some $i \in H$ such that $N_{\beta}[i, j]=1$ (H is a hitting set).

Defining $\tau_{\mathcal{S}}$

Lemma

$\tau_{\mathcal{S}}$ is unsatisfiable when $\gamma(\mathcal{S}) \leq \frac{\log m}{4}$.
Proof: Let $H=\left\{i_{1} \ldots i_{\gamma}\right\}$ be a hitting set of size $\gamma:=\gamma(\mathcal{S})$. $\left\{\alpha_{i_{1}} \ldots \alpha_{i_{\gamma}}\right\}$ is a set of at most $\frac{\log m}{4}$ rows from $A\left(\gamma \leq \frac{\log m}{4}\right)$. There exists some $j \in[m]$ such that $M_{\alpha}[i, j]=1$ for all $i \in H$ (universal property of A).
There must be some $i \in H$ such that $N_{\beta}[i, j]=1$ (H is a hitting set).
Therefore the axiom $\overline{x_{i}^{\alpha_{i}} \wedge y_{j}^{\beta_{j}}}$ is falsified.

Upper bound on $S_{\mathcal{P}}\left(\tau_{\mathcal{S}}\right)$

Lemma (Upper bound on $S_{\mathcal{P}}\left(\tau_{\mathcal{S}}\right)$)
If $\gamma(\mathcal{S}) \leq k$, then $S_{\mathcal{P}}\left(\tau_{\mathcal{S}}\right) \leq n^{O(1)}$ for any \mathcal{P} which p-simulates TreeRes.

Upper bound on $S_{\mathcal{P}}\left(\tau_{\mathcal{S}}\right)$

Lemma (Upper bound on $S_{\mathcal{P}}\left(\tau_{\mathcal{S}}\right)$)
If $\gamma(\mathcal{S}) \leq k$, then $S_{\mathcal{P}}\left(\tau_{\mathcal{S}}\right) \leq n^{O(1)}$ for any \mathcal{P} which p-simulates TreeRes.
Proof: TreeRes refutation of $\tau \leftrightarrow$ decision tree solving the search problem on τ

Upper bound on $S_{\mathcal{P}}\left(\tau_{\mathcal{S}}\right)$

Lemma (Upper bound on $S_{\mathcal{P}}\left(\tau_{\mathcal{S}}\right)$)
If $\gamma(\mathcal{S}) \leq k$, then $S_{\mathcal{P}}\left(\tau_{\mathcal{S}}\right) \leq n^{O(1)}$ for any \mathcal{P} which p-simulates TreeRes.
Proof: TreeRes refutation of $\tau \leftrightarrow$ decision tree solving the search problem on τ

- query all vars in x_{i} for all $i \in H$
- find the j with all 1 s
- query all vars in y_{j}

Upper bound on $S_{\mathcal{P}}\left(\tau_{\mathcal{S}}\right)$

Lemma (Upper bound on $S_{\mathcal{P}}\left(\tau_{\mathcal{S}}\right)$)
If $\gamma(\mathcal{S}) \leq k$, then $S_{\mathcal{P}}\left(\tau_{\mathcal{S}}\right) \leq n^{O(1)}$ for any \mathcal{P} which p-simulates TreeRes.
Proof: TreeRes refutation of $\tau \leftrightarrow$ decision tree solving the search problem on τ

- query all vars in x_{i} for all $i \in H$
- find the j with all 1 s
- query all vars in y_{j}

Size of the proof: $2^{k \log m+\log n}=n^{2}$

Lower bound on $S_{\mathcal{P}}\left(\tau_{\mathcal{S}}\right)$

- error-correcting codes:
$x_{i} \in\{0,1\}^{6 \log m}$,
$y_{j} \in\{0,1\}^{6 \log n}$

N_{β}

Lower bound on $S_{\mathcal{P}}\left(\tau_{\mathcal{S}}\right)$

- error-correcting codes:
$x_{i} \in\{0,1\}^{6 \log m}$,
$y_{j} \in\{0,1\}^{6 \log n}$
- $f_{x}:\{0,1\}^{6 \log m} \rightarrow$ $\{0,1\}^{\log m}$ is
$2 \log m$-surjective, $f_{y}:\{0,1\}^{6 \log n} \rightarrow\{0,1\}^{\log n}$ is $2 \log n$-surjective

Lower bound on $S_{\mathcal{P}}\left(\tau_{\mathcal{S}}\right)$

- error-correcting codes: $x_{i} \in\{0,1\}^{6 \log m}$, $y_{j} \in\{0,1\}^{6 \log n}$
- $f_{x}:\{0,1\}^{6 \log m} \rightarrow$ $\{0,1\}^{\log m}$ is
$2 \log m$-surjective, $f_{y}:\{0,1\}^{6 \log n} \rightarrow\{0,1\}^{\log n}$ is $2 \log n$-surjective
- high-level idea: π knows nothing about a row or column without setting lots of variables

N_{β}

Lower bound on $S_{\mathcal{P}}\left(\tau_{\mathcal{S}}\right)$
Lemma (Upper bound on $S_{\mathcal{P}}\left(\tau_{\mathcal{S}}\right)$)
If $\gamma(\mathcal{S}) \leq k$, then $S_{\mathcal{P}}\left(\tau_{\mathcal{S}}\right) \leq n^{O(1)}$ for any \mathcal{P} which p-simulates TreeRes.
Proof: TreeRes refutation of $\tau \leftrightarrow$ decision tree solving the search problem on τ

- query all vars in x_{i} for all $i \in H$

- find the j with all 1 s
- query all vars in y_{j}

Size of the proof:
$2^{6 k \log m+6 \log n}=n^{12}$

Lower bound on $S_{\mathcal{P}}\left(\tau_{\mathcal{S}}\right)$

Lemma (Lower bound on $S\left(\tau_{\mathcal{S}}\right)$)
If $\gamma(\mathcal{S})>k^{2}$, then $S_{\mathcal{P}}\left(\tau_{\mathcal{S}}\right) \geq n^{\Omega(k)}$.
Two steps:
(1) Width/degree lower bound
(2) Random restriction argument

Lower bound on $S_{\mathcal{P}}\left(\tau_{\mathcal{S}}\right)$

Lemma (Lower bound on $S\left(\tau_{\mathcal{S}}\right)$ for TreeRes)
If $\gamma(\mathcal{S})>k^{2}$, then $S_{\mathcal{P}}\left(\tau_{\mathcal{S}}\right) \geq n^{\Omega(k)}$ for $\mathcal{P}=$ TreeRes.
One step:
(1) Height lower bound

Lower bound on $S_{\mathcal{P}}\left(\tau_{\mathcal{S}}\right)$

To get height lower bounds, we play an adversarial game against π solving the search problem.

Lower bound on $S_{\mathcal{P}}\left(\tau_{\mathcal{S}}\right)$

To get height lower bounds, we play an adversarial game against π solving the search problem.

- path p in a TreeRes refutation π is a partial restriction to $\tau_{\mathcal{S}}$
- $I_{0}(p)=\left\{i \in[n] \mid p\right.$ contains at least $\log m$ literals from $\left.x_{i}\right\}$
- $J_{0}(p)=\left\{j \in[m] \mid p\right.$ contains at least $\log n$ literals from $\left.y_{j}\right\}$

Lower bound on $S_{\mathcal{P}}\left(\tau_{\mathcal{S}}\right)$

To get height lower bounds, we play an adversarial game against π solving the search problem.

- path p in a TreeRes refutation π is a partial restriction to $\tau_{\mathcal{S}}$
- $I_{0}(p)=\left\{i \in[n] \mid p\right.$ contains at least $\log m$ literals from $\left.x_{i}\right\}$
- $J_{0}(p)=\left\{j \in[m] \mid p\right.$ contains at least $\log n$ literals from $\left.y_{j}\right\}$

Lemma (Row/column height lower bound for TreeRes)
If $\gamma(\mathcal{S})>k^{2}$, then for every TreeRes refutation π for $\tau_{\mathcal{S}}, \pi$ contains a path p such that either $\left|I_{0}(p)\right| \geq k^{2}$ or $\left|J_{0}(p)\right| \geq k$.

Lower bound on $S_{\mathcal{P}}\left(\tau_{\mathcal{S}}\right)$

To get height lower bounds, we play an adversarial game against π solving the search problem.

- path p in a TreeRes refutation π is a partial restriction to $\tau_{\mathcal{S}}$
- $I_{0}(p)=\left\{i \in[n] \mid p\right.$ contains at least $\log m$ literals from $\left.x_{i}\right\}$
- $J_{0}(p)=\left\{j \in[m] \mid p\right.$ contains at least $\log n$ literals from $\left.y_{j}\right\}$

Lemma (Row/column height lower bound for TreeRes)
If $\gamma(\mathcal{S})>k^{2}$, then for every TreeRes refutation π for $\tau_{\mathcal{S}}, \pi$ contains a path p such that either $\left|I_{0}(p)\right| \geq k^{2}$ or $\left|J_{0}(p)\right| \geq k$.

Corollary (Height lower bound for TreeRes)
If $\gamma(\mathcal{S})>k^{2}$, then for every TreeRes refutation π for $\tau_{\mathcal{S}}, \pi$ has height at least $k \log n$.

Lower bound on $S_{\mathcal{P}}\left(\tau_{\mathcal{S}}\right)$

Lemma (Row/column height lower bound for TreeRes)
If $\gamma(\mathcal{S})>k^{2}$, then for every TreeRes refutation π for $\tau_{\mathcal{S}}, \pi$ contains a path p such that either $\left|I_{0}(p)\right| \geq k^{2}$ or $\left|J_{0}(p)\right| \geq k$.

Proof: We play an adversarial game against π solving the search problem.

Lower bound on $S_{\mathcal{P}}\left(\tau_{\mathcal{S}}\right)$

Lemma (Row/column height lower bound for TreeRes)
If $\gamma(\mathcal{S})>k^{2}$, then for every TreeRes refutation π for $\tau_{\mathcal{S}}, \pi$ contains a path p such that either $\left|I_{0}(p)\right| \geq k^{2}$ or $\left|J_{0}(p)\right| \geq k$.

Whenever π queries a variable in x_{i} :

- if p contains less than $\log m x_{i}$ variables ($i \notin I_{0}(p)$) we branch arbitrarily

Lower bound on $S_{\mathcal{P}}\left(\tau_{\mathcal{S}}\right)$

Lemma (Row/column height lower bound for TreeRes)
If $\gamma(\mathcal{S})>k^{2}$, then for every TreeRes refutation π for $\tau_{\mathcal{S}}, \pi$ contains a path p such that either $\left|I_{0}(p)\right| \geq k^{2}$ or $\left|J_{0}(p)\right| \geq k$.

Whenever π queries a variable in x_{i} :

- if this is the $\log m$ th variable in x_{i}, we choose some $a_{i} \in A$ such that $\left(a_{i}\right)_{j}=0$ for all $j \in J_{0}(p)\left(\left|J_{0}(p)\right|<k \leq \frac{\log m}{4}\right)$

Lower bound on $S_{\mathcal{P}}\left(\tau_{\mathcal{S}}\right)$

Lemma (Row/column height lower bound for TreeRes)
If $\gamma(\mathcal{S})>k^{2}$, then for every TreeRes refutation π for $\tau_{\mathcal{S}}, \pi$ contains a path p such that either $\left|I_{0}(p)\right| \geq k^{2}$ or $\left|J_{0}(p)\right| \geq k$.

Whenever π queries a variable in x_{i} :

- if this is the $\log m$ th variable in x_{i}, we choose some $a_{i} \in A$ such that $\left(a_{i}\right)_{j}=0$ for all $j \in J_{0}(p)\left(\left|J_{0}(p)\right|<k \leq \frac{\log m}{4}\right)$ and some assignment α_{i} consistent with p such that $f_{x}\left(\alpha_{i}\right)=a_{i}(p$ has only queried $\log m$ variables in x_{i} so far).

Lower bound on $S_{\mathcal{P}}\left(\tau_{\mathcal{S}}\right)$

Lemma (Row/column height lower bound for TreeRes)
If $\gamma(\mathcal{S})>k^{2}$, then for every TreeRes refutation π for $\tau_{\mathcal{S}}, \pi$ contains a path p such that either $\left|I_{0}(p)\right| \geq k^{2}$ or $\left|J_{0}(p)\right| \geq k$.

Whenever π queries a variable in x_{i} :

- if this is the $\log m$ th variable in x_{i}, we choose some $a_{i} \in A$ such that $\left(a_{i}\right)_{j}=0$ for all $j \in J_{0}(p)\left(\left|J_{0}(p)\right|<k \leq \frac{\log m}{4}\right)$ and some assignment α_{i} consistent with p such that $f_{x}\left(\alpha_{i}\right)=a_{i}(p$ has only queried $\log m$ variables in x_{i} so far). Store α_{i} and add i
 to $I_{0}(p)$.

Lower bound on $S_{\mathcal{P}}\left(\tau_{\mathcal{S}}\right)$

Lemma (Row/column height lower bound for TreeRes)
If $\gamma(\mathcal{S})>k^{2}$, then for every TreeRes refutation π for $\tau_{\mathcal{S}}, \pi$ contains a path p such that either $\left|I_{0}(p)\right| \geq k^{2}$ or $\left|J_{0}(p)\right| \geq k$.

Whenever π queries a variable in x_{i} :

- if $i \in I_{0}(p)$ we answer according to the stored α_{i}

Lower bound on $S_{\mathcal{P}}\left(\tau_{\mathcal{S}}\right)$

Lemma (Row/column height lower bound for TreeRes)
If $\gamma(\mathcal{S})>k^{2}$, then for every TreeRes refutation π for $\tau_{\mathcal{S}}, \pi$ contains a path p such that either $\left|I_{0}(p)\right| \geq k^{2}$ or $\left|J_{0}(p)\right| \geq k$.

Whenever π queries a variable in y_{j} :

- if p contains less than $\log n y_{j}$ variables $\left(j \notin J_{0}(p)\right)$ we branch arbitrarily

Lower bound on $S_{\mathcal{P}}\left(\tau_{\mathcal{S}}\right)$

Lemma (Row/column height lower bound for TreeRes)
If $\gamma(\mathcal{S})>k^{2}$, then for every TreeRes refutation π for $\tau_{\mathcal{S}}, \pi$ contains a path p such that either $\left|I_{0}(p)\right| \geq k^{2}$ or $\left|J_{0}(p)\right| \geq k$.

Whenever π queries a variable in y_{j} :

- if this is the $\log n$th variable in y_{j}, we choose some $S_{j} \in \operatorname{Mat}(\mathcal{S})$ such that $\left(S_{j}\right)_{i}=0$ for all $i \in I_{0}(p)$ $\left(\left|I_{0}(p)\right|<k^{2}<\gamma(\mathcal{S})\right)$

Lower bound on $S_{\mathcal{P}}\left(\tau_{\mathcal{S}}\right)$

Lemma (Row/column height lower bound for TreeRes)
If $\gamma(\mathcal{S})>k^{2}$, then for every TreeRes refutation π for $\tau_{\mathcal{S}}, \pi$ contains a path p such that either $\left|I_{0}(p)\right| \geq k^{2}$ or $\left|J_{0}(p)\right| \geq k$.

Whenever π queries a variable in y_{j} :

- if this is the $\log n$th variable in y_{j}, we choose some $S_{j} \in \operatorname{Mat}(\mathcal{S})$ such that $\left(S_{j}\right)_{i}=0$ for all $i \in I_{0}(p)$
$\left(\left|l_{0}(p)\right|<k^{2}<\gamma(\mathcal{S})\right)$ and some assignment β_{j} consistent with p such that $f_{y}\left(\beta_{j}\right)=S_{j}$ (p has only queried $\log n$ variables in y_{j} so
 far).

Lower bound on $S_{\mathcal{P}}\left(\tau_{\mathcal{S}}\right)$

Lemma (Row/column height lower bound for TreeRes)
If $\gamma(\mathcal{S})>k^{2}$, then for every TreeRes refutation π for $\tau_{\mathcal{S}}, \pi$ contains a path p such that either $\left|I_{0}(p)\right| \geq k^{2}$ or $\left|J_{0}(p)\right| \geq k$.

Whenever π queries a variable in y_{j} :

- if this is the $\log n$th variable in y_{j}, we choose some $S_{j} \in \operatorname{Mat}(\mathcal{S})$ such that $\left(S_{j}\right)_{i}=0$ for all $i \in I_{0}(p)$
$\left(\left|I_{0}(p)\right|<k^{2}<\gamma(\mathcal{S})\right)$ and some assignment β_{j} consistent with p such that $f_{y}\left(\beta_{j}\right)=S_{j}$ (p has only queried $\log n$ variables in y_{j} so
 far). Store β_{j} and add j to $J_{0}(p)$.

Lower bound on $S_{\mathcal{P}}\left(\tau_{\mathcal{S}}\right)$

Lemma (Row/column height lower bound for TreeRes)
If $\gamma(\mathcal{S})>k^{2}$, then for every TreeRes refutation π for $\tau_{\mathcal{S}}, \pi$ contains a path p such that either $\left|I_{0}(p)\right| \geq k^{2}$ or $\left|J_{0}(p)\right| \geq k$.

Whenever π queries a variable in y_{j} :

- if $j \in J_{0}(p)$ we answer according to the stored β_{j}

Lower bound on $S_{\mathcal{P}}\left(\tau_{\mathcal{S}}\right)$

Lemma (Lower bound on $S\left(\tau_{\mathcal{S}}\right)$ for Res)
If $\gamma(\mathcal{S})>k^{2}$, then $S_{\mathcal{P}}\left(\tau_{\mathcal{S}}\right) \geq n^{\Omega(k)}$ for $\mathcal{P}=$ Res.
Two steps:
(1) Width lower bound
(2) Random restriction argument

Lower bound on $S_{\mathcal{P}}\left(\tau_{\mathcal{S}}\right)$

Lemma (Wide clause lemma for Res)
If $\gamma(\mathcal{S}) \geq k^{2}$, then for every Res refutation π for $\tau_{\mathcal{S}}, \pi$ contains a clause D such that either $\left|I_{0}(D)\right| \geq k^{2}$ or $\left|J_{0}(D)\right| \geq k$.

Lower bound on $S_{\mathcal{P}}\left(\tau_{\mathcal{S}}\right)$

Lemma (Wide clause lemma for Res)
If $\gamma(\mathcal{S}) \geq k^{2}$, then for every Res refutation π for $\tau_{\mathcal{S}}, \pi$ contains a clause D such that either $\left|I_{0}(D)\right| \geq k^{2}$ or $\left|J_{0}(D)\right| \geq k$.

Proof: To get a width lower bound for Res, it suffices to do the same adversarial argument as with TreeRes height, but where p is allowed to "forget" literals.

Lower bound on $S_{\mathcal{P}}\left(\tau_{\mathcal{S}}\right)$

Lemma (Wide clause lemma for Res)
If $\gamma(\mathcal{S}) \geq k^{2}$, then for every Res refutation π for $\tau_{\mathcal{S}}, \pi$ contains a clause D such that either $\left|I_{0}(D)\right| \geq k^{2}$ or $\left|J_{0}(D)\right| \geq k$.

Proof: To get a width lower bound for Res, it suffices to do the same adversarial argument as with TreeRes height, but where p is allowed to "forget" literals.
We play the exactly as in the TreeRes wide clause lemma, but now whenever i drops below the $\log m$ threshold we erase our stored α_{i}, and likewise for j.

Lower bound on $S_{\mathcal{P}}\left(\tau_{\mathcal{S}}\right)$

Lemma (Wide clause lemma for Res)
If $\gamma(\mathcal{S}) \geq k^{2}$, then for every Res refutation π for $\tau_{\mathcal{S}}, \pi$ contains a clause D such that either $\left|I_{0}(D)\right| \geq k^{2}$ or $\left|J_{0}(D)\right| \geq k$.

Proof: To get a width lower bound for Res, it suffices to do the same adversarial argument as with TreeRes height, but where p is allowed to "forget" literals.
We play the exactly as in the TreeRes wide clause lemma, but now whenever i drops below the $\log m$ threshold we erase our stored α_{i}, and likewise for j.
To get a contradiction we consider the last time i was added to I_{0} and j was added to J_{0}.

Lower bound on $S_{\mathcal{P}}\left(\tau_{\mathcal{S}}\right)$

Lemma (Lower bound on $S\left(\tau_{\mathcal{S}}\right)$)
If $\gamma(\mathcal{S})>k^{2}$, then $S_{\mathcal{P}}\left(\tau_{\mathcal{S}}\right) \geq n^{\Omega(k)}$ for $\mathcal{P}=$ Res.

Lower bound on $S_{\mathcal{P}}\left(\tau_{\mathcal{S}}\right)$

Lemma (Lower bound on $S\left(\tau_{\mathcal{S}}\right)$)
If $\gamma(\mathcal{S})>k^{2}$, then $S_{\mathcal{P}}\left(\tau_{\mathcal{S}}\right) \geq n^{\Omega(k)}$ for $\mathcal{P}=$ Res.
Proof: Assume for contradiction that $|\pi| \leq n^{o(k)}$.

Lower bound on $S_{\mathcal{P}}\left(\tau_{\mathcal{S}}\right)$

Lemma (Lower bound on $S\left(\tau_{\mathcal{S}}\right)$)
If $\gamma(\mathcal{S})>k^{2}$, then $S_{\mathcal{P}}\left(\tau_{\mathcal{S}}\right) \geq n^{\Omega(k)}$ for $\mathcal{P}=$ Res.
Proof: Assume for contradiction that $|\pi| \leq n^{o(k)}$. Hit it with a random restriction that sets $\log m x_{i}$ variables per i and $\log n$ y_{j} variables per j.

Lower bound on $S_{\mathcal{P}}\left(\tau_{\mathcal{S}}\right)$

Lemma (Lower bound on $S\left(\tau_{\mathcal{S}}\right)$)
If $\gamma(\mathcal{S})>k^{2}$, then $S_{\mathcal{P}}\left(\tau_{\mathcal{S}}\right) \geq n^{\Omega(k)}$ for $\mathcal{P}=$ Res.
Proof: Assume for contradiction that $|\pi| \leq n^{o(k)}$. Hit it with a random restriction that sets $\log m x_{i}$ variables per i and $\log n$ y_{j} variables per j.
By the probabilistic method there is a restriction ρ that sets every wide clause in π to 1 .

Lower bound on $S_{\mathcal{P}}\left(\tau_{\mathcal{S}}\right)$

Lemma (Lower bound on $S\left(\tau_{\mathcal{S}}\right)$)
If $\gamma(\mathcal{S})>k^{2}$, then $S_{\mathcal{P}}\left(\tau_{\mathcal{S}}\right) \geq n^{\Omega(k)}$ for $\mathcal{P}=$ Res.
Proof: Assume for contradiction that $|\pi| \leq n^{o(k)}$.
Hit it with a random restriction that sets $\log m x_{i}$ variables per i and $\log n$ y_{j} variables per j.
By the probabilistic method there is a restriction ρ that sets every wide clause in π to 1 .

Lemma (Wide clause lemma for Res)
If $\gamma(\mathcal{S}) \geq k^{2}$, then for every Res refutation π for $\tau_{\mathcal{S}},\left.\pi\right|_{\rho}$ contains a clause D such that either $\left|I_{0}(D)\right| \geq k^{2}$ or $\left|J_{0}(D)\right| \geq k$.

Lower bound on $S_{\mathcal{P}}\left(\tau_{\mathcal{S}}\right)$

Other proof systems:

Lower bound on $S_{\mathcal{P}}\left(\tau_{\mathcal{S}}\right)$

Other proof systems:

- Res - prover-delayer game [Pudlák, Atserias-Lauria-Nordström]

Lower bound on $S_{\mathcal{P}}\left(\tau_{\mathcal{S}}\right)$

Other proof systems:

- Res - prover-delayer game [Pudlák, Atserias-Lauria-Nordström]
- Nullsatz + PC - linear operator [Galesi-Lauria]

Lower bound on $S_{\mathcal{P}}\left(\tau_{\mathcal{S}}\right)$

Other proof systems:

- Res - prover-delayer game [Pudlák, Atserias-Lauria-Nordström]
- Nullsatz + PC - linear operator [Galesi-Lauria]
- Res(k) - switching lemma [Buss-Impagliazzo-Segerlend]

Open problems

- extending to Sherali-Adams, Sum-of-Squares, Cutting Planes, ...

Open problems

- extending to Sherali-Adams, Sum-of-Squares, Cutting Planes, ...
- better hard k in gap hitting set \rightarrow better non-automatizability result (up to $k=\sqrt{\log n}$)

Open problems

- extending to Sherali-Adams, Sum-of-Squares, Cutting Planes, ...
- better hard k in gap hitting set \rightarrow better non-automatizability result (up to $k=\sqrt{\log n}$)
- different technique that doesn't work for TreeRes may give subexponential lower bounds

Thank you!

э:'tomətaızə'bılıti \quad ว:tD'mætaızə'bılıti

