Pebble Games and Complexity

Siu Man Chan
Princeton CCI
21 Jan, 2014 @ IAS

Circuit Evaluation Problem

Circuit Evaluation Problem

- Input:

$$
\begin{aligned}
\text { circuit } & C \\
\text { instance } & x
\end{aligned}
$$

Circuit Evaluation Problem

- Input: circuit C instance x
- Output: Result of evaluating C on x

Circuit Evaluation Problem

- Complete for P

Circuit Evaluation Problem

- Complete for P
- "Complete" for NC^{i} for restricted C of depth $\leq O\left(\log ^{i} n\right)$

Circuit Evaluation Problem

- Complete for P
- "Complete" for NC^{i} for restricted C of depth $\leq O\left(\log ^{i} n\right)$

$$
\mathrm{NC}^{i}=\quad \text { size } n^{O(1)}, \quad \text { depth } O\left(\log ^{i} n\right)
$$

Circuit Evaluation Problem

- Complete for P
- "Complete" for NC^{i} for restricted C of depth $\leq O\left(\log ^{i} n\right)$

$$
\begin{array}{rlr}
\mathrm{NC}^{i} & = & \text { size } n^{O(1)},
\end{array} \quad \text { depth } O\left(\log ^{i} n\right)
$$

Circuit Evaluation Problem

- Complete for P
- "Complete" for NC^{i} for restricted C of depth $\leq O\left(\log ^{i} n\right)$

$$
\begin{array}{rlr}
\mathrm{NC}^{i} & = & \text { size } n^{O(1)},
\end{array} \quad \text { depth } O\left(\log ^{i} n\right)
$$

$$
N C^{1} \subseteq N C^{2} \subseteq N C^{3} \subseteq \cdots \subseteq N C \subseteq P
$$

Circuit Evaluation Problem

- Complete for P
- "Complete" for NC^{i} for restricted C of depth $\leq O\left(\log ^{i} n\right)$

$$
\begin{array}{rlr}
\mathrm{NC}^{i} & = & \text { size } n^{O(1)},
\end{array} \quad \text { depth } O\left(\log ^{i} n\right)
$$

$$
\mathrm{NC}^{1} \subseteq \mathrm{~L} \subseteq \mathrm{NL} \subseteq \mathrm{NC}^{2} \subseteq \mathrm{NC}^{3} \subseteq \cdots \subseteq \mathrm{NC} \subseteq \mathrm{P}
$$

Circuit Evaluation Problem

- Complete for P
- "Complete" for NC^{i} for restricted C of depth $\leq O\left(\log ^{i} n\right)$

$$
\begin{array}{rlr}
\mathrm{NC}^{i} & = & \text { size } n^{O(1)},
\end{array} \quad \text { depth } O\left(\log ^{i} n\right)
$$

$$
\mathrm{NC}^{1} \subseteq \mathrm{~L} \subseteq \mathrm{NL} \subseteq \mathrm{NC}^{2} \subseteq \mathrm{NC}^{3} \subseteq \cdots \subseteq \mathrm{NC} \subseteq \mathrm{P}
$$

- Concerns space and parallel complexity

Circuit Evaluation Problem

- Complete for P
- "Complete" for NC^{i} for restricted C of depth $\leq O\left(\log ^{i} n\right)$

$$
\begin{array}{rlr}
\mathrm{NC}^{i} & = & \text { size } n^{O(1)},
\end{array} \quad \text { depth } O\left(\log ^{i} n\right)
$$

$$
\mathrm{NC}^{1} \subseteq \mathrm{~L} \subseteq \mathrm{NL} \subseteq \mathrm{NC}^{2} \subseteq \mathrm{NC}^{3} \subseteq \cdots \subseteq \mathrm{NC} \subseteq \mathrm{P}
$$

- Concerns space and parallel complexity
- Applications: Database query algorithms, Data flow models, Big Data computation, etc.

Black Pebble Game

Black Pebble Game

Algorithms for Circuit Evaluation

Black Pebble Game

Algorithms for Circuit Evaluation

- Rule 1: add pebble to v if all immediate predecessors of v are pebbled

Black Pebble Game

Algorithms for Circuit Evaluation

- Rule 1: add pebble to v if all immediate predecessors of v are pebbled

Black Pebble Game

Algorithms for Circuit Evaluation

- Rule 1: add pebble to v if all immediate predecessors of v are pebbled
- Rule 2: remove pebble at any time

Black Pebble Game

Algorithms for Circuit Evaluation

- Rule 1: add pebble to v if all immediate predecessors of v are pebbled
- Rule 2: remove pebble at any time
- Pebbled means value stored in memory

Black Pebble Game

Algorithms for Circuit Evaluation

- Rule 1: add pebble to v if all immediate predecessors of v are pebbled
- Rule 2: remove pebble at any time
- Pebbled means value stored in memory

Black Pebble Game

Algorithms for Circuit Evaluation

- Rule 1: add pebble to v if all immediate predecessors of v are pebbled
- Rule 2: remove pebble at any time
- Pebbled means value stored in memory

Black Pebble Game

Algorithms for Circuit Evaluation

- Rule 1: add pebble to v if all immediate predecessors of v are pebbled
- Rule 2: remove pebble at any time
- Pebbled means value stored in memory

Black Pebble Game

Algorithms for Circuit Evaluation

- Rule 1: add pebble to v if all immediate predecessors of v are pebbled
- Rule 2: remove pebble at any time

$$
\begin{aligned}
& \forall G \\
& \# \operatorname{Pebbles}(\mathrm{G}) \leq O(|G| / \log |G|) \\
& {[\text { Hopcroft-Paul-Valiant '77] }}
\end{aligned}
$$

Space needed $\leq O$ (\#Pebbles)

- Pebbled means value stored in memory

Black Pebble Game

Algorithms for Circuit Evaluation

$$
\operatorname{Time}[t] \subseteq \text { Space }[t / \log t]
$$

- Rule 1: add pebble to v if all immediate predecessors of v are pebbled
- Rule 2: remove pebble at any time
- Pebbled means value stored in memory

```
\forallG
#Pebbles(G) \leqO(|G|/log}|G|
[Hopcroft-Paul-Valiant '77]
```

Space needed $\leq O$ (\#Pebbles)

Lower Bounds by Pebble Games

Lower Bounds by Pebble Games

$$
N C^{1} \subseteq L \subseteq N L \subseteq N C^{2} \subseteq N C^{3} \subseteq \cdots \subseteq N C \subseteq P
$$

Lower Bounds by Pebble Games

$$
\begin{gathered}
\mathrm{NC}^{1} \subseteq \mathrm{~L} \subseteq \mathrm{NL} \subseteq \mathrm{NC}^{2} \subseteq \mathrm{NC}^{3} \subseteq \cdots \subseteq \mathrm{NC} \subseteq \mathrm{P} \\
\mathrm{~m}-\mathrm{NC}^{1} \subsetneq \mathrm{~m}-\mathrm{NL} \quad \text { m-circuits } \\
{[\text { Karchmer-Wigderson '90] }}
\end{gathered}
$$

Lower Bounds by Pebble Games

$$
\begin{aligned}
& \mathrm{NC}^{1} \subseteq \mathrm{~L} \subseteq \mathrm{NL} \subseteq \mathrm{NC}^{2} \subseteq \mathrm{NC}^{3} \subseteq \cdots \subseteq \mathrm{NC} \subseteq \mathrm{P} \\
& \mathrm{~m}-\mathrm{NC}^{1} \subsetneq \mathrm{~m}-\mathrm{NL} \text { m-circuits } \\
& \mathrm{m}-\mathrm{NC}^{1} \subsetneq \mathrm{~m}-\mathrm{NL} \text { [Karchmer-Wigderson '90] } \\
& \text { [R-circuits }
\end{aligned}
$$

Lower Bounds by Pebble Games

$$
\begin{aligned}
& \mathrm{NC}^{1} \subseteq \mathrm{~L} \subseteq \mathrm{NL} \subseteq \mathrm{NC}^{2} \subseteq \mathrm{NC}^{3} \subseteq \cdots \subseteq \mathrm{NC} \subseteq \mathrm{P} \\
& \mathrm{~m}-\mathrm{NC}^{1} \subsetneq \mathrm{~m}-\mathrm{NL} \text { m-circuits } \\
& \mathrm{m}_{\mathrm{N}} \mathrm{NC}^{1} \subsetneq \mathrm{~m}-\mathrm{NL} \text { m-circuits }
\end{aligned}
$$

Lower Bounds by Pebble Games

$$
\begin{aligned}
& \mathrm{NC}^{1} \subseteq \mathrm{~L} \subseteq \mathrm{NL} \subseteq \mathrm{NC}^{2} \subseteq \mathrm{NC}^{3} \subseteq \cdots \subseteq \mathrm{NC} \subseteq \mathrm{P} \\
& \mathrm{~m}-\mathrm{NC}^{1} \subsetneq \mathrm{~m} \text {-NL m-circuits } \\
& \text { [Karchmer-Wigderson '90] } \\
& \mathrm{m}-\mathrm{NC}^{1} \subsetneq \mathrm{~m}-\mathrm{NL} \\
& \mathrm{~m}-\mathrm{NC}^{i} \subsetneq \mathrm{~m}-\mathrm{NC}^{i+1} \quad \mathrm{~m} \text {-circuits } \quad \text { [Raz-McKenzie '99] } \\
& \mathrm{m}-\mathrm{NC} \subsetneq \mathrm{~m}-\mathrm{P} \\
& \mathrm{~m} \text { - L } \subsetneq \mathrm{m} \text {-NL m-switching-networks [Potechin '10] }
\end{aligned}
$$

Lower Bounds by Pebble Games

$$
\mathrm{NC}^{1} \subseteq \mathrm{~L} \subseteq \mathrm{NL} \subseteq \mathrm{NC}^{2} \subseteq \mathrm{NC}^{3} \subseteq \cdots \subseteq \mathrm{NC} \subseteq \mathrm{P}
$$

$\mathrm{m}-\mathrm{NC}^{1} \subsetneq \mathrm{~m}-\mathrm{NL}$	m-circuits	[Karchmer-Wigderson '90]
$\mathrm{m}-\mathrm{NC}^{1} \subsetneq \mathrm{~m}-\mathrm{NL}$		
$\mathrm{m}-\mathrm{NC}^{i} \subsetneq \mathrm{~m}-\mathrm{NC} C^{i+1}$	m-circuits	[Raz-McKenzie '99]
$\mathrm{m}-\mathrm{NC} \subsetneq \mathrm{m}-\mathrm{P}$		
$\mathrm{m}-\mathrm{L} \subsetneq \mathrm{m}-\mathrm{NL}$	m -switching-networks	[Potechin '10]
$\mathrm{m}-\mathrm{L} \subsetneq \mathrm{m}-\mathrm{NL}$		
	m-switching-networks	[C.-Potechin '12]

Lower Bounds by Pebble Games

$$
\mathrm{NC}^{1} \subseteq \mathrm{~L} \subseteq \mathrm{NL} \subseteq \mathrm{NC}^{2} \subseteq \mathrm{NC}^{3} \subseteq \cdots \subseteq \mathrm{NC} \subseteq \mathrm{P}
$$

$$
\begin{array}{r}
\mathrm{m}-\mathrm{NC}^{1} \subsetneq \mathrm{~m}-\mathrm{NL} \\
\mathrm{~m}-\mathrm{NC}^{1} \subsetneq \mathrm{~m}-\mathrm{NL} \\
\mathrm{~m}-\mathrm{NC}^{i} \subsetneq \mathrm{~m}-\mathrm{NC} C^{i+1} \\
\mathrm{~m}-\mathrm{NC} \subsetneq \mathrm{~m}-\mathrm{P} \\
\mathrm{~m}-\mathrm{L} \subsetneq \mathrm{~m}-\mathrm{NL} \\
\mathrm{~m}-\mathrm{L} \subsetneq \mathrm{~m}-\mathrm{NL} \\
\mathrm{~m}-\mathrm{NC} C^{i} \subsetneq \mathrm{~m}-\mathrm{NC} C^{i+1} \\
\mathrm{~m}-\mathrm{NC} \subsetneq \mathrm{~m}-\mathrm{P}
\end{array}
$$

m-circuits
[Karchmer-Wigderson '90]
[Raz-McKenzie '99]
m-switching-networks
[Potechin '10]
m-switching-networks

Lower Bounds by Pebble Games

$N C^{1} \subseteq L \subseteq N L \subseteq N C^{2} \subseteq N C^{3} \subseteq \cdots \subseteq N C \subseteq P$

```
        m-NC}\mp@subsup{}{}{1}\subsetneqm-NL m-circuit
        m-NC}\mp@subsup{}{}{1}\subsetneqm-N
        m-NC'}\subsetneq\textrm{m}-\mp@subsup{\textrm{NC}}{}{i+1
        m-NC\subsetneqm-P
        m-L \subsetneqm-NL
        m-switching-networks
        m-L \subsetneqm-NL
    m-NC'i}\subsetneqm-N\mp@subsup{C}{}{i+1
        m-NC\subsetneqm-P
sem-NC'i}\subsetneq sem-NC'i+1
        sem-NC \subsetneq sem-P
        sem-circuits
    [C. '13]
```


Lower Bounds by Pebble Games

$N C^{1} \subseteq L \subseteq N L \subseteq N C^{2} \subseteq N C^{3} \subseteq \cdots \subseteq N C \subseteq P$

$$
\begin{aligned}
& \mathrm{m}-\mathrm{NC}^{1} \subsetneq \mathrm{~m} \text {-NL m-circuits } \\
& \mathrm{m}-\mathrm{NC}^{1} \subsetneq \mathrm{~m}-\mathrm{NL} \\
& \mathrm{~m}-\mathrm{NC}^{i} \subsetneq \mathrm{~m}-\mathrm{NC}^{i+1} \quad \mathrm{~m} \text {-circuits } \\
& \mathrm{m}-\mathrm{NC} \subsetneq \mathrm{~m}-\mathrm{P} \\
& \mathrm{~m}-\mathrm{L} \subsetneq \mathrm{~m}-\mathrm{NL} \\
& \mathrm{~m}-\mathrm{L} \subsetneq \mathrm{~m}-\mathrm{NL} \\
& \begin{array}{r}
\mathrm{m}-\mathrm{NC}^{i} \subsetneq \mathrm{~m}-\mathrm{NC}^{i+1} \\
\mathrm{~m}-\mathrm{NC} \subsetneq \mathrm{~m}-\mathrm{P}
\end{array} \\
& \begin{array}{l}
\text { sem- } \mathrm{NC}^{i} \subsetneq \text { sem-NC } \mathrm{N}^{i+1} \\
\text { sem-NC } \subsetneq \text { sem-P }
\end{array} \quad \text { sem-circuits } \quad[C . \text { '13] } \\
& \text { [Karchmer-Wigderson '90] } \\
& \text { [Potechin '10] }
\end{aligned}
$$

[Raz-McKenzie '99] Raz-McKenzie pebble game

Reversible pebble game

Reversible pebble game

Dymond-Tompa pebble game Raz-McKenzie pebble game

Lower Bounds by Pebble Games

$$
\begin{array}{cll}
\mathrm{NC}^{1} \subseteq \mathrm{~L} \subseteq \mathrm{NL} \subseteq \mathrm{NC}^{2} \subseteq \mathrm{NC}^{3} \subseteq \cdots \subseteq \mathrm{NC} \subseteq \mathrm{P} \\
\mathrm{~m}-\mathrm{NC}{ }^{1} \subsetneq \mathrm{~m}-\mathrm{NL} & \text { m-circuits } & \text { [Karchmer-Wigderson '90] } \\
\begin{array}{r}
\mathrm{m}-\mathrm{NC}^{1} \subsetneq \mathrm{~m}-\mathrm{NL} \\
\mathrm{~m}-\mathrm{NC}^{i} \subsetneq \mathrm{~m}-\mathrm{NC} C^{i+1} \\
\mathrm{~m}-\mathrm{NC} \subsetneq \mathrm{~m}-\mathrm{P}
\end{array} & \mathrm{~m} \text {-circuits } & \text { [Raz-McKenzie '99] }
\end{array}
$$

Theorem ([c. '13])
$\forall G \quad$ Simulation of strategies among
Raz-McKenzie game, reversible game, and Dymond-Tompa game.

Lower Bounds by Pebble Games

$$
\begin{aligned}
& N C^{1} \subseteq L \subseteq N L \subseteq N C^{2} \subseteq N C^{3} \subseteq \cdots \subseteq N C \subseteq P \\
& \mathrm{~m}-\mathrm{NC}^{1} \subsetneq \mathrm{~m}-\mathrm{NL} \quad \mathrm{~m} \text {-circuits } \\
& \mathrm{m}-\mathrm{NC}^{1} \subsetneq \mathrm{~m}-\mathrm{NL} \\
& \mathrm{~m}-\mathrm{NC}^{i} \subsetneq \mathrm{~m}-\mathrm{NC}^{i+1} \quad \mathrm{~m} \text {-circuits } \quad \text { [Raz-McKenzie '99] Raz-McKenzie pebble game } \\
& \mathrm{m}-\mathrm{NC} \subsetneq \mathrm{~m}-\mathrm{P} \\
& \mathrm{~m}-\mathrm{L} \subsetneq \mathrm{~m} \text {-NL m-switching-networks [Potechin '10] } \\
& \mathrm{m}-\mathrm{L} \subsetneq \mathrm{~m}-\mathrm{NL} \\
& \mathrm{~m}-\mathrm{NC}^{i} \subsetneq \mathrm{~m}-\mathrm{NC}^{i+1} \\
& \text { m-switching-networks } \\
& \begin{array}{lll}
\text { sem- } \mathrm{NC}^{i} \subsetneq \text { sem-NC }{ }^{i+1} \\
\text { sem-NC } \subsetneq \text { sem-P } & \text { sem-circuits } & \text { [C. '13] }
\end{array}
\end{aligned}
$$

Theorem ([c. '13])
$\forall G \quad$ Simulation of strategies among
Raz-McKenzie game, reversible game, and Dymond-Tompa game.

Lower Bounds by Pebble Games

$$
\begin{aligned}
& N C^{1} \subseteq L \subseteq N L \subseteq N C^{2} \subseteq N C^{3} \subseteq \cdots \subseteq N C \subseteq P \\
& \mathrm{~m}-\mathrm{NC}^{1} \subsetneq \mathrm{~m}-\mathrm{L} \quad \text { m-circuits } \\
& \mathrm{m}-\mathrm{NC}^{1} \subsetneq \mathrm{~m}-\mathrm{L} \\
& \mathrm{~m}-\mathrm{NC}^{i} \subsetneq \mathrm{~m}-\mathrm{NC}^{i+1} \quad \mathrm{~m} \text {-circuits } \quad \text { [Raz-McKenzie '99] Raz-McKenzie pebble game } \\
& \mathrm{m}-\mathrm{NC} \subsetneq \mathrm{~m}-\mathrm{P} \\
& \mathrm{~m}-\mathrm{L} \subsetneq \mathrm{~m} \text {-NL m-switching-networks [Potechin '10] } \\
& \mathrm{m}-\mathrm{L} \subsetneq \mathrm{~m}-\mathrm{NL} \\
& \mathrm{~m}-\mathrm{NC}^{i} \subsetneq \mathrm{~m}-\mathrm{NC}^{i+1} \\
& \text { m-switching-networks } \\
& \begin{array}{l}
\text { sem- } \mathrm{NC}^{i} \subsetneq \text { sem-NC } \mathrm{N}^{i+1} \\
\text { sem-NC } \subsetneq \text { sem-P }
\end{array} \quad \text { sem-circuits } \quad \text { [C. '13] }
\end{aligned}
$$

Theorem ([c. '13])
$\forall G \quad$ Simulation of strategies among
Raz-McKenzie game, reversible game, and Dymond-Tompa game.

Semantic Circuit Bounds

Theorem (Karchmer-Wigderson)
Circuit Depth $=$ Communication Complexity

Semantic Circuit Bounds

Theorem (Karchmer-Wigderson)
Circuit Depth $=$ Communication Complexity
NC^{1} vs NC^{2} Universal composition relation [Edmonds-Impagiazzo-Rudich-Sgal ' 01$]$

Semantic Circuit Bounds

Theorem (Karchmer-Wigderson)
Circuit Depth $=$ Communication Complexity

$N C^{1}$ vs $N C^{2}$	Universal composition relation [Edmonds-Impagliazzo-Rudich-Sgall '01]
$N C^{1}$ vs NC^{2}	Universal composition relation [Håstad-Wigderson '97]

Semantic Circuit Bounds

Theorem (Karchmer-Wigderson)
 Circuit Depth $=$ Communication Complexity

$$
\begin{aligned}
& \mathrm{NC}^{1} \text { vs } \mathrm{NC}^{2} \text { Universal composition relation [Edmonds-Impagiazzo-Rudich-Sgal ' } 0 \text { I] } \\
& \mathrm{NC}^{1} \text { vs } \mathrm{NC}^{2} \text { Universal composition relation [HAstad-Wigderson '97] } \\
& \mathrm{NC}^{i} \text { vs } \mathrm{NC}^{i+1} \\
& \text { NC vs } P \text { Iterated indexing }
\end{aligned}
$$

Semantic Circuit Bounds

Theorem (Karchmer-Wigderson)
Circuit Depth $=$ Communication Complexity
NC^{1} vs NC^{2} Universal composition relation [Edmonds-Impagliazzo-Rudich-Sgall '01]
NC^{1} vs NC^{2} Universal composition relation [Håstad-Wigderson '97]
NC^{i} vs NC^{i+1}
NC vs P Iterated indexing
In the bounds for Iterated indexing:

- Upper bound by Dymond-Tompa game
- Lower bound by Raz-McKenzie game

Semantic Circuit Bounds

Theorem (Karchmer-Wigderson)
Circuit Depth $=$ Communication Complexity
$N C^{1}$ vs $N C^{2}$ Universal composition relation
[Edmonds-Impagliazzo-Rudich-Sgall '01] [Gavinsky-Meir-Weinstein-Wigderson '13]
N^{1} vs NC^{2} Universal composition relation [Hästad-Wigderson '97]
NC^{i} vs NC^{i+1}
NC vs P Iterated indexing
In the bounds for Iterated indexing:

- Upper bound by Dymond-Tompa game
- Lower bound by Raz-McKenzie game

My audience

- Parallel Complexity
- Space Complexity
- Randomised Complexity
- Communication Complexity
- Decision Tree Complexity (Certificate Complexity)
- Proof Complexity
- Algebraic Complexity

Reversible game

II

Dymond-Tompa game II
 Raz-McKenzie game

Reversible Pebble Game

Reversible Pebble Game

- Rule 1: add pebble to v if all immediate predecessors of v are pebbled

Reversible Pebble Game

- Rule 1: add pebble to v if all immediate predecessors of v are pebbled
- Rule 2: remove pebble if all
 immediate predecessors of v are pebbled

Reversible Pebble Game

- Rule 1: add pebble to v if all immediate predecessors of v are pebbled
- Rule 2: remove pebble if all immediate predecessors of v are pebbled

Reversible Pebble Game

- Reversible Computation [Bennett '73]:

Reversible Pebble Game

- Reversible Computation [Bennett '73]:
- May reduce energy dissipation

Reversible Pebble Game

- Reversible Computation [Bennett '73]:
- May reduce energy dissipation
- Observation-free quantum computation is reversible

Reversible Pebble Game

- Reversible Computation [Bennett '73]:
- May reduce energy dissipation
- Observation-free quantum computation is reversible
- Reversible simulation of irreversible computation [Bennett '89] [Li-Vitanyi '96, '97] [Král'ovič '01]

Reversible Pebble Game

- Reversible Computation [Bennett '73]:
- May reduce energy dissipation
- Observation-free quantum computation is reversible
- Reversible simulation of irreversible computation [Bennett '89] [Li-Vitanyi '96, '97] [Král'ovič '01]
- Monotone space lower bounds [Potechin '10] [c.-Potechin '12]:

Reversible Pebble Game

- Reversible Computation [Bennett '73]:
- May reduce energy dissipation
- Observation-free quantum computation is reversible
- Reversible simulation of irreversible computation [Bennett '89] [Li-Vitanyi '96, '97] [Král'ovič '01]
- Monotone space lower bounds [Potechin '10] [c.-Potechin '12]:
- Determinism equals reversibility/symmetry [Lange-McKenzie-Tapp '00] [Reingold '08]

Dymond-Tompa Pebble Game

Dymond-Tompa Pebble Game

- To design parallel algorithms [Dymond-Tompa '85, Gál-Jang '11]

Dymond-Tompa Pebble Game

- To design parallel algorithms [Dymond-Tompa ' 85 , Gall-Jang '11] Give parallel speed-ups (when \#processors is unbounded).

Dymond-Tompa Pebble Game

- To design parallel algorithms [Dymond-Tompa '85, Gál-Jang '11] Give parallel speed-ups (when \#processors is unbounded).
- Capture complexity classes and inclusions [Venkateswaran-Tompa '89]

Dymond-Tompa Pebble Game

- To design parallel algorithms [Dymond-Tompa '85, Gál-Jang '11] Give parallel speed-ups (when \#processors is unbounded).
- Capture complexity classes and inclusions [Venkateswaran-Tompa '89]
- (\#Pebble used) characterizes parallelism in $\mathrm{NC}^{i}, \mathrm{NC}, \mathrm{P}$, etc;

Dymond-Tompa Pebble Game

- To design parallel algorithms [Dymond-Tompa '85, Gál-Jang '11] Give parallel speed-ups (when \#processors is unbounded).
- Capture complexity classes and inclusions [Venkateswaran-Tompa '89]
- (\#Pebble used) characterizes parallelism in $\mathrm{NC}^{i}, \mathrm{NC}, \mathrm{P}$, etc;
- Simulates the inclusion of $\mathrm{NL} \subseteq \mathrm{NC}^{2}$.

Parallel Evaluation, Recursively

To compute the value at a

Parallel Evaluation, Recursively

To compute the value at a

1. Pick a node, say c

Parallel Evaluation, Recursively

To compute the value at a

1. Pick a node, say c
2. In parallel, do

Parallel Evaluation, Recursively

To compute the value at a

1. Pick a node, say c
2. In parallel, do

- Compute the value at c

Parallel Evaluation, Recursively

To compute the value at a

1. Pick a node, say c
2. In parallel, do

- Compute the value at c
- For each possible value v_{c} of c, assume v_{c} is correct and compute the value at a

Parallel Evaluation, Recursively

To compute the value at a

1. Pick a node, say c
2. In parallel, do

- Compute the value at c
- For each possible value v_{c} of c, assume v_{c} is correct and compute the value at a

3. Recurse!

Parallel Evaluation, Recursively

To compute the value at a

1. Pick a node, say c
2. In parallel, do

- Compute the value at c
- For each possible value v_{c} of c, assume v_{c} is correct and compute the value at a

3. Recurse!
4. Combine the results in Step 2 in constant time

Parallel Evaluation, Recursively

Dymond-Tompa Game

- Two players: Pebbler and Challenger, competitive

Dymond-Tompa Game

- Two players: Pebbler and Challenger, competitive
- Alternate to move, Pebbler moves first

Dymond-Tompa Game

- Two players: Pebbler and Challenger, competitive
- Alternate to move, Pebbler moves first
- Initial Set-up:

Dymond-Tompa Game

- Two players: Pebbler and Challenger, competitive
- Alternate to move, Pebbler moves first
- Initial Set-up:
- Pebbler pebbles sink

Dymond-Tompa Game

- Two players: Pebbler and Challenger, competitive
- Alternate to move, Pebbler moves first
- Initial Set-up:
- Pebbler pebbles sink
- Challenger challenges sink (exactly one pebbled node is challenged any time)

Dymond-Tompa Game

- Two players: Pebbler and Challenger, competitive
- Alternate to move, Pebbler moves first
- Initial Set-up:
- Pebbler pebbles sink
- Challenger challenges sink (exactly one pebbled node is challenged any time)
- Each round:

Dymond-Tompa Game

- Two players: Pebbler and Challenger, competitive
- Alternate to move, Pebbler moves first
- Initial Set-up:
- Pebbler pebbles sink
- Challenger challenges sink (exactly one pebbled node is challenged any time)
- Each round:
- Pebbler chooses a node to pebble

Dymond-Tompa Game

- Two players: Pebbler and Challenger, competitive
- Alternate to move, Pebbler moves first
- Initial Set-up:
- Pebbler pebbles sink
- Challenger challenges sink (exactly one pebbled node is challenged any time)
- Each round:
- Pebbler chooses a node to pebble
- Challenger chooses to stay or jump

Dymond-Tompa Game

- Two players: Pebbler and Challenger, competitive
- Alternate to move, Pebbler moves first
- Initial Set-up:
- Pebbler pebbles sink
- Challenger challenges sink (exactly one pebbled node is challenged any time)
- Each round:
- Pebbler chooses a node to pebble
- Challenger chooses to stay or jump
- Pebbler wins if, before she moves, the challenged node has all immediate predecessors pebbled

Dymond-Tompa Game

- Two players: Pebbler and Challenger, competitive
- Alternate to move, Pebbler moves first
- Initial Set-up:
- Pebbler pebbles sink
- Challenger challenges sink (exactly one pebbled node is challenged any time)
- Each round:
- Pebbler chooses a node to pebble
- Challenger chooses to stay or jump
- Pebbler wins if, before she moves, the challenged node has all immediate predecessors pebbled
- Challenger aims to delay the inevitable

Raz-McKenzie Pebble Game

Raz-McKenzie Pebble Game

- Give depth lower bounds to monotone circuits [Raz-McKenzie '99]

Raz-McKenzie Pebble Game

- Give depth lower bounds to monotone circuits [Raz-McKenzie '99] Motivated by decision tree complexity of search problems
[Lovász-Naor-Newman-Wigderson '95]

Raz-McKenzie Pebble Game

- Give depth lower bounds to monotone circuits [Raz-McKenzie '99] Motivated by decision tree complexity of search problems
[Lovász-Naor-Newman-Wigderson '95]
- Applications to Proof Complexity:
- Inspired pebbling contradictions (next slide)

Raz-McKenzie Pebble Game

- Give depth lower bounds to monotone circuits [Raz-McKenzie '99] Motivated by decision tree complexity of search problems
[Lovász-Naor-Newman-Wigderson '95]
- Applications to Proof Complexity:
- Inspired pebbling contradictions (next slide)
- Separation and Trade-off Results:
- Cutting plane refutations [Bonet-Esteban-Galesi-Galesi '98]
- Treelike resolution refutations [Ben-Sasson-Impagliazzo-Wigderson '04] [Urquhart '11]
- Regular resolution refutations [Alekhnovich-Johannsen-Pitassi-Urquhart '07]
- Clause learning algorithms [Beame-Impagliazzo-Pitassi-Segerlind '10]
- Nullstellenzatz and Polynomial Calculus [Buresh-Oppenheim-Clegg-Impagliazzo-Pitassi '02]
- k-DNF resolution refutation [Esteban-Galesi-Messner '04]

Raz-McKenzie Pebble Game

- Give depth lower bounds to monotone circuits [Raz-McKenzie '99] Motivated by decision tree complexity of search problems
[Lovász-Naor-Newman-Wigderson '95]
- Applications to Proof Complexity:
- Inspired pebbling contradictions (next slide)
- Separation and Trade-off Results:
- Cutting plane refutations [Bonet-Esteban-Galesi-Galesi '98]
- Treelike resolution refutations [Ben-Sasson-Impagliazzo-Wigderson '04] [Urquhart '11]
- Regular resolution refutations [Alekhnovich-Johannsen-Pitassi-Urquhart '07]
- Clause learning algorithms [Beame-Impagliazzo-Pitassi-Segerlind '10]
- Nullstellenzatz and Polynomial Calculus [Buresh-Oppenheim-Clegg-Impagliazzo-Pitassi '02]
- k-DNF resolution refutation [Esteban-Galesi-Messner '04]
- Depth of resolution refutation [c. '13]

Pebbling Contradictions

- Given G, construct an unsatisfiable CNF Σ_{G} :

Pebbling Contradictions

- Given G, construct an unsatisfiable CNF Σ_{G} :
- One variable per node

Pebbling Contradictions

- Given G, construct an unsatisfiable CNF Σ_{G} :
- One variable per node
- Add the following clauses:

Source All source variables are True,

Pebbling Contradictions

- Given G, construct an unsatisfiable CNF Σ_{G} :
- One variable per node
- Add the following clauses:

Source All source variables are True, Implication Truth propagates through the graph,

Pebbling Contradictions

- Given G, construct an unsatisfiable CNF Σ_{G} :
- One variable per node
- Add the following clauses:

Source All source variables are True, Implication Truth propagates through the graph,

Sink The sink variable is false.

Pebbling Contradictions

- Given G, construct an unsatisfiable CNF Σ_{G} :
- One variable per node
- Add the following clauses:

Source All source variables are True, Implication Truth propagates through the graph, Sink The sink variable is false.

Example:

Pebbling Contradictions

- Given G, construct an unsatisfiable CNF Σ_{G} :
- One variable per node
- Add the following clauses:

Source All source variables are True, Implication Truth propagates through the graph, Sink The sink variable is false.

$$
d
$$

Example:

Pebbling Contradictions

- Given G, construct an unsatisfiable CNF Σ_{G} :
- One variable per node
- Add the following clauses:

Source All source variables are True, Implication Truth propagates through the graph, Sink The sink variable is false.

$$
d
$$

e
Example:

Pebbling Contradictions

- Given G, construct an unsatisfiable CNF Σ_{G} :
- One variable per node
- Add the following clauses:

Source All source variables are True, Implication Truth propagates through the graph, Sink The sink variable is false.

$$
d
$$

e
Example:
f

Pebbling Contradictions

- Given G, construct an unsatisfiable CNF Σ_{G} :
- One variable per node
- Add the following clauses:

Source All source variables are True, Implication Truth propagates through the graph, Sink The sink variable is false.

$$
d
$$

e
Example:
f

$$
d \wedge e \Rightarrow b \quad \bar{d} \vee \bar{e} \vee b
$$

Pebbling Contradictions

- Given G, construct an unsatisfiable CNF Σ_{G} :
- One variable per node
- Add the following clauses:

Source All source variables are True, Implication Truth propagates through the graph, Sink The sink variable is false.

$$
d
$$

e
Example:
$d \wedge e \Rightarrow b$
$\bar{d} \vee \bar{e} \vee b$
$e \wedge f \Rightarrow c \quad \bar{e} \vee \bar{f} \vee c$

Pebbling Contradictions

- Given G, construct an unsatisfiable CNF Σ_{G} :
- One variable per node
- Add the following clauses:

Source All source variables are True, Implication Truth propagates through the graph, Sink The sink variable is false.

$$
d
$$

e
Example:
$d \wedge e \Rightarrow b$
f
$\begin{array}{ll}e \wedge f \Rightarrow c & \bar{e} \vee \bar{f} \vee c \\ b \wedge c \Rightarrow a & \bar{b} \vee \bar{c} \vee a\end{array}$

Pebbling Contradictions

- Given G, construct an unsatisfiable CNF Σ_{G} :
- One variable per node
- Add the following clauses:

Source All source variables are True, Implication Truth propagates through the graph, Sink The sink variable is false.

$$
d
$$

e
Example:
$d \wedge e \Rightarrow b$
f
$\begin{array}{ll}e \wedge f \Rightarrow c & \bar{e} \vee \bar{f} \vee c \\ b \wedge c \Rightarrow a & \bar{b} \vee \bar{c} \vee a \\ & \bar{a}\end{array}$

Pebbling Contradictions

- Given G, construct an unsatisfiable CNF Σ_{G} :
- One variable per node
- Add the following clauses:

Source All source variables are True, Implication Truth propagates through the graph, Sink The sink variable is false.

Resolution refutation of minimum depth for Σ_{G}.

Resolution Refutation

Resolution Refutation

$$
\text { Resolution Step: } \frac{A \vee x B \vee \bar{x}}{A \vee B}
$$

Resolution Refutation

Resolution Step: $\frac{A \vee x B \vee \bar{x}}{A \vee B}$

Resolution Refutation

Resolution Step: $\frac{A \vee x B \vee \bar{x}}{A \vee B}$

Resolution Refutation

Resolution Step: $\frac{A \vee x B \vee \bar{x}}{A \vee B}$

Resolution Refutation

Resolution Step: $\frac{A \vee x B \vee \bar{x}}{A \vee B}$

Resolution Refutation

Resolution Step: $\frac{A \vee x B \vee \bar{x}}{A \vee B}$

Partial Assignment on Resolution Refutation

- When a branch grows to a clause of Σ_{G}, this partial assignment falsifies the clause

Partial Assignment on Resolution Refutation

- When a branch grows to a clause of Σ_{G}, this partial assignment falsifies the clause
- If this partial assignment does not falsify any clause of Σ_{G}, then the branch must grow deeper!

Partial Assignment on Resolution Refutation

- When a branch grows to a clause of Σ_{G}, this partial assignment falsifies the clause
- If this partial assignment does not falsify any clause of Σ_{G}, then the branch must grow deeper!
- To falsify a clause from Σ_{G} :

Source d set d to FALSE
Implication $\bar{b} \vee \bar{c} \vee a$ set b, c to True, a to False
Sink \bar{a} set a to True

Partial Assignment on Resolution Refutation

- When a branch grows to a clause of Σ_{G}, this partial assignment falsifies the clause
- If this partial assignment does not falsify any clause of Σ_{G}, then the branch must grow deeper!
- To falsify a clause from Σ_{G} :

Source	d	set d to False
Implication $\bar{b} \vee \bar{c} \vee a$	set b, c to True, a to False	
Sink \bar{a}	set a to True	

- Adversary Argument:
- When a variable is queried, answer True or False

Partial Assignment on Resolution Refutation

- When a branch grows to a clause of Σ_{G}, this partial assignment falsifies the clause
- If this partial assignment does not falsify any clause of Σ_{G}, then the branch must grow deeper!
- To falsify a clause from Σ_{G} :

Source	d	set d to False
Implication $\bar{b} \vee \bar{c} \vee a$	set b, c to True, a to False	
Sink \bar{a}	set a to True	

- Adversary Argument:
- When a variable is queried, answer True or False
- Try to avoid falsifying a clause from Σ_{G} (as above)

Partial Assignment on Resolution Refutation

- When a branch grows to a clause of Σ_{G}, this partial assignment falsifies the clause
- If this partial assignment does not falsify any clause of Σ_{G}, then the branch must grow deeper!
- To falsify a clause from Σ_{G} :

Source	\bar{d}	set d to False
Implication $\bar{b} \vee \bar{c} \vee a$	set b, c to True, a to False	
Sink \bar{a}	set a to True	

- Adversary Argument:
- When a variable is queried, answer True or False
- Try to avoid falsifying a clause from Σ_{G} (as above)
- Number of answers before falsifying \leq depth of resolution refutation

Raz-McKenzie Pebble Game

- Two players: Pebbler and Colourer, competitive

Raz-McKenzie Pebble Game

- Two players: Pebbler and Colourer, competitive
- Alternate to move, Pebbler moves first

Raz-McKenzie Pebble Game

- Two players: Pebbler and Colourer, competitive
- Alternate to move, Pebbler moves first
- Each round:

Raz-McKenzie Pebble Game

- Two players: Pebbler and Colourer, competitive
- Alternate to move, Pebbler moves first
- Each round:
- Pebbler chooses a node to pebble

Raz-McKenzie Pebble Game

- Two players: Pebbler and Colourer, competitive
- Alternate to move, Pebbler moves first
- Each round:
- Pebbler chooses a node to pebble
- Colourer chooses to colour it True or FALSE

Raz-McKenzie Pebble Game

- Two players: Pebbler and Colourer, competitive
- Alternate to move, Pebbler moves first
- Each round:
- Pebbler chooses a node to pebble
- Colourer chooses to colour it True or False
- Pebbler wins if, before she moves, some FAlSe node has all immediate predecessors True (source and sink are treated analogously)

Raz-McKenzie Pebble Game

- Two players: Pebbler and Colourer, competitive
- Alternate to move, Pebbler moves first
- Each round:
- Pebbler chooses a node to pebble
- Colourer chooses to colour it True or False
- Pebbler wins if, before she moves, some False node has all immediate predecessors True (source and sink are treated analogously)
- Colourer aims to delay the inevitable

Raz-McKenzie Pebble Game

- Two players: Pebbler and Colourer, competitive
- Alternate to move, Pebbler moves first
- Each round:
- Pebbler chooses a node to pebble
- Colourer chooses to colour it True or False
- Pebbler wins if, before she moves, some False node has all immediate predecessors True (source and sink are treated analogously)
- Colourer aims to delay the inevitable
- Is exactly the depth of resolution refutation for Σ_{G} [c. '13]

Raz-McKenzie Pebble Game

- Two players: Pebbler and Colourer, competitive
- Alternate to move, Pebbler moves first
- Each round:
- Pebbler chooses a node to pebble
- Colourer chooses to colour it True or False
- Pebbler wins if, before she moves, some False node has all immediate predecessors True (source and sink are treated analogously)
- Colourer aims to delay the inevitable
- Is exactly the depth of resolution refutation for Σ_{G} [c. '13]
- Colourer strategy gives lower bound

Raz-McKenzie Pebble Game

- Two players: Pebbler and Colourer, competitive
- Alternate to move, Pebbler moves first
- Each round:
- Pebbler chooses a node to pebble
- Colourer chooses to colour it True or False
- Pebbler wins if, before she moves, some False node has all immediate predecessors True (source and sink are treated analogously)
- Colourer aims to delay the inevitable
- Is exactly the depth of resolution refutation for Σ_{G} [c. '13]
- Colourer strategy gives lower bound
- Pebbler strategy gives upper bound

Raz-McKenzie Pebble Game

- Two players: Pebbler and Colourer, competitive
- Alternate to move, Pebbler moves first
- Each round:
- Pebbler chooses a node to pebble
- Colourer chooses to colour it True or False
- Pebbler wins if, before she moves, some False node has all immediate predecessors True (source and sink are treated analogously)
- Colourer aims to delay the inevitable
- Add an initial set-up to make it more like Dymond-Tompa game.

Raz-McKenzie pebble game

- Two players: Pebbler and Colourer, competitive
- Alternate to move, Pebbler moves first
- Initial Set-up:
- Pebbler pebbles sink
- Colourer colours sink FALSE
- Each round:
- Pebbler chooses a node to pebble
- Colourer chooses to colour it True or False
- Pebbler wins if, before she moves, some FAlSE node has all immediate predecessors True
- Colourer aims to delay the inevitable

Raz-McKenzie pebble game

- Two players: Pebbler and Colourer, competitive
- Alternate to move, Pebbler moves first
- Initial Set-up:
- Pebbler pebbles sink
- Colourer colours sink FALSE
- Each round:
- Pebbler chooses a node to pebble
- Colourer chooses to colour it True or False
- Pebbler wins if, before she moves, some False node has all immediate predecessors True
- Colourer aims to delay the inevitable

Dymond-Tompa pebble game

- Two players: Pebbler and Challenger, competitive
- Alternate to move, Pebbler moves first
- Initial Set-up:
- Pebbler pebbles sink
- Challenger challenges sink
- Each round:
- Pebbler chooses a node to pebble
- Challenger chooses to stay or jump
- Pebbler wins if, before she moves, the challenged node has all immediate predecessors pebbled
- Challenger aims to delay the inevitable

Dymond-Tompa Game $=$ Raz-McKenzie Game

- Simulation argument (reduction in combinatorial game):

Dymond-Tompa Game $=$ Raz-McKenzie Game

- Simulation argument (reduction in combinatorial game):

1. Turn a Colourer strategy (Raz-McKenzie game) into a Challenger strategy (Dymond-Tompa game).

Dymond-Tompa Game $=$ Raz-McKenzie Game

- Simulation argument (reduction in combinatorial game):

1. Turn a Colourer strategy (Raz-McKenzie game) into a Challenger strategy (Dymond-Tompa game).
2. If the Dymond-Tompa game is over, so is the Raz-McKenzie game.

Dymond-Tompa Game $=$ Raz-McKenzie Game

- Simulation argument (reduction in combinatorial game):

1. Turn a Colourer strategy (Raz-McKenzie game) into a Challenger strategy (Dymond-Tompa game).
2. If the Dymond-Tompa game is over, so is the Raz-McKenzie game.
3. Implies Dymond-Tompa \#Pebble \geq Raz-McKenzie \#Pebble.

Dymond-Tompa Game $=$ Raz-McKenzie Game

- Simulation argument (reduction in combinatorial game):

1. Turn a Colourer strategy (Raz-McKenzie game) into a Challenger strategy (Dymond-Tompa game).
2. If the Dymond-Tompa game is over, so is the Raz-McKenzie game.
3. Implies Dymond-Tompa \#Pebble \geq Raz-McKenzie \#Pebble.

Colourer strategy \Rightarrow Challenger strategy:

Dymond-Tompa Game $=$ Raz-McKenzie Game

- Simulation argument (reduction in combinatorial game):

1. Turn a Colourer strategy (Raz-McKenzie game) into a Challenger strategy (Dymond-Tompa game).
2. If the Dymond-Tompa game is over, so is the Raz-McKenzie game.
3. Implies Dymond-Tompa \#Pebble \geq Raz-McKenzie \#Pebble.

Colourer strategy \Rightarrow Challenger strategy:

- Assume c is challenged. If v is pebbled, see what a Colourer would do, and Challenger:

Dymond-Tompa Game $=$ Raz-McKenzie Game

- Simulation argument (reduction in combinatorial game):

1. Turn a Colourer strategy (Raz-McKenzie game) into a Challenger strategy (Dymond-Tompa game).
2. If the Dymond-Tompa game is over, so is the Raz-McKenzie game.
3. Implies Dymond-Tompa \#Pebble \geq Raz-McKenzie \#Pebble.

Colourer strategy \Rightarrow Challenger strategy:

- Assume c is challenged. If v is pebbled, see what a Colourer would do, and Challenger:
- jump if v is a predecessor of c, and v is coloured FALSE
- stay otherwise

Simulation Argument

Colourer strategy \Rightarrow Challenger strategy:

- Assume c is challenged. If v is pebbled, see what a Colourer would do, and Challenger:
- jump if v is a predecessor of c, and v is coloured False
- stay otherwise

Simulation Argument

Colourer strategy \Rightarrow Challenger strategy:

- Assume c is challenged. If v is pebbled, see what a Colourer would do, and Challenger:
- jump if v is a predecessor of c, and v is coloured False
- stay otherwise

If Dymond-Tompa game is over, so is Raz-McKenzie game.

Simulation Argument

Colourer strategy \Rightarrow Challenger strategy:

- Assume c is challenged. If v is pebbled, see what a Colourer would do, and Challenger:
- jump if v is a predecessor of c, and v is coloured False
- stay otherwise

If Dymond-Tompa game is over, so is Raz-McKenzie game.

- Invariant: challenged node c is the 'earliest' FalSE node.

Simulation Argument

Colourer strategy \Rightarrow Challenger strategy:

- Assume c is challenged. If v is pebbled, see what a Colourer would do, and Challenger:
- jump if v is a predecessor of c, and v is coloured False
- stay otherwise

If Dymond-Tompa game is over, so is Raz-McKenzie game.

- Invariant: challenged node c is the 'earliest' FALSE node.
- Proof: by induction. \square

Simulation Argument

Colourer strategy \Rightarrow Challenger strategy:

- Assume c is challenged. If v is pebbled, see what a Colourer would do, and Challenger:
- jump if v is a predecessor of c, and v is coloured False
- stay otherwise

If Dymond-Tompa game is over, so is Raz-McKenzie game.

- Invariant: challenged node c is the 'earliest' False node.
- Proof: by induction.

- When Dymond-Tompa game is over:

Simulation Argument

Colourer strategy \Rightarrow Challenger strategy:

- Assume c is challenged. If v is pebbled, see what a Colourer would do, and Challenger:
- jump if v is a predecessor of c, and v is coloured False
- stay otherwise

If Dymond-Tompa game is over, so is Raz-McKenzie game.

- Invariant: challenged node c is the 'earliest' False node.
- Proof: by induction.

- When Dymond-Tompa game is over:
- c is pebbled,
- all immediate predecessors of c are pebbled,

Simulation Argument

Colourer strategy \Rightarrow Challenger strategy:

- Assume c is challenged. If v is pebbled, see what a Colourer would do, and Challenger:
- jump if v is a predecessor of c, and v is coloured False
- stay otherwise

If Dymond-Tompa game is over, so is Raz-McKenzie game.

- Invariant: challenged node c is the 'earliest' False node.
- Proof: by induction.

- When Dymond-Tompa game is over:
- c is pebbled (False),
- all immediate predecessors of c are pebbled (True),

Simulation Argument

Colourer strategy \Rightarrow Challenger strategy:

- Assume c is challenged. If v is pebbled, see what a Colourer would do, and Challenger:
- jump if v is a predecessor of c, and v is coloured False
- stay otherwise

If Dymond-Tompa game is over, so is Raz-McKenzie game.

- Invariant: challenged node c is the 'earliest' False node.
- Proof: by induction.

- When Dymond-Tompa game is over:
- c is pebbled (False),
- all immediate predecessors of c are pebbled (True),
- Raz-McKenzie game is over. \square

Summary of Results

- Equivalence of Pebble Games
- Reversible Pebble Game
- Dymond-Tompa Pebble Game
- Raz-McKenzie Pebble Game

Summary of Results

- Equivalence of Pebble Games
- Reversible Pebble Game
- Dymond-Tompa Pebble Game
- Raz-McKenzie Pebble Game
- Relations to Computational Complexity
- Restricted lower bounds
- Depth complexity of circuits

Summary of Results

- Equivalence of Pebble Games
- Reversible Pebble Game
- Dymond-Tompa Pebble Game
- Raz-McKenzie Pebble Game
- Relations to Computational Complexity
- Restricted lower bounds
- Depth complexity of circuits
- Applications to Proof Complexity
- Depth of resolution refutations
- Size of Tree-Like resolution refutations

Summary of Results

- Equivalence of Pebble Games
- Reversible Pebble Game
- Dymond-Tompa Pebble Game
- Raz-McKenzie Pebble Game
- Relations to Computational Complexity
- Restricted lower bounds
- Depth complexity of circuits
- Applications to Proof Complexity
- Depth of resolution refutations
- Size of Tree-Like resolution refutations
- Complexity of Pebble Games
- PSPACE-complete

Summary of Results

- Equivalence of Pebble Games
- Reversible Pebble Game
- Dymond-Tompa Pebble Game
- Raz-McKenzie Pebble Game
- Relations to Computational Complexity
- Restricted lower bounds
- Depth complexity of circuits
- Applications to Proof Complexity
- Depth of resolution refutations
- Size of Tree-Like resolution refutations
- Complexity of Pebble Games
- PSPACE-complete (bounded fan-in)

Other Approaches

Other Approaches

Lower Bounds by Communication Complexity
Multi-party pointer jumping
[Chakrabarti '07] [Brody-Chakrabarti '08] [Viola-Wigderson '09] $\quad \mathrm{ACC}^{0} \stackrel{?}{=} \mathrm{P}$

Other Approaches

Lower Bounds by Communication Complexity
Multi-party pointer jumping
[Chakrabarti '07] [Brody-Chakrabarti '08] [Viola-Wigderson '09]
Extensions of Karchmer-Wigderson framework

```
[Aaronson-Wigderson '09]
[Kol-Raz '13]
```

$$
\mathrm{ACC}^{0} \stackrel{?}{=} \mathrm{P}
$$

$N L \stackrel{?}{=} N P$
$N C \stackrel{?}{=} P$

Other Approaches

Lower Bounds by Communication Complexity Multi-party pointer jumping
[Chakrabarti '07] [Brody-Chakrabarti' ${ }^{08]}$ [Viola-Wigderson '00] $\quad \mathrm{ACC}^{0} \stackrel{?}{=} \mathrm{P}$
Extensions of Karchmer-Wigderson framework
[Aaronson-Wigderson '09]
[Kol-Raz '13]

$$
\begin{aligned}
& \mathrm{NL} \stackrel{?}{=} N P \\
& N C \stackrel{?}{=} \mathrm{P}
\end{aligned}
$$

Size and Depth of Circuits
[Allender-Koucký '10]

$$
\begin{gathered}
\mathrm{TC}^{0} \stackrel{?}{=} \mathrm{NC}^{1} \\
\mathrm{NC} \stackrel{?}{=} \mathrm{P}
\end{gathered}
$$

Other Approaches

Lower Bounds by Communication Complexity
Multi-party pointer jumping
[Chakrabarti '07] [Brody-Chakrabarti '08] [Viola-Wigderson '09]

$$
\mathrm{ACC}^{0} \stackrel{?}{=} \mathrm{P}
$$

Extensions of Karchmer-Wigderson framework

```
[Aaronson-Wigderson '09]
[Kol-Raz '13]
```

$N L \stackrel{?}{=} N P$
$N C \stackrel{?}{=} P$

Size and Depth of Circuits
[Allender-Koucký '10]
[Lipton-Williams '12]

$$
\begin{gathered}
\mathrm{TC}^{0} \stackrel{?}{=} \mathrm{NC}^{1} \\
\mathrm{NC} \stackrel{?}{=} \mathrm{P}
\end{gathered}
$$

Geometric Complexity Theory
[Mulmuley-Sohoni '01 '08]
$\mathrm{VP} \stackrel{?}{=} \mathrm{VNP}$

Questions

