Short Proofs are Hard to Find

lan Mertz

University of Toronto

Joint work w/ Toni Pitassi, Hao Wei

IAS, December 5, 2017

lan Mertz (U. of Toronto)

Short Proofs are Hard to Find

▶ ∢ 🖃 IAS, December 5, 2017 1 / 35

< (T) >

```
\begin{aligned} *54*43. \quad & \models :. \alpha, \beta \in 1. \ \Im : \alpha \cap \beta = \Lambda. \equiv . \alpha \cup \beta \in 2 \\ Dem. \\ & \models . *54*26. \ \Im \models :. \alpha = t'x. \beta = t'y. \ \Im : \alpha \cup \beta \in 2. \equiv . x \neq y. \\ & [*51*231] \qquad \equiv . t'x \cap t'y = \Lambda. \\ & [*13*12] \qquad \equiv . \alpha \cap \beta = \Lambda \quad (1) \\ & \vdash . (1). *11*11*35. \ \Im \\ & \vdash . (gx, y). \alpha = t'x. \beta = t'y. \ \Im : \alpha \cup \beta \in 2. \equiv . \alpha \cap \beta = \Lambda \quad (2) \\ & \vdash . (2). *11*54. *52*1. \ \Im \vdash . \operatorname{Prop} \end{aligned}
```

From this proposition it will follow, when arithmetical addition has been defined, that 1 + 1 = 2.

- 4 回 ト - 4 三 ト

```
*54:43.  \models :. \alpha, \beta \in 1. :: \alpha \cap \beta = \Lambda := . \alpha \cup \beta \in 2 

Dem.

 \models . *54:26. : = t^{t}x \cdot \beta = t^{t}y \cdot : : \alpha \cup \beta \in 2 := . x \neq y .
 [*51:231] = . t^{t}x \cap t^{t}y = \Lambda .
 [*13:12] = . \alpha \cap \beta = \Lambda (1)

 \models . (1) \cdot *11:11:35. : = . \alpha \cap \beta = \Lambda (2)

 \models . (2) \cdot *11:54 \cdot *521. : : Prop
From this properties is with follow when arithmetical addition has been
```

From this proposition it will follow, when arithmetical addition has been defined, that 1 + 1 = 2.

How long is the shortest \mathcal{P} -proof of τ ?

Ian Mertz (U. of Toronto)

・ 何 ト ・ ヨ ト ・ ヨ ト

```
*54:43.  \models :. \alpha, \beta \in 1. :: \alpha \cap \beta = \Lambda := . \alpha \cup \beta \in 2 

Dem.

 \models . *54:26. : = t^{t}x : \beta = t^{t}y : : : \alpha \cup \beta \in 2 := . x \neq y .
 [*51:231] = . t^{t}x \cap t^{t}y = \Lambda .
 [*13:12] = . \alpha \cap \beta = \Lambda (1)

 \models . (1) : *11:11:35. : = . \alpha \cap \beta = \Lambda (2)

 \models . (2) : *11:54 : *52:1 : : : Prop
From this properties it will follow when arithmetical addition has been
```

From this proposition it will follow, when arithmetical addition has been defined, that 1 + 1 = 2.

How long is the shortest \mathcal{P} -proof of τ ?

Can we find short \mathcal{P} -proofs of τ ?

・ 何 ト ・ ヨ ト ・ ヨ ト

```
*54:43.  \models :. \alpha, \beta \in 1. :: \alpha \cap \beta = \Lambda := . \alpha \cup \beta \in 2 

Dem.

 \models . *54:26. : = t^{t}x \cdot \beta = t^{t}y \cdot : : \alpha \cup \beta \in 2 := . x \neq y \cdot 

[*13:12]

 \models . t^{t}x \cap t^{t}y = \Lambda \cdot 

[*13:12]

 \models . \alpha \cap \beta = \Lambda \quad (1) 

 \models . (1) \cdot *11:11:35. : 

 \models :. (\exists x, y) \cdot \alpha = t^{t}x \cdot \beta = t^{t}y \cdot : : : \alpha \cup \beta \in 2 := . \alpha \cap \beta = \Lambda \quad (2) 

 \models . (2) \cdot *11:54 \cdot *52:1 : : : Prop

From this properties is with follow when an interpreted addition has been
```

From this proposition it will follow, when arithmetical addition has been defined, that 1 + 1 = 2.

How long is the shortest \mathcal{P} -proof of τ ?

Can we find short \mathcal{P} -proofs of τ ?

・ 何 ト ・ ヨ ト ・ ヨ ト

Propositional proof system [Cook-Reckhow]

A *propositional proof system* is an onto map from proofs to tautologies checkable in polynomial time.

국 동 김 국

Propositional proof system [Cook-Reckhow]

A *propositional proof system* is an onto map from refutations to unsatisfiable formulas checkable in polynomial time.

4 1 1 1 4 1 1

Propositional proof system [Cook-Reckhow]

A *propositional proof system* is an onto map from refutations to unsatisfiable formulas checkable in polynomial time.

Polynomially-bounded PPS [Cook-Reckhow]

A PPS \mathcal{P} is polynomially bounded if for every unsatisfiable k-CNF τ with n variables and poly(n) clauses $(k = O(\log n))$, there exists a \mathcal{P} -proof π such that $|\pi| \leq \text{poly}(n)$.

Propositional proof system [Cook-Reckhow]

A *propositional proof system* is an onto map from refutations to unsatisfiable formulas checkable in polynomial time.

Polynomially-bounded PPS [Cook-Reckhow]

A PPS \mathcal{P} is polynomially bounded if for every unsatisfiable k-CNF τ with n variables and poly(n) clauses $(k = O(\log n))$, there exists a \mathcal{P} -proof π such that $|\pi| \leq \text{poly}(n)$.

Theorem (Cook-Reckhow)

NP = coNP iff there exists a polynomially-bounded PPS.

Resolution

4 / 35

Relations between proof systems

Ian Mertz (U. of Toronto)

Short Proofs are Hard to Find

IAS, December 5, 2017 5 / 35

Automatizability [Bonet-Pitassi-Raz]

A proof system \mathcal{P} is automatizable if there exists an algorithm $A: \text{UNSAT} \to \mathcal{P}$ that takes as input τ and returns a \mathcal{P} -refutation of τ in time poly(n, S), where $S := S_{\mathcal{P}}(\tau)$.

Automatizability

Automatizability [Bonet-Pitassi-Raz]

A proof system \mathcal{P} is f-automatizable if there exists an algorithm $A : \text{UNSAT} \to \mathcal{P}$ that takes as input τ and returns a \mathcal{P} -refutation of τ in time f(n, S), where $S := S_{\mathcal{P}}(\tau)$.

Automatizability

Automatizability [Bonet-Pitassi-Raz]

A proof system \mathcal{P} is *f*-automatizable if there exists an algorithm $A: \text{UNSAT} \to \mathcal{P}$ that takes as input τ and returns a \mathcal{P} -refutation of τ in time f(n, S), where $S := S_{\mathcal{P}}(\tau)$.

Automatizability is connnected to many problems in computer science...

- theorem proving and SAT solvers ([Davis-Putnam-Logemann-Loveland], [Pipatsrisawat-Darwiche])
- algorithms for PAC learning ([Kothari-Livni], [Alekhnovich-Braverman-Feldman-Klivans-Pitassi])
- algorithms for unsupervised learning ([Bhattiprolu-Guruswami-Lee])
- approximation algorithms (many works...)

6 / 35

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

 any polynomially bounded PPS is not automatizable if NP ⊈ P/poly ([Ajtai]; [Impagliazzo],[BPR])

- any polynomially bounded PPS is not automatizable if NP ⊈ P/poly ([Ajtai]; [Impagliazzo],[BPR])
- approximating $S_{\mathcal{P}}(\tau)$ to within $2^{\log^{1-o(1)}n}$ is NP-hard ([Alekhnovich-Buss-Moran-Pitassi])

- any polynomially bounded PPS is not automatizable if NP ⊈ P/poly ([Ajtai]; [Impagliazzo],[BPR])
- approximating $S_{\mathcal{P}}(\tau)$ to within $2^{\log^{1-o(1)}n}$ is NP-hard ([Alekhnovich-Buss-Moran-Pitassi])
- lower bounds against strong (Frege/Extended Frege) systems under cryptographic assumptions ([Bonet-Domingo-Gavaldà-Maciel-Pitassi],[BPR],[Krajíček-Pudlák])

A B A B A B A B A B A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A

• first lower bounds against automatizability for Res, TreeRes by [Alekhnovich-Razborov]

- first lower bounds against automatizability for Res, TreeRes by [Alekhnovich-Razborov]
- extended to Nullsatz, PC by [Galesi-Lauria]

▲ ▲□ ▶

- first lower bounds against automatizability for Res, TreeRes by [Alekhnovich-Razborov]
- extended to Nullsatz, PC by [Galesi-Lauria]

Rest of this talk: a new version of [AR] + [GL]

- simplified
- stronger lower bounds (near quasipolynomial)
- works for more systems (Res, TreeRes, Nullsatz, PC, Res(k))

- 4 回 ト 4 三 ト 4 三 ト

Our results

Theorem (Main Theorem for GapETH)

Assuming GapETH, \mathcal{P} is not $n^{\tilde{o}(\log \log S)}$ -automatizable for $\mathcal{P} = \text{Res}$, TreeRes, Nullsatz, PC.

Theorem (Main Theorem for ETH)

Assuming ETH, \mathcal{P} is not $n^{\tilde{o}(\log^{1/7-o(1)}\log S)}$ -automatizable for $\mathcal{P} = \text{Res}$, TreeRes, Nullsatz, PC.

Our results

Theorem (Main Theorem for GapETH)

Assuming GapETH, \mathcal{P} is not $n^{\tilde{o}(\log \log S)}$ -automatizable for $\mathcal{P} = \text{Res}$, TreeRes, Nullsatz, PC.

イヨト イモト イモト

System	Assumption	Result	Ref
Any PPS	NP-hard	$2^{\log^{1-o(1)}n}$	[ABMP]
Any poly PPS	$NP \not\subseteq P/poly$	superpoly(n, S)	[A]; [I],[BPR]
AC ⁰ -Frege	Diffie-Hellman requires	superpoly (n, S)	[BDGMP]
	circuits of size $2^{n^{\epsilon}}$		
Frege	Factoring Blum integers	superpoly (n, S)	[BPR]
	requires circuits of size $n^{\omega(1)}$		
E. Frege	Discrete log is not in P/poly	superpoly (n, S)	[KP]
Res, TreeRes	$W[P] \neq FPT$	superpoly (n, S)	[AR]
Nullsatz, PC	$W[P] \neq FPT$	superpoly (n, S)	[GL]
Res, TreeRes,	GapETH	$n^{\tilde{\Omega}(\log \log S)}$	this work
Nullsatz, PC	ETH	$n^{\tilde{\Omega}(\log^{1/7-o(1)}\log S)}$	

イロト イポト イヨト イヨト

3

Theorem (Observation)

If τ has a width d TreeRes or Res refutation, it can be found in time $n^{O(d)}$.

Proof: brute force (repeatedly resolve all pairs of available clauses)

Ian Mertz (U. of Toronto)

Short Proofs are Hard to Find

(日) → (目) → (目) → (目) → (1) / (2) → (

Theorem (Clegg-Edmonds-Impagliazzo)

If τ has a degree d Nullsatz or PC refutation, it can be found in time $n^{O(d)}$.

Proof: Groebner basis algorithm

4 3 5 4 3 5 5

Theorem (Sherali-Adams; Shor, Parrilo-Lasserre)

If τ has a degree d SA or SoS refutation, it can be found in time $n^{O(d)}$.

Proof: linear/semidefinite programming

Theorem (BP; CEI; SA; S, PL)

If τ has a width d TreeRes or Res refutation, it can be found in time $n^{O(d)}$. If τ has a degree d Nullsatz, PC, SA, or SoS refutation, it can be found in time $n^{O(d)}$.

Theorem (Bonet-Galesi; Lauria-Nordström, Atserias-Lauria-Nordström)

There exist τ such that $w_{\mathcal{P}}(\tau) = O(d)$ and $S_{\mathcal{P}}(\tau) = n^{\Omega(d)}$ for $\mathcal{P} = \text{TreeRes}$, Res. There exist τ such that $\deg_{\mathcal{P}}(\tau) = O(d)$ and $S_{\mathcal{P}}(\tau) = n^{\Omega(d)}$ for $\mathcal{P} = \text{Nullsatz}$, PC, SA, SoS.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Theorem (BP; CEI; SA; S, PL)

If τ has a width d TreeRes or Res refutation, it can be found in time $n^{O(d)}$. If τ has a degree d Nullsatz, PC, SA, or SoS refutation, it can be found in time $n^{O(d)}$.

Theorem (Bonet-Galesi; Lauria-Nordström, Atserias-Lauria-Nordström)

There exist τ such that $w_{\mathcal{P}}(\tau) = O(d)$ and $S_{\mathcal{P}}(\tau) = n^{\Omega(d)}$ for $\mathcal{P} = \text{TreeRes}$, Res. There exist τ such that $\deg_{\mathcal{P}}(\tau) = O(d)$ and $S_{\mathcal{P}}(\tau) = n^{\Omega(d)}$ for $\mathcal{P} = \text{Nullsatz}$, PC, SA, SoS.

Important: does not mean that automatizability is resolved, because $S_{\mathcal{P}} = n^{O(d)}$ may not be tight.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Theorem (Ben-Sasson-Wigderson)

 $w(\tau) \leq \log S(\tau)$ for TreeRes and $w(\tau) \leq \sqrt{n \log S(\tau)}$ for Res.

Ian Mertz (U. of Toronto)

Short Proofs are Hard to Find

A B M A B M IAS, December 5, 2017 12 / 35

3

Theorem (Ben-Sasson-Wigderson)

 $w(\tau) \leq \log S(\tau)$ for TreeRes and $w(\tau) \leq \sqrt{n \log S(\tau)}$ for Res.

Theorem (BP)

TreeRes is $n^{O(\log S)}$ -automatizable. Res is $n^{O(\sqrt{n \log S})}$ -automatizable.

Ian Mertz (U. of Toronto)

Short Proofs are Hard to Find

IAS, December 5, 2017 12 / 35

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Theorem (Ben-Sasson-Wigderson)

 $w(\tau) \leq \log S(\tau)$ for TreeRes and $w(\tau) \leq \sqrt{n \log S(\tau)}$ for Res.

Theorem (BP)

TreeRes is $n^{O(\log S)}$ -automatizable. Res is $n^{O(\sqrt{n \log S})}$ -automatizable.

Nullsatz is $n^{O(\log S)}$ -automatizable, no other upper bounds known.

イロト イポト イヨト イヨト 二日

Getting an automatizability lower bound

Recipe:

- (1) Hard gap problem G
- (2) Turn an instance of G into a tautology au such that
 - "yes" instances have small proofs
 - "no" instances have no small proofs
- (3) Run automatizing algorithm Aut on au and see how long the output is

Getting an automatizability lower bound

Recipe:

(1) Hard gap problem G

- (2) Turn an instance of G into a tautology au such that
 - "yes" instances have small proofs
 - "no" instances have no small proofs

(3) Run automatizing algorithm Aut on au and see how long the output is

Gap hitting set

- $S = \{S_1 \dots S_n\}$ over [n]
- hitting set: $H \subseteq [n]$ s.t. $H \cap S_i \neq \emptyset$ for all $i \in [n]$
- $\gamma(S)$ is the size of the smallest such H
- Gap hitting set: given S, distinguish whether $\gamma(S) \leq k$ or $\gamma(S) > k^2$

Theorem (CCKLMNT)

Assuming GapETH the gap hitting set problem cannot be solved in time $n^{o(k)}$ for $k = \tilde{O}(\log \log n)$

IAS, December 5, 2017 14 / 35

Getting an automatizability lower bound

Recipe:

- (1) Hard gap problem G
- (2) Turn an instance of G into a tautology au such that
 - "yes" instances have small proofs
 - "no" instances have no small proofs
- (3) Run automatizing algorithm Aut on au and see how long the output is

Overview

From gap hitting set to automatizability

Theorem (Main Technical Lemma)

For $k = \tilde{O}(\log \log n)$, there exists a polytime algorithm mapping S to τ_S s.t.

• if
$$\gamma(S) \leq k$$
 then $S_{\mathcal{P}}(\tau_S) \leq n^{O(1)}$

• if
$$\gamma(\mathcal{S}) > k^2$$
 then $\mathcal{S}_{\mathcal{P}}(\tau_{\mathcal{S}}) \ge n^{\Omega(k)}$

where $\mathcal{P} \in \{\text{TreeRes}, \text{Res}, \text{Nullsatz}, \text{PC}\}$.

Ian Mertz (U. of Toronto)

4 3 5 4 3 5 5

Getting an automatizability lower bound

Recipe:

- (1) Hard gap problem G
- (2) Turn an instance of G into a tautology τ such that
 - "yes" instances have small proofs
 - "no" instances have no small proofs

(3) Run automatizing algorithm Aut on au and see how long the output is

< □ > < □ > < □ > < □ > < □ > < □ >

Proof of main theorem

Theorem (Main Theorem)

Assuming GapETH, \mathcal{P} is not $n^{\tilde{o}(\log \log S)}$ -automatizable.

Proof: Let *Aut* be the automatizing algorithm for \mathcal{P} running in time $f(n, S) = n^{\tilde{o}(\log \log S)}$, and let $k = \tilde{\Theta}(\log \log n)$.

4 E N 4 E N

Proof of main theorem

Theorem (Main Theorem)

Assuming GapETH, \mathcal{P} is not $n^{\tilde{o}(\log \log S)}$ -automatizable.

Proof: Let *Aut* be the automatizing algorithm for \mathcal{P} running in time $f(n, S) = n^{\tilde{o}(\log \log S)}$, and let $k = \tilde{\Theta}(\log \log n)$.

ヘロト 人間ト ヘヨト ヘヨト

Proof of main theorem

Theorem (Main Theorem)

Assuming GapETH, \mathcal{P} is not $n^{\tilde{o}(\log \log S)}$ -automatizable.

Proof: Let *Aut* be the automatizing algorithm for \mathcal{P} running in time $f(n, S) = n^{\tilde{o}(\log \log S)}$, and let $k = \tilde{\Theta}(\log \log n)$.

 $\begin{array}{ccc} \text{Main Technical} & \text{Aut for} \\ \text{Lemma} & & n^{o(k)} \text{ timesteps} \\ \mathcal{S} & \longrightarrow & \tau_{\mathcal{S}} & \longrightarrow & \text{Valid output?} \end{array}$

Theorem (Main Technical Lemma)

Ian Mertz (U. of Toronto)

Proof of main theorem

Theorem (Main Theorem)

Assuming GapETH, \mathcal{P} is not $n^{\tilde{o}(\log \log S)}$ -automatizable.

Proof: Let *Aut* be the automatizing algorithm for \mathcal{P} running in time $f(n, S) = n^{\tilde{o}(\log \log n)} = n^{o(k)}$, and let $k = \tilde{\Theta}(\log \log n)$.

 $\begin{array}{ccc} \text{Main Technical} & & \text{Aut for} \\ \text{Lemma} & & & n^{o(k)} \text{ timesteps} \\ \mathcal{S} & & \longrightarrow & \tau_{\mathcal{S}} & & & & \end{array} \text{Valid output?}$

Theorem (Main Technical Lemma)

Proof of main theorem

Theorem (Main Theorem)

Assuming GapETH, \mathcal{P} is not $n^{\tilde{o}(\log \log S)}$ -automatizable.

Proof: Let *Aut* be the automatizing algorithm for \mathcal{P} running in time $f(n, S) = n^{\tilde{o}(\log \log S)}$, and let $k = \tilde{\Theta}(\log \log n)$.

 $\begin{array}{ccc} \text{Main Technical} & \text{Aut for} \\ \text{Lemma} & & & n^{o(k)} \text{ timesteps} \\ \mathcal{S} & \longrightarrow & \tau_{\mathcal{S}} & \longrightarrow \end{array} \text{Valid output?}$

Theorem (Main Technical Lemma)

- ロ ト - (周 ト - (日 ト - (日 ト -)日

Proof of main theorem

Theorem (Main Theorem)

Assuming GapETH, \mathcal{P} is not $n^{\tilde{o}(\log \log S)}$ -automatizable.

Proof: Let *Aut* be the automatizing algorithm for \mathcal{P} running in time $f(n, S) = n^{\tilde{o}(\log \log S)}$, and let $k = \tilde{\Theta}(\log \log n)$.

$$\begin{array}{ccc} \text{Main Technical} & \text{Aut for} \\ & & \text{Lemma} & \\ \mathcal{S} & & & \\ \end{array} \xrightarrow{\tau_{\mathcal{S}}} & & & \\ & & & \\ \end{array} \xrightarrow{\text{Main Technical}} & \text{Valid output?} \end{array}$$

Theorem (CCKLMNT)

Assuming GapETH the gap hitting set problem cannot be solved in time $n^{o(k)}$ for $k = \tilde{O}(\log \log n)$

3

< □ > < □ > < □ > < □ > < □ > < □ >

For the rest of the talk...

• fix
$$k = \tilde{\Theta}(\log \log n)$$

• $m = n^{1/k} (k \log m = \log n)$
• $k \le \frac{\log m}{4}$

æ

A D N A B N A B N A B N

Detour: universal sets

- A_{m×m} is (m, q)-universal if for all I ⊆ [m], |I| ≤ q, all 2^{|I|} possible column vectors appear in A restricted to the rows I
- additional requirement: for all J ⊆ [m], |J| ≤ q, all 2^{|J|} possible row vectors appear in A restricted to the columns J
- fix some such A as a gadget (constructions like the Paley graph work for $q = \frac{\log m}{4}$)

20 / 35

21 / 35

- $Mat(S)_{n \times n}$ is the matrix whose columns are the indicator vectors of S
- $\vec{x} = x_1 \dots x_n$ where $x_i \in \{0, 1\}^{\log m}$ ($n \log m$ variables total), $\vec{y} = y_1 \dots y_m$ where $y_j \in \{0, 1\}^{\log n}$ ($m \log n$ variables total)
- $x_i = \alpha_i \rightarrow M_{\alpha}[i,j] = A[\alpha_i,j]$ (treat α_i as an element of [m])
- $y_j = \beta_j \rightarrow N_{\beta}[i,j] = Mat(S)[i,\beta_j]$ (treat β_j as an element of [n])

 $\tau_{\mathcal{S}}$ will state that there exist $\vec{\alpha},\vec{\beta}$ such that there is no i,j where $M_{\alpha}[i,j]=N_{\beta}[i,j]=1$

3

イロト イポト イヨト イヨト

 $\tau_{\mathcal{S}}$ will state that there exist $\vec{\alpha},\vec{\beta}$ such that there is no i,j where $M_{\alpha}[i,j]=N_{\beta}[i,j]=1$

Short Proofs are Hard to Find

IAS, December 5, 2017 22 / 35

э

 au_S will state that there exist ec lpha, ec eta such that there is no i, j where $M_{lpha}[i, j] = N_{eta}[i, j] = 1$

• for every i, j, α_i, β_j such that $A[\alpha_i, j] = Mat(S)[i, \beta_j] = 1$,

$$\overline{x_i^{\alpha_i} \wedge y_j^{\beta_j}}$$

- all clauses have width $\log m + \log n$
- $nm2^{\log n}2^{\log m} = n^2m^2$ clauses

イロト 不得下 イヨト イヨト 二日

 au_S will state that there exist ec lpha, ec eta such that there is no i, j where $M_{lpha}[i, j] = N_{eta}[i, j] = 1$

• for every i, j, α_i, β_j such that $A[\alpha_i, j] = Mat(S)[i, \beta_j] = 1$,

$$\overline{x_i^{lpha_i} \wedge y_j^{eta_j}}$$

• $nm2^{\log n}2^{\log m} = n^2m^2$ clauses

Lemma

$$au_{\mathcal{S}}$$
 is unsatisfiable when $\gamma(\mathcal{S}) \leq rac{\log m}{4}.$

- 3

< ロ > < 同 > < 回 > < 回 > < 回 > <

Lemma

 $au_{\mathcal{S}}$ is unsatisfiable when $\gamma(\mathcal{S}) \leq \frac{\log m}{4}$.

イロト イボト イヨト イヨト

- 2

Lemma

 $\tau_{\mathcal{S}}$ is unsatisfiable when $\gamma(\mathcal{S}) \leq \frac{\log m}{4}$.

Proof: Let $H = \{i_1 \dots i_{\gamma}\}$ be a hitting set of size $\gamma := \gamma(S)$.

イロト 不得下 イヨト イヨト 二日

Lemma

 $\tau_{\mathcal{S}}$ is unsatisfiable when $\gamma(\mathcal{S}) \leq \frac{\log m}{4}$.

Proof: Let $H = \{i_1 \dots i_{\gamma}\}$ be a hitting set of size $\gamma := \gamma(S)$. $\{\alpha_{i_1} \dots \alpha_{i_{\gamma}}\}$ is a set of at most $\frac{\log m}{4}$ rows from A $(\gamma \le \frac{\log m}{4})$.

A B A B A B A B A B A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A

Lemma

 $\tau_{\mathcal{S}}$ is unsatisfiable when $\gamma(\mathcal{S}) \leq \frac{\log m}{4}$.

Proof: Let $H = \{i_1 \dots i_{\gamma}\}$ be a hitting set of size $\gamma := \gamma(S)$. $\{\alpha_{i_1} \dots \alpha_{i_{\gamma}}\}$ is a set of at most $\frac{\log m}{4}$ rows from A ($\gamma \leq \frac{\log m}{4}$). There exists some $j \in [m]$ such that $M_{\alpha}[i, j] = 1$ for all $i \in H$ (universal property of A).

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト … ヨ

Lemma

 $\tau_{\mathcal{S}}$ is unsatisfiable when $\gamma(\mathcal{S}) \leq \frac{\log m}{4}$.

Proof: Let $H = \{i_1 \dots i_{\gamma}\}$ be a hitting set of size $\gamma := \gamma(S)$. $\{\alpha_{i_1} \dots \alpha_{i_{\gamma}}\}$ is a set of at most $\frac{\log m}{4}$ rows from $A \ (\gamma \leq \frac{\log m}{4})$. There exists some $j \in [m]$ such that $M_{\alpha}[i, j] = 1$ for all $i \in H$ (universal property of A). There must be some $i \in H$ such that $N_{\beta}[i, j] = 1$ (H is a hitting set).

Defining τ_S

Lemma

 $\tau_{\mathcal{S}}$ is unsatisfiable when $\gamma(\mathcal{S}) < \frac{\log m}{4}$.

Proof: Let $H = \{i_1 \dots i_{\gamma}\}$ be a hitting set of size $\gamma := \gamma(S)$. $\{\alpha_{i_1} \dots \alpha_{i_n}\}$ is a set of at most $\frac{\log m}{4}$ rows from A ($\gamma \leq \frac{\log m}{4}$). There exists some $j \in [m]$ such that $M_{\alpha}[i, j] = 1$ for all $i \in H$ (universal property of A). There must be some $i \in H$ such that $N_{\beta}[i, j] = 1$ (H is a hitting set). Therefore the axiom $x_i^{\alpha_i} \wedge y_i^{\beta_j}$ is falsified.

23 / 35

Lemma (Upper bound on $S_{\mathcal{P}}(\tau_{\mathcal{S}})$)

If $\gamma(S) \leq k$, then $S_{\mathcal{P}}(\tau_S) \leq n^{O(1)}$ for any \mathcal{P} which p-simulates TreeRes.

イロト 不得 トイラト イラト 一日

Lemma (Upper bound on $S_{\mathcal{P}}(\tau_{\mathcal{S}})$)

If $\gamma(S) \leq k$, then $S_{\mathcal{P}}(\tau_S) \leq n^{O(1)}$ for any \mathcal{P} which p-simulates TreeRes.

Proof: TreeRes refutation of $\tau \leftrightarrow$ decision tree solving the search problem on τ

Lemma (Upper bound on $S_{\mathcal{P}}(\tau_{\mathcal{S}})$)

If $\gamma(S) \leq k$, then $S_{\mathcal{P}}(\tau_S) \leq n^{O(1)}$ for any \mathcal{P} which p-simulates TreeRes.

Proof: TreeRes refutation of $\tau \leftrightarrow$ decision tree solving the search problem on τ

- query all vars in x_i for all $i \in H$
- find the j with all 1s
- query all vars in y_j

Lemma (Upper bound on $S_{\mathcal{P}}(\tau_{\mathcal{S}})$)

If $\gamma(S) \leq k$, then $S_{\mathcal{P}}(\tau_S) \leq n^{O(1)}$ for any \mathcal{P} which p-simulates TreeRes.

Proof: TreeRes refutation of $\tau \leftrightarrow$ decision tree solving the search problem on τ

- query all vars in x_i for all $i \in H$
- find the j with all 1s
- query all vars in y_j

Size of the proof: $2^{k \log m + \log n} = n^2$

• error-correcting codes: $x_i \in \{0, 1\}^{6 \log m},$ $y_j \in \{0, 1\}^{6 \log n}$

Short Proofs are Hard to Find

25 / 35

error-correcting codes: $x_i \in \{0, 1\}^{6 \log m}$ $y_i \in \{0, 1\}^{6 \log n}$ • $f_x: \{0,1\}^{6\log m} \rightarrow$ $\{0,1\}^{\log m}$ is 2 log *m*-surjective, $f_{v}: \{0,1\}^{6 \log n} \to \{0,1\}^{\log n}$ is 2 log *n*-surjective

- error-correcting codes: $x_i \in \{0,1\}^{6 \log m},$ $y_j \in \{0,1\}^{6 \log n}$
- $f_x : \{0,1\}^{6 \log m} \rightarrow \{0,1\}^{\log m}$ is $2 \log m$ -surjective, $f_y : \{0,1\}^{6 \log n} \rightarrow \{0,1\}^{\log n}$ is $2 \log n$ -surjective
- high-level idea: π knows nothing about a row or column without setting lots of variables

Lemma (Upper bound on $S_{\mathcal{P}}(\tau_{\mathcal{S}})$) If $\gamma(\mathcal{S}) \leq k$, then $S_{\mathcal{P}}(\tau_{\mathcal{S}}) \leq n^{O(1)}$ for any \mathcal{P} which p-simulates TreeRes.

Proof: TreeRes refutation of $\tau \leftrightarrow$ decision tree solving the search problem on τ

- query all vars in x_i for all i ∈ H
- find the j with all 1s
- query all vars in y_j

Size of the proof: $2^{6k \log m + 6 \log n} = n^{12}$

Lemma (Lower bound on $S(\tau_S)$) If $\gamma(S) > k^2$, then $S_{\mathcal{P}}(\tau_S) \ge n^{\Omega(k)}$.

Two steps:

- Width/degree lower bound
- 2 Random restriction argument

A B A A B A

Lemma (Lower bound on $S(\tau_S)$ for TreeRes) If $\gamma(S) > k^2$, then $S_{\mathcal{P}}(\tau_S) \ge n^{\Omega(k)}$ for $\mathcal{P} = \text{TreeRes}$.

One step:

Height lower bound

3

イロト イヨト イヨト イヨト

To get height lower bounds, we play an adversarial game against π solving the search problem.

To get height lower bounds, we play an adversarial game against π solving the search problem.

- path p in a TreeRes refutation π is a partial restriction to τ_S
- $I_0(p) = \{i \in [n] \mid p \text{ contains at least log } m \text{ literals from } x_i\}$
- $J_0(p) = \{j \in [m] \mid p \text{ contains at least log } n \text{ literals from } y_j\}$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

To get height lower bounds, we play an adversarial game against π solving the search problem.

- path p in a TreeRes refutation π is a partial restriction to τ_S
- $I_0(p) = \{i \in [n] \mid p \text{ contains at least log } m \text{ literals from } x_i\}$
- $J_0(p) = \{j \in [m] \mid p \text{ contains at least log } n \text{ literals from } y_j\}$

Lemma (Row/column height lower bound for TreeRes)

If $\gamma(S) > k^2$, then for every TreeRes refutation π for τ_S , π contains a path p such that either $|I_0(p)| \ge k^2$ or $|J_0(p)| \ge k$.

A B A B A B A B A B A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A

To get height lower bounds, we play an adversarial game against π solving the search problem.

- path p in a TreeRes refutation π is a partial restriction to τ_S
- $I_0(p) = \{i \in [n] \mid p \text{ contains at least log } m \text{ literals from } x_i\}$
- $J_0(p) = \{j \in [m] \mid p \text{ contains at least log } n \text{ literals from } y_j\}$

Lemma (Row/column height lower bound for TreeRes)

If $\gamma(S) > k^2$, then for every TreeRes refutation π for τ_S , π contains a path p such that either $|I_0(p)| \ge k^2$ or $|J_0(p)| \ge k$.

Corollary (Height lower bound for TreeRes)

If $\gamma(S) > k^2$, then for every TreeRes refutation π for τ_S , π has height at least $k \log n$.

28 / 35

Lemma (Row/column height lower bound for TreeRes)

If $\gamma(S) > k^2$, then for every TreeRes refutation π for τ_S , π contains a path p such that either $|I_0(p)| \ge k^2$ or $|J_0(p)| \ge k$.

Proof: We play an adversarial game against π solving the search problem.

A B A A B A

Lemma (Row/column height lower bound for TreeRes)

If $\gamma(S) > k^2$, then for every TreeRes refutation π for τ_S , π contains a path p such that either $|I_0(p)| \ge k^2$ or $|J_0(p)| \ge k$.

Whenever π queries a variable in x_i :

if p contains less than log m x_i variables
 (i ∉ l₀(p)) we branch arbitrarily

4 1 1 1 4 1 1 1

Lemma (Row/column height lower bound for TreeRes)

If $\gamma(S) > k^2$, then for every TreeRes refutation π for τ_S , π contains a path p such that either $|I_0(p)| \ge k^2$ or $|J_0(p)| \ge k$.

Whenever π queries a variable in x_i :

• if this is the log *m*th variable in x_i , we choose some $a_i \in A$ such that $(a_i)_j = 0$ for all $j \in J_0(p)$ $(|J_0(p)| < k \le \frac{\log m}{4})$

29 / 35

Lemma (Row/column height lower bound for TreeRes)

If $\gamma(S) > k^2$, then for every TreeRes refutation π for τ_S , π contains a path p such that either $|I_0(p)| \ge k^2$ or $|J_0(p)| \ge k$.

Whenever π queries a variable in x_i :

• if this is the log *m*th variable in x_i , we choose some $a_i \in A$ such that $(a_i)_j = 0$ for all $j \in J_0(p)$ $(|J_0(p)| < k \le \frac{\log m}{4})$ and some assignment α_i consistent with *p* such that $f_x(\alpha_i) = a_i$ (*p* has only queried log *m* variables in x_i so far).

Lemma (Row/column height lower bound for TreeRes)

If $\gamma(S) > k^2$, then for every TreeRes refutation π for τ_S , π contains a path p such that either $|I_0(p)| \ge k^2$ or $|J_0(p)| \ge k$.

Whenever π queries a variable in x_i :

• if this is the log *m*th variable in x_i , we choose some $a_i \in A$ such that $(a_i)_j = 0$ for all $j \in J_0(p)$ $(|J_0(p)| < k \le \frac{\log m}{4})$ and some assignment α_i consistent with p such that $f_x(\alpha_i) = a_i$ (p has only queried log m variables in x_i so far). Store α_i and add i to $I_0(p)$.

29 / 35

Lemma (Row/column height lower bound for TreeRes)

If $\gamma(S) > k^2$, then for every TreeRes refutation π for τ_S , π contains a path p such that either $|I_0(p)| \ge k^2$ or $|J_0(p)| \ge k$.

Whenever π queries a variable in x_i :

 if i ∈ l₀(p) we answer according to the stored α_i

A B A A B A

Lemma (Row/column height lower bound for TreeRes)

If $\gamma(S) > k^2$, then for every TreeRes refutation π for τ_S , π contains a path p such that either $|I_0(p)| \ge k^2$ or $|J_0(p)| \ge k$.

Whenever π queries a variable in y_j :

• if p contains less than log n y_j variables $(j \notin J_0(p))$ we branch arbitrarily

A B b A B b

Lemma (Row/column height lower bound for TreeRes)

If $\gamma(S) > k^2$, then for every TreeRes refutation π for τ_S , π contains a path p such that either $|I_0(p)| \ge k^2$ or $|J_0(p)| \ge k$.

Whenever π queries a variable in y_i :

• if this is the log *n*th variable in y_j , we choose some $S_j \in Mat(S)$ such that $(S_j)_i = 0$ for all $i \in I_0(p)$ $(|I_0(p)| < k^2 < \gamma(S))$

Lemma (Row/column height lower bound for TreeRes)

If $\gamma(S) > k^2$, then for every TreeRes refutation π for τ_S , π contains a path p such that either $|I_0(p)| \ge k^2$ or $|J_0(p)| \ge k$.

Whenever π queries a variable in y_i :

• if this is the log *n*th variable in y_j , we choose some $S_j \in Mat(S)$ such that $(S_j)_i = 0$ for all $i \in I_0(p)$ $(|I_0(p)| < k^2 < \gamma(S))$ and some assignment β_j consistent with p such that $f_y(\beta_j) = S_j$ (p has only queried log n variables in y_j so far).

29 / 35

Lemma (Row/column height lower bound for TreeRes)

If $\gamma(S) > k^2$, then for every TreeRes refutation π for τ_S , π contains a path p such that either $|I_0(p)| \ge k^2$ or $|J_0(p)| \ge k$.

Whenever π queries a variable in y_i :

• if this is the log *n*th variable in y_j , we choose some $S_j \in Mat(S)$ such that $(S_j)_i = 0$ for all $i \in I_0(p)$ $(|I_0(p)| < k^2 < \gamma(S))$ and some assignment β_j consistent with p such that $f_y(\beta_j) = S_j$ (p has only queried log n variables in y_j so far). Store β_j and add j to $J_0(p)$.

Lemma (Row/column height lower bound for TreeRes)

If $\gamma(S) > k^2$, then for every TreeRes refutation π for τ_S , π contains a path p such that either $|I_0(p)| \ge k^2$ or $|J_0(p)| \ge k$.

Whenever π queries a variable in y_j :

 if j ∈ J₀(p) we answer according to the stored β_j

A B A A B A

Lemma (Lower bound on $S(\tau_{S})$ for Res) If $\gamma(S) > k^{2}$, then $S_{\mathcal{P}}(\tau_{S}) \ge n^{\Omega(k)}$ for $\mathcal{P} = \text{Res}$.

Two steps:

- Width lower bound
- 2 Random restriction argument

< □ > < □ > < □ > < □ > < □ > < □ >

Lemma (Wide clause lemma for Res)

If $\gamma(S) \ge k^2$, then for every Res refutation π for τ_S , π contains a clause D such that either $|I_0(D)| \ge k^2$ or $|J_0(D)| \ge k$.

★ ∃ ► < ∃ ►</p>

Lemma (Wide clause lemma for Res)

If $\gamma(S) \ge k^2$, then for every Res refutation π for τ_S , π contains a clause D such that either $|I_0(D)| \ge k^2$ or $|J_0(D)| \ge k$.

Proof: To get a width lower bound for Res, it suffices to do the same adversarial argument as with TreeRes height, but where p is allowed to "forget" literals.

Lemma (Wide clause lemma for Res)

If $\gamma(S) \ge k^2$, then for every Res refutation π for τ_S , π contains a clause D such that either $|I_0(D)| \ge k^2$ or $|J_0(D)| \ge k$.

Proof: To get a width lower bound for Res, it suffices to do the same adversarial argument as with TreeRes height, but where p is allowed to "forget" literals.

We play the exactly as in the TreeRes wide clause lemma, but now whenever *i* drops below the log *m* threshold we erase our stored α_i , and likewise for *j*.

・ ロ ト ・ 同 ト ・ 三 ト ・ 三 ト

Lemma (Wide clause lemma for Res)

If $\gamma(S) \ge k^2$, then for every Res refutation π for τ_S , π contains a clause D such that either $|I_0(D)| \ge k^2$ or $|J_0(D)| \ge k$.

Proof: To get a width lower bound for Res, it suffices to do the same adversarial argument as with TreeRes height, but where p is allowed to "forget" literals.

We play the exactly as in the TreeRes wide clause lemma, but now whenever *i* drops below the log *m* threshold we erase our stored α_i , and likewise for *j*.

To get a contradiction we consider the *last* time *i* was added to I_0 and *j* was added to J_0 .

31 / 35

A B A B A B A B A B A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A

Lemma (Lower bound on $S(\tau_S)$) If $\gamma(S) > k^2$, then $S_{\mathcal{P}}(\tau_S) \ge n^{\Omega(k)}$ for $\mathcal{P} = \text{Res.}$

3

イロト 不得 トイヨト イヨト

Lemma (Lower bound on $S(\tau_S)$)

If $\gamma(S) > k^2$, then $S_{\mathcal{P}}(\tau_S) \ge n^{\Omega(k)}$ for $\mathcal{P} = \text{Res.}$

Proof: Assume for contradiction that $|\pi| \leq n^{o(k)}$.

イロト 不得 トイヨト イヨト 二日

Lemma (Lower bound on $S(\tau_S)$)

If $\gamma(S) > k^2$, then $S_{\mathcal{P}}(\tau_S) \ge n^{\Omega(k)}$ for $\mathcal{P} = \text{Res}$.

Proof: Assume for contradiction that $|\pi| \leq n^{o(k)}$.

Hit it with a random restriction that sets $\log m x_i$ variables per *i* and $\log n y_i$ variables per *j*.

Lemma (Lower bound on $S(\tau_S)$)

If $\gamma(S) > k^2$, then $S_{\mathcal{P}}(\tau_S) \ge n^{\Omega(k)}$ for $\mathcal{P} = \text{Res}$.

Proof: Assume for contradiction that $|\pi| \leq n^{o(k)}$.

Hit it with a random restriction that sets $\log m x_i$ variables per *i* and $\log n y_i$ variables per *j*.

By the probabilistic method there is a restriction ρ that sets every wide clause in π to 1.

- ロ ト - (周 ト - (日 ト - (日 ト -)日

Lemma (Lower bound on $S(\tau_S)$)

If $\gamma(S) > k^2$, then $S_{\mathcal{P}}(\tau_S) \ge n^{\Omega(k)}$ for $\mathcal{P} = \text{Res.}$

Proof: Assume for contradiction that $|\pi| \leq n^{o(k)}$.

Hit it with a random restriction that sets $\log m x_i$ variables per *i* and $\log n y_i$ variables per *j*.

By the probabilistic method there is a restriction ρ that sets every wide clause in π to 1.

Lemma (Wide clause lemma for Res)

If $\gamma(S) \ge k^2$, then for every Res refutation π for τ_S , $\pi|_{\rho}$ contains a clause D such that either $|I_0(D)| \ge k^2$ or $|J_0(D)| \ge k$.

Other proof systems:

Ian Mertz (U. of Toronto)

Short Proofs are Hard to Find

IAS, December 5, 2017 33 / 35

3

< □ > < 同 > < 回 > < 回 > < 回 >

Other proof systems:

• Res - prover-delayer game [Pudlák, Atserias-Lauria-Nordström]

A B A A B A

Other proof systems:

- Res prover-delayer game [Pudlák, Atserias-Lauria-Nordström]
- Nullsatz + PC linear operator [Galesi-Lauria]

A B A A B A

Other proof systems:

- Res prover-delayer game [Pudlák, Atserias-Lauria-Nordström]
- Nullsatz + PC linear operator [Galesi-Lauria]
- Res(k) switching lemma [Buss-Impagliazzo-Segerlend]

Open problems

• extending to Sherali-Adams, Sum-of-Squares, Cutting Planes, ...

3

A D N A B N A B N A B N

Open problems

- extending to Sherali-Adams, Sum-of-Squares, Cutting Planes, ...
- better hard k in gap hitting set → better non-automatizability result (up to k = √log n)

3

Open problems

- extending to Sherali-Adams, Sum-of-Squares, Cutting Planes, ...
- better hard k in gap hitting set \rightarrow better non-automatizability result (up to $k = \sqrt{\log n}$)
- different technique that doesn't work for TreeRes may give subexponential lower bounds

Thank you!

ɔ:'tɒmətaɪzə'bılıti ɔ:tp'mætaɪzə'bılıti

Ian Mertz (U. of Toronto)

Short Proofs are Hard to Find

IAS, December 5, 2017 35 / 35

3

A D N A B N A B N A B N