
Pebble Games and Complexity

Siu Man Chan

Princeton CCI

21 Jan, 2014 @ IAS

Circuit Evaluation Problem

∧

∨ ∧

∧ ∨ ∧

x2 x1 x2 x̄1

I Input:
circuit C

instance x

I Output:
Result of evaluating C on x

Circuit Evaluation Problem

∧

∨ ∧

∧ ∨ ∧

x2 x1 x2 x̄1

I Input:
circuit C

instance x

I Output:
Result of evaluating C on x

Circuit Evaluation Problem

∧

∨ ∧

∧ ∨ ∧

x2 x1 x2 x̄1

I Input:
circuit C

instance x

I Output:
Result of evaluating C on x

Circuit Evaluation Problem

I Complete for P

I “Complete” for NCi for restricted C of depth ≤ O(logi n)

NCi = size nO(1), depth O(logi n)

≈ processors nO(1), parallel time O(logi n)

NC1 ⊆ NC2 ⊆ NC3 ⊆ · · · ⊆ NC ⊆ P

I Concerns space and parallel complexity

I Applications: Database query algorithms, Data flow models,
Big Data computation, etc.

Circuit Evaluation Problem

I Complete for P

I “Complete” for NCi for restricted C of depth ≤ O(logi n)

NCi = size nO(1), depth O(logi n)

≈ processors nO(1), parallel time O(logi n)

NC1 ⊆ NC2 ⊆ NC3 ⊆ · · · ⊆ NC ⊆ P

I Concerns space and parallel complexity

I Applications: Database query algorithms, Data flow models,
Big Data computation, etc.

Circuit Evaluation Problem

I Complete for P

I “Complete” for NCi for restricted C of depth ≤ O(logi n)

NCi = size nO(1), depth O(logi n)

≈ processors nO(1), parallel time O(logi n)

NC1 ⊆ NC2 ⊆ NC3 ⊆ · · · ⊆ NC ⊆ P

I Concerns space and parallel complexity

I Applications: Database query algorithms, Data flow models,
Big Data computation, etc.

Circuit Evaluation Problem

I Complete for P

I “Complete” for NCi for restricted C of depth ≤ O(logi n)

NCi = size nO(1), depth O(logi n)

≈ processors nO(1), parallel time O(logi n)

NC1 ⊆ NC2 ⊆ NC3 ⊆ · · · ⊆ NC ⊆ P

I Concerns space and parallel complexity

I Applications: Database query algorithms, Data flow models,
Big Data computation, etc.

Circuit Evaluation Problem

I Complete for P

I “Complete” for NCi for restricted C of depth ≤ O(logi n)

NCi = size nO(1), depth O(logi n)

≈ processors nO(1), parallel time O(logi n)

NC1 ⊆ NC2 ⊆ NC3 ⊆ · · · ⊆ NC ⊆ P

I Concerns space and parallel complexity

I Applications: Database query algorithms, Data flow models,
Big Data computation, etc.

Circuit Evaluation Problem

I Complete for P

I “Complete” for NCi for restricted C of depth ≤ O(logi n)

NCi = size nO(1), depth O(logi n)

≈ processors nO(1), parallel time O(logi n)

NC1 ⊆ L ⊆ NL ⊆ NC2 ⊆ NC3 ⊆ · · · ⊆ NC ⊆ P

I Concerns space and parallel complexity

I Applications: Database query algorithms, Data flow models,
Big Data computation, etc.

Circuit Evaluation Problem

I Complete for P

I “Complete” for NCi for restricted C of depth ≤ O(logi n)

NCi = size nO(1), depth O(logi n)

≈ processors nO(1), parallel time O(logi n)

NC1 ⊆ L ⊆ NL ⊆ NC2 ⊆ NC3 ⊆ · · · ⊆ NC ⊆ P

I Concerns space and parallel complexity

I Applications: Database query algorithms, Data flow models,
Big Data computation, etc.

Circuit Evaluation Problem

I Complete for P

I “Complete” for NCi for restricted C of depth ≤ O(logi n)

NCi = size nO(1), depth O(logi n)

≈ processors nO(1), parallel time O(logi n)

NC1 ⊆ L ⊆ NL ⊆ NC2 ⊆ NC3 ⊆ · · · ⊆ NC ⊆ P

I Concerns space and parallel complexity

I Applications: Database query algorithms, Data flow models,
Big Data computation, etc.

Black Pebble Game

∧

∨ ∧

∧ ∨ ∧

x2 x1 x2 x̄1

⇒

Black Pebble Game

Algorithms for Circuit Evaluation

I Rule 1: add pebble to v if
all immediate predecessors
of v are pebbled

I Rule 2: remove pebble at
any time

I Pebbled means value stored
in memory

.

⇒
.

⇒

Black Pebble Game

Algorithms for Circuit Evaluation

I Rule 1: add pebble to v if
all immediate predecessors
of v are pebbled

I Rule 2: remove pebble at
any time

I Pebbled means value stored
in memory

.

⇒
.

⇒

Black Pebble Game

Algorithms for Circuit Evaluation

I Rule 1: add pebble to v if
all immediate predecessors
of v are pebbled

I Rule 2: remove pebble at
any time

I Pebbled means value stored
in memory

.

⇒
.

⇒

Black Pebble Game

Algorithms for Circuit Evaluation

I Rule 1: add pebble to v if
all immediate predecessors
of v are pebbled

I Rule 2: remove pebble at
any time

I Pebbled means value stored
in memory

.

⇒
.

Black Pebble Game

Algorithms for Circuit Evaluation

I Rule 1: add pebble to v if
all immediate predecessors
of v are pebbled

I Rule 2: remove pebble at
any time

I Pebbled means value stored
in memory

.

⇒
.

Black Pebble Game

Algorithms for Circuit Evaluation

I Rule 1: add pebble to v if
all immediate predecessors
of v are pebbled

I Rule 2: remove pebble at
any time

I Pebbled means value stored
in memory

.

⇒
.

.

⇒
.

Black Pebble Game

Algorithms for Circuit Evaluation

I Rule 1: add pebble to v if
all immediate predecessors
of v are pebbled

I Rule 2: remove pebble at
any time

I Pebbled means value stored
in memory

.

⇒
.

.

⇒
.

Black Pebble Game

Algorithms for Circuit Evaluation

I Rule 1: add pebble to v if
all immediate predecessors
of v are pebbled

I Rule 2: remove pebble at
any time

I Pebbled means value stored
in memory

Time[t] ⊆ Space[t/ log t]

∀G
#Pebbles(G) ≤ O

(
|G |/ log|G |

)
[Hopcroft–Paul–Valiant ’77]

Space needed ≤ O(#Pebbles)

Black Pebble Game

Algorithms for Circuit Evaluation

I Rule 1: add pebble to v if
all immediate predecessors
of v are pebbled

I Rule 2: remove pebble at
any time

I Pebbled means value stored
in memory

Time[t] ⊆ Space[t/ log t]

∀G
#Pebbles(G) ≤ O

(
|G |/ log|G |

)
[Hopcroft–Paul–Valiant ’77]

Space needed ≤ O(#Pebbles)

Black Pebble Game

Algorithms for Circuit Evaluation

I Rule 1: add pebble to v if
all immediate predecessors
of v are pebbled

I Rule 2: remove pebble at
any time

I Pebbled means value stored
in memory

Time[t] ⊆ Space[t/ log t]

∀G
#Pebbles(G) ≤ O

(
|G |/ log|G |

)
[Hopcroft–Paul–Valiant ’77]

Space needed ≤ O(#Pebbles)

Lower Bounds by Pebble Games

NC1 ⊆ L ⊆ NL ⊆ NC2 ⊆ NC3 ⊆ · · · ⊆ NC ⊆ P

m-NC1 (m-NL m-circuits [Karchmer–Wigderson ’90]

m-NC1 (m-NL
m-circuits [Raz–McKenzie ’99] Raz–McKenzie pebble gamem-NCi (m-NCi+1

m-NC (m-P

m-L (m-NL m-switching-networks [Potechin ’10] Reversible pebble game

m-L (m-NL
m-switching-networks

[C.–Potechin ’12]
Reversible pebble gamem-NCi (m-NCi+1

[Filmus–Pitassi–Robere–Cook ’13]

m-NC (m-P

sem-NCi (sem-NCi+1
sem-circuits [C. ’13]

Dymond–Tompa pebble game
sem-NC (sem-P Raz–McKenzie pebble game

Theorem ([C. ’13])

∀G Simulation of strategies among
Raz–McKenzie game, reversible game, and Dymond–Tompa game.

Lower Bounds by Pebble Games

NC1 ⊆ L ⊆ NL ⊆ NC2 ⊆ NC3 ⊆ · · · ⊆ NC ⊆ P

m-NC1 (m-NL m-circuits [Karchmer–Wigderson ’90]

m-NC1 (m-NL
m-circuits [Raz–McKenzie ’99] Raz–McKenzie pebble gamem-NCi (m-NCi+1

m-NC (m-P

m-L (m-NL m-switching-networks [Potechin ’10] Reversible pebble game

m-L (m-NL
m-switching-networks

[C.–Potechin ’12]
Reversible pebble gamem-NCi (m-NCi+1

[Filmus–Pitassi–Robere–Cook ’13]

m-NC (m-P

sem-NCi (sem-NCi+1
sem-circuits [C. ’13]

Dymond–Tompa pebble game
sem-NC (sem-P Raz–McKenzie pebble game

Theorem ([C. ’13])

∀G Simulation of strategies among
Raz–McKenzie game, reversible game, and Dymond–Tompa game.

Lower Bounds by Pebble Games

NC1 ⊆ L ⊆ NL ⊆ NC2 ⊆ NC3 ⊆ · · · ⊆ NC ⊆ P

m-NC1 (m-NL m-circuits [Karchmer–Wigderson ’90]

m-NC1 (m-NL
m-circuits [Raz–McKenzie ’99] Raz–McKenzie pebble gamem-NCi (m-NCi+1

m-NC (m-P

m-L (m-NL m-switching-networks [Potechin ’10] Reversible pebble game

m-L (m-NL
m-switching-networks

[C.–Potechin ’12]
Reversible pebble gamem-NCi (m-NCi+1

[Filmus–Pitassi–Robere–Cook ’13]

m-NC (m-P

sem-NCi (sem-NCi+1
sem-circuits [C. ’13]

Dymond–Tompa pebble game
sem-NC (sem-P Raz–McKenzie pebble game

Theorem ([C. ’13])

∀G Simulation of strategies among
Raz–McKenzie game, reversible game, and Dymond–Tompa game.

Lower Bounds by Pebble Games

NC1 ⊆ L ⊆ NL ⊆ NC2 ⊆ NC3 ⊆ · · · ⊆ NC ⊆ P

m-NC1 (m-NL m-circuits [Karchmer–Wigderson ’90]

m-NC1 (m-NL
m-circuits [Raz–McKenzie ’99]

Raz–McKenzie pebble gamem-NCi (m-NCi+1

m-NC (m-P

m-L (m-NL m-switching-networks [Potechin ’10] Reversible pebble game

m-L (m-NL
m-switching-networks

[C.–Potechin ’12]
Reversible pebble gamem-NCi (m-NCi+1

[Filmus–Pitassi–Robere–Cook ’13]

m-NC (m-P

sem-NCi (sem-NCi+1
sem-circuits [C. ’13]

Dymond–Tompa pebble game
sem-NC (sem-P Raz–McKenzie pebble game

Theorem ([C. ’13])

∀G Simulation of strategies among
Raz–McKenzie game, reversible game, and Dymond–Tompa game.

Lower Bounds by Pebble Games

NC1 ⊆ L ⊆ NL ⊆ NC2 ⊆ NC3 ⊆ · · · ⊆ NC ⊆ P

m-NC1 (m-NL m-circuits [Karchmer–Wigderson ’90]

m-NC1 (m-NL
m-circuits [Raz–McKenzie ’99]

Raz–McKenzie pebble game

m-NCi (m-NCi+1

m-NC (m-P

m-L (m-NL m-switching-networks [Potechin ’10] Reversible pebble game

m-L (m-NL
m-switching-networks

[C.–Potechin ’12]
Reversible pebble gamem-NCi (m-NCi+1

[Filmus–Pitassi–Robere–Cook ’13]

m-NC (m-P

sem-NCi (sem-NCi+1
sem-circuits [C. ’13]

Dymond–Tompa pebble game
sem-NC (sem-P Raz–McKenzie pebble game

Theorem ([C. ’13])

∀G Simulation of strategies among
Raz–McKenzie game, reversible game, and Dymond–Tompa game.

Lower Bounds by Pebble Games

NC1 ⊆ L ⊆ NL ⊆ NC2 ⊆ NC3 ⊆ · · · ⊆ NC ⊆ P

m-NC1 (m-NL m-circuits [Karchmer–Wigderson ’90]

m-NC1 (m-NL
m-circuits [Raz–McKenzie ’99]

Raz–McKenzie pebble game

m-NCi (m-NCi+1

m-NC (m-P

m-L (m-NL m-switching-networks [Potechin ’10]

Reversible pebble game

m-L (m-NL
m-switching-networks

[C.–Potechin ’12]
Reversible pebble gamem-NCi (m-NCi+1

[Filmus–Pitassi–Robere–Cook ’13]

m-NC (m-P

sem-NCi (sem-NCi+1
sem-circuits [C. ’13]

Dymond–Tompa pebble game
sem-NC (sem-P Raz–McKenzie pebble game

Theorem ([C. ’13])

∀G Simulation of strategies among
Raz–McKenzie game, reversible game, and Dymond–Tompa game.

Lower Bounds by Pebble Games

NC1 ⊆ L ⊆ NL ⊆ NC2 ⊆ NC3 ⊆ · · · ⊆ NC ⊆ P

m-NC1 (m-NL m-circuits [Karchmer–Wigderson ’90]

m-NC1 (m-NL
m-circuits [Raz–McKenzie ’99]

Raz–McKenzie pebble game

m-NCi (m-NCi+1

m-NC (m-P

m-L (m-NL m-switching-networks [Potechin ’10]

Reversible pebble game

m-L (m-NL
m-switching-networks

[C.–Potechin ’12]

Reversible pebble gamem-NCi (m-NCi+1

[Filmus–Pitassi–Robere–Cook ’13]

m-NC (m-P

sem-NCi (sem-NCi+1
sem-circuits [C. ’13]

Dymond–Tompa pebble game
sem-NC (sem-P Raz–McKenzie pebble game

Theorem ([C. ’13])

∀G Simulation of strategies among
Raz–McKenzie game, reversible game, and Dymond–Tompa game.

Lower Bounds by Pebble Games

NC1 ⊆ L ⊆ NL ⊆ NC2 ⊆ NC3 ⊆ · · · ⊆ NC ⊆ P

m-NC1 (m-NL m-circuits [Karchmer–Wigderson ’90]

m-NC1 (m-NL
m-circuits [Raz–McKenzie ’99]

Raz–McKenzie pebble game

m-NCi (m-NCi+1

m-NC (m-P

m-L (m-NL m-switching-networks [Potechin ’10]

Reversible pebble game

m-L (m-NL
m-switching-networks

[C.–Potechin ’12]

Reversible pebble game

m-NCi (m-NCi+1

[Filmus–Pitassi–Robere–Cook ’13]

m-NC (m-P

sem-NCi (sem-NCi+1
sem-circuits [C. ’13]

Dymond–Tompa pebble game
sem-NC (sem-P Raz–McKenzie pebble game

Theorem ([C. ’13])

∀G Simulation of strategies among
Raz–McKenzie game, reversible game, and Dymond–Tompa game.

Lower Bounds by Pebble Games

NC1 ⊆ L ⊆ NL ⊆ NC2 ⊆ NC3 ⊆ · · · ⊆ NC ⊆ P

m-NC1 (m-NL m-circuits [Karchmer–Wigderson ’90]

m-NC1 (m-NL
m-circuits [Raz–McKenzie ’99]

Raz–McKenzie pebble game

m-NCi (m-NCi+1

m-NC (m-P

m-L (m-NL m-switching-networks [Potechin ’10]

Reversible pebble game

m-L (m-NL
m-switching-networks

[C.–Potechin ’12]

Reversible pebble game

m-NCi (m-NCi+1

[Filmus–Pitassi–Robere–Cook ’13]

m-NC (m-P

sem-NCi (sem-NCi+1
sem-circuits [C. ’13]

Dymond–Tompa pebble game

sem-NC (sem-P

Raz–McKenzie pebble game

Theorem ([C. ’13])

∀G Simulation of strategies among
Raz–McKenzie game, reversible game, and Dymond–Tompa game.

Lower Bounds by Pebble Games

NC1 ⊆ L ⊆ NL ⊆ NC2 ⊆ NC3 ⊆ · · · ⊆ NC ⊆ P

m-NC1 (m-NL m-circuits [Karchmer–Wigderson ’90]

m-NC1 (m-NL
m-circuits [Raz–McKenzie ’99] Raz–McKenzie pebble gamem-NCi (m-NCi+1

m-NC (m-P

m-L (m-NL m-switching-networks [Potechin ’10] Reversible pebble game

m-L (m-NL
m-switching-networks

[C.–Potechin ’12]
Reversible pebble gamem-NCi (m-NCi+1

[Filmus–Pitassi–Robere–Cook ’13]

m-NC (m-P

sem-NCi (sem-NCi+1
sem-circuits [C. ’13]

Dymond–Tompa pebble game
sem-NC (sem-P Raz–McKenzie pebble game

Theorem ([C. ’13])

∀G Simulation of strategies among
Raz–McKenzie game, reversible game, and Dymond–Tompa game.

Lower Bounds by Pebble Games

NC1 ⊆ L ⊆ NL ⊆ NC2 ⊆ NC3 ⊆ · · · ⊆ NC ⊆ P

m-NC1 (m-NL m-circuits [Karchmer–Wigderson ’90]

m-NC1 (m-NL
m-circuits [Raz–McKenzie ’99] Raz–McKenzie pebble gamem-NCi (m-NCi+1

m-NC (m-P

m-L (m-NL m-switching-networks [Potechin ’10] Reversible pebble game

m-L (m-NL
m-switching-networks

[C.–Potechin ’12]
Reversible pebble gamem-NCi (m-NCi+1

[Filmus–Pitassi–Robere–Cook ’13]

m-NC (m-P

sem-NCi (sem-NCi+1
sem-circuits [C. ’13]

Dymond–Tompa pebble game
sem-NC (sem-P Raz–McKenzie pebble game

Theorem ([C. ’13])

∀G Simulation of strategies among
Raz–McKenzie game, reversible game, and Dymond–Tompa game.

Lower Bounds by Pebble Games

NC1 ⊆ L ⊆ NL ⊆ NC2 ⊆ NC3 ⊆ · · · ⊆ NC ⊆ P

m-NC1 (m-NL m-circuits [Karchmer–Wigderson ’90]

m-NC1 (m-NL
m-circuits [Raz–McKenzie ’99] Raz–McKenzie pebble gamem-NCi (m-NCi+1

m-NC (m-P

m-L (m-NL m-switching-networks [Potechin ’10] Reversible pebble game

m-L (m-NL
m-switching-networks

[C.–Potechin ’12]
Reversible pebble gamem-NCi (m-NCi+1 [Filmus–Pitassi–Robere–Cook ’13]

m-NC (m-P

sem-NCi (sem-NCi+1
sem-circuits [C. ’13]

Dymond–Tompa pebble game
sem-NC (sem-P Raz–McKenzie pebble game

Theorem ([C. ’13])

∀G Simulation of strategies among
Raz–McKenzie game, reversible game, and Dymond–Tompa game.

Lower Bounds by Pebble Games

NC1 ⊆ L ⊆ NL ⊆ NC2 ⊆ NC3 ⊆ · · · ⊆ NC ⊆ P

m-NC1 (m-

N

L m-circuits [Karchmer–Wigderson ’90]

m-NC1 (m-

N

L
m-circuits [Raz–McKenzie ’99] Raz–McKenzie pebble gamem-NCi (m-NCi+1

m-NC (m-P

m-L (m-NL m-switching-networks [Potechin ’10] Reversible pebble game

m-L (m-NL
m-switching-networks

[C.–Potechin ’12]
Reversible pebble gamem-NCi (m-NCi+1 [Filmus–Pitassi–Robere–Cook ’13]

m-NC (m-P

sem-NCi (sem-NCi+1
sem-circuits [C. ’13]

Dymond–Tompa pebble game
sem-NC (sem-P Raz–McKenzie pebble game

Theorem ([C. ’13])

∀G Simulation of strategies among
Raz–McKenzie game, reversible game, and Dymond–Tompa game.

Semantic Circuit Bounds

Theorem (Karchmer–Wigderson)

Circuit Depth = Communication Complexity

NC1 vs NC2 Universal composition relation
[Edmonds–Impagliazzo–Rudich–Sgall ’01]

[Gavinsky–Meir–Weinstein–Wigderson ’13]

NC1 vs NC2 Universal composition relation [Håstad–Wigderson ’97]

NCi vs NCi+1

Iterated indexing [C. ’13]

NC vs P

In the bounds for Iterated indexing:

I Upper bound by Dymond–Tompa game

I Lower bound by Raz–McKenzie game

Semantic Circuit Bounds

Theorem (Karchmer–Wigderson)

Circuit Depth = Communication Complexity

NC1 vs NC2 Universal composition relation
[Edmonds–Impagliazzo–Rudich–Sgall ’01]

[Gavinsky–Meir–Weinstein–Wigderson ’13]

NC1 vs NC2 Universal composition relation [Håstad–Wigderson ’97]

NCi vs NCi+1

Iterated indexing [C. ’13]

NC vs P

In the bounds for Iterated indexing:

I Upper bound by Dymond–Tompa game

I Lower bound by Raz–McKenzie game

Semantic Circuit Bounds

Theorem (Karchmer–Wigderson)

Circuit Depth = Communication Complexity

NC1 vs NC2 Universal composition relation
[Edmonds–Impagliazzo–Rudich–Sgall ’01]

[Gavinsky–Meir–Weinstein–Wigderson ’13]

NC1 vs NC2 Universal composition relation [Håstad–Wigderson ’97]

NCi vs NCi+1

Iterated indexing [C. ’13]

NC vs P

In the bounds for Iterated indexing:

I Upper bound by Dymond–Tompa game

I Lower bound by Raz–McKenzie game

Semantic Circuit Bounds

Theorem (Karchmer–Wigderson)

Circuit Depth = Communication Complexity

NC1 vs NC2 Universal composition relation
[Edmonds–Impagliazzo–Rudich–Sgall ’01]

[Gavinsky–Meir–Weinstein–Wigderson ’13]

NC1 vs NC2 Universal composition relation [Håstad–Wigderson ’97]

NCi vs NCi+1

Iterated indexing [C. ’13]
NC vs P

In the bounds for Iterated indexing:

I Upper bound by Dymond–Tompa game

I Lower bound by Raz–McKenzie game

Semantic Circuit Bounds

Theorem (Karchmer–Wigderson)

Circuit Depth = Communication Complexity

NC1 vs NC2 Universal composition relation
[Edmonds–Impagliazzo–Rudich–Sgall ’01]

[Gavinsky–Meir–Weinstein–Wigderson ’13]

NC1 vs NC2 Universal composition relation [Håstad–Wigderson ’97]

NCi vs NCi+1

Iterated indexing [C. ’13]
NC vs P

In the bounds for Iterated indexing:

I Upper bound by Dymond–Tompa game

I Lower bound by Raz–McKenzie game

Semantic Circuit Bounds

Theorem (Karchmer–Wigderson)

Circuit Depth = Communication Complexity

NC1 vs NC2 Universal composition relation
[Edmonds–Impagliazzo–Rudich–Sgall ’01]

[Gavinsky–Meir–Weinstein–Wigderson ’13]

NC1 vs NC2 Universal composition relation [Håstad–Wigderson ’97]

NCi vs NCi+1

Iterated indexing [C. ’13]
NC vs P

In the bounds for Iterated indexing:

I Upper bound by Dymond–Tompa game

I Lower bound by Raz–McKenzie game

My audience

I Parallel Complexity

I Space Complexity

I Randomised Complexity

I Communication Complexity

I Decision Tree Complexity (Certificate Complexity)

I Proof Complexity

I Algebraic Complexity

Reversible game

=

Dymond–Tompa game

=
Raz–McKenzie game

Reversible Pebble Game

I Rule 1: add pebble to v if
all immediate predecessors
of v are pebbled

I Rule 2: remove pebble if all
immediate predecessors of v
are pebbled

.

⇒
.

Reversible Pebble Game

I Rule 1: add pebble to v if
all immediate predecessors
of v are pebbled

I Rule 2: remove pebble if all
immediate predecessors of v
are pebbled

.

⇒
.

Reversible Pebble Game

I Rule 1: add pebble to v if
all immediate predecessors
of v are pebbled

I Rule 2: remove pebble if all
immediate predecessors of v
are pebbled

.

⇐
.

Reversible Pebble Game

I Rule 1: add pebble to v if
all immediate predecessors
of v are pebbled

I Rule 2: remove pebble if all
immediate predecessors of v
are pebbled

.

⇔
.

Reversible Pebble Game

I Reversible Computation [Bennett ’73]:

I May reduce energy dissipation
I Observation-free quantum computation is reversible
I Reversible simulation of irreversible computation [Bennett ’89]

[Li–Vitanyi ’96, ’97] [Král’ovič ’01]

I Monotone space lower bounds [Potechin ’10] [C.–Potechin ’12]:

I Determinism equals reversibility/symmetry [Lange–McKenzie–Tapp ’00]

[Reingold ’08]

Irreversible Program Reversible Program

Reversible Pebble Game

I Reversible Computation [Bennett ’73]:
I May reduce energy dissipation

I Observation-free quantum computation is reversible
I Reversible simulation of irreversible computation [Bennett ’89]

[Li–Vitanyi ’96, ’97] [Král’ovič ’01]

I Monotone space lower bounds [Potechin ’10] [C.–Potechin ’12]:

I Determinism equals reversibility/symmetry [Lange–McKenzie–Tapp ’00]

[Reingold ’08]

Irreversible Program Reversible Program

Reversible Pebble Game

I Reversible Computation [Bennett ’73]:
I May reduce energy dissipation
I Observation-free quantum computation is reversible

I Reversible simulation of irreversible computation [Bennett ’89]

[Li–Vitanyi ’96, ’97] [Král’ovič ’01]

I Monotone space lower bounds [Potechin ’10] [C.–Potechin ’12]:

I Determinism equals reversibility/symmetry [Lange–McKenzie–Tapp ’00]

[Reingold ’08]

Irreversible Program Reversible Program

Reversible Pebble Game

I Reversible Computation [Bennett ’73]:
I May reduce energy dissipation
I Observation-free quantum computation is reversible
I Reversible simulation of irreversible computation [Bennett ’89]

[Li–Vitanyi ’96, ’97] [Král’ovič ’01]

I Monotone space lower bounds [Potechin ’10] [C.–Potechin ’12]:

I Determinism equals reversibility/symmetry [Lange–McKenzie–Tapp ’00]

[Reingold ’08]

Irreversible Program Reversible Program

Reversible Pebble Game

I Reversible Computation [Bennett ’73]:
I May reduce energy dissipation
I Observation-free quantum computation is reversible
I Reversible simulation of irreversible computation [Bennett ’89]

[Li–Vitanyi ’96, ’97] [Král’ovič ’01]

I Monotone space lower bounds [Potechin ’10] [C.–Potechin ’12]:

I Determinism equals reversibility/symmetry [Lange–McKenzie–Tapp ’00]

[Reingold ’08]

Irreversible Program Reversible Program

Reversible Pebble Game

I Reversible Computation [Bennett ’73]:
I May reduce energy dissipation
I Observation-free quantum computation is reversible
I Reversible simulation of irreversible computation [Bennett ’89]

[Li–Vitanyi ’96, ’97] [Král’ovič ’01]

I Monotone space lower bounds [Potechin ’10] [C.–Potechin ’12]:
I Determinism equals reversibility/symmetry [Lange–McKenzie–Tapp ’00]

[Reingold ’08]

Irreversible Program Reversible Program

Dymond–Tompa Pebble Game

I To design parallel algorithms [Dymond–Tompa ’85, Gál–Jang ’11]

Give parallel speed-ups (when #processors is unbounded).

I Capture complexity classes and inclusions [Venkateswaran–Tompa ’89]

I (#Pebble used) characterizes parallelism in NCi ,NC,P, etc;
I Simulates the inclusion of NL ⊆ NC2.

Dymond–Tompa Pebble Game

I To design parallel algorithms [Dymond–Tompa ’85, Gál–Jang ’11]

Give parallel speed-ups (when #processors is unbounded).

I Capture complexity classes and inclusions [Venkateswaran–Tompa ’89]

I (#Pebble used) characterizes parallelism in NCi ,NC,P, etc;
I Simulates the inclusion of NL ⊆ NC2.

Dymond–Tompa Pebble Game

I To design parallel algorithms [Dymond–Tompa ’85, Gál–Jang ’11]

Give parallel speed-ups (when #processors is unbounded).

I Capture complexity classes and inclusions [Venkateswaran–Tompa ’89]

I (#Pebble used) characterizes parallelism in NCi ,NC,P, etc;
I Simulates the inclusion of NL ⊆ NC2.

Dymond–Tompa Pebble Game

I To design parallel algorithms [Dymond–Tompa ’85, Gál–Jang ’11]

Give parallel speed-ups (when #processors is unbounded).

I Capture complexity classes and inclusions [Venkateswaran–Tompa ’89]

I (#Pebble used) characterizes parallelism in NCi ,NC,P, etc;
I Simulates the inclusion of NL ⊆ NC2.

Dymond–Tompa Pebble Game

I To design parallel algorithms [Dymond–Tompa ’85, Gál–Jang ’11]

Give parallel speed-ups (when #processors is unbounded).

I Capture complexity classes and inclusions [Venkateswaran–Tompa ’89]

I (#Pebble used) characterizes parallelism in NCi ,NC,P, etc;

I Simulates the inclusion of NL ⊆ NC2.

Dymond–Tompa Pebble Game

I To design parallel algorithms [Dymond–Tompa ’85, Gál–Jang ’11]

Give parallel speed-ups (when #processors is unbounded).

I Capture complexity classes and inclusions [Venkateswaran–Tompa ’89]

I (#Pebble used) characterizes parallelism in NCi ,NC,P, etc;
I Simulates the inclusion of NL ⊆ NC2.

Parallel Evaluation, Recursively

To compute the value at a

1. Pick a node, say c

2. In parallel, do

I Compute the value at c
I For each possible value vc of c , assume

vc is correct and compute the value at a

3. Recurse!

4. Combine the results in Step 2 in constant
time

a

b

c

d

Parallel Evaluation, Recursively

To compute the value at a

1. Pick a node, say c

2. In parallel, do

I Compute the value at c
I For each possible value vc of c , assume

vc is correct and compute the value at a

3. Recurse!

4. Combine the results in Step 2 in constant
time

a

b

c

d

Parallel Evaluation, Recursively

To compute the value at a

1. Pick a node, say c

2. In parallel, do

I Compute the value at c
I For each possible value vc of c , assume

vc is correct and compute the value at a

3. Recurse!

4. Combine the results in Step 2 in constant
time

a

b

c

d

Parallel Evaluation, Recursively

To compute the value at a

1. Pick a node, say c

2. In parallel, do
I Compute the value at c

I For each possible value vc of c , assume
vc is correct and compute the value at a

3. Recurse!

4. Combine the results in Step 2 in constant
time

a

b

c

d

Parallel Evaluation, Recursively

To compute the value at a

1. Pick a node, say c

2. In parallel, do
I Compute the value at c
I For each possible value vc of c , assume

vc is correct and compute the value at a

3. Recurse!

4. Combine the results in Step 2 in constant
time

a

b

c

d

Parallel Evaluation, Recursively

To compute the value at a

1. Pick a node, say c

2. In parallel, do
I Compute the value at c
I For each possible value vc of c , assume

vc is correct and compute the value at a

3. Recurse!

4. Combine the results in Step 2 in constant
time

a

b

c

d

Parallel Evaluation, Recursively

To compute the value at a

1. Pick a node, say c

2. In parallel, do
I Compute the value at c
I For each possible value vc of c , assume

vc is correct and compute the value at a

3. Recurse!

4. Combine the results in Step 2 in constant
time

a

b

c

d

Parallel Evaluation, Recursively

a

b

c

d

Parallel Evaluation, Recursively

a

b

c

d

Parallel Evaluation, Recursively

a

b

c

d

Parallel Evaluation, Recursively

a

b

c

d

Parallel Evaluation, Recursively

a

b

c

d

Dymond–Tompa Game

I Two players: Pebbler and Challenger, competitive

I Alternate to move, Pebbler moves first
I Initial Set-up:

I Pebbler pebbles sink
I Challenger challenges sink (exactly one pebbled node is

challenged any time)

I Each round:

I Pebbler chooses a node to pebble
I Challenger chooses to stay or jump

I Pebbler wins if, before she moves, the challenged node has all
immediate predecessors pebbled

I Challenger aims to delay the inevitable

.

⇒
.

⇒
.

⇒
.

⇒

⇒

.

.

.

Dymond–Tompa Game

I Two players: Pebbler and Challenger, competitive

I Alternate to move, Pebbler moves first

I Initial Set-up:

I Pebbler pebbles sink
I Challenger challenges sink (exactly one pebbled node is

challenged any time)

I Each round:

I Pebbler chooses a node to pebble
I Challenger chooses to stay or jump

I Pebbler wins if, before she moves, the challenged node has all
immediate predecessors pebbled

I Challenger aims to delay the inevitable

.

⇒
.

⇒
.

⇒
.

⇒

⇒

.

.

.

Dymond–Tompa Game

I Two players: Pebbler and Challenger, competitive

I Alternate to move, Pebbler moves first
I Initial Set-up:

I Pebbler pebbles sink
I Challenger challenges sink (exactly one pebbled node is

challenged any time)

I Each round:

I Pebbler chooses a node to pebble
I Challenger chooses to stay or jump

I Pebbler wins if, before she moves, the challenged node has all
immediate predecessors pebbled

I Challenger aims to delay the inevitable

.

⇒
.

⇒
.

⇒
.

⇒

⇒

.

.

.

Dymond–Tompa Game

I Two players: Pebbler and Challenger, competitive

I Alternate to move, Pebbler moves first
I Initial Set-up:

I Pebbler pebbles sink

I Challenger challenges sink (exactly one pebbled node is
challenged any time)

I Each round:

I Pebbler chooses a node to pebble
I Challenger chooses to stay or jump

I Pebbler wins if, before she moves, the challenged node has all
immediate predecessors pebbled

I Challenger aims to delay the inevitable

.

⇒
.

⇒
.

⇒
.

⇒

⇒

.

.

.

Dymond–Tompa Game

I Two players: Pebbler and Challenger, competitive

I Alternate to move, Pebbler moves first
I Initial Set-up:

I Pebbler pebbles sink
I Challenger challenges sink (exactly one pebbled node is

challenged any time)

I Each round:

I Pebbler chooses a node to pebble
I Challenger chooses to stay or jump

I Pebbler wins if, before she moves, the challenged node has all
immediate predecessors pebbled

I Challenger aims to delay the inevitable

.

⇒

.

⇒
.

.

⇒
.

⇒

⇒

.

.

.

Dymond–Tompa Game

I Two players: Pebbler and Challenger, competitive

I Alternate to move, Pebbler moves first
I Initial Set-up:

I Pebbler pebbles sink
I Challenger challenges sink (exactly one pebbled node is

challenged any time)

I Each round:

I Pebbler chooses a node to pebble
I Challenger chooses to stay or jump

I Pebbler wins if, before she moves, the challenged node has all
immediate predecessors pebbled

I Challenger aims to delay the inevitable

.

⇒
.

⇒
.

.

⇒
.

⇒

⇒

.

.

.

Dymond–Tompa Game

I Two players: Pebbler and Challenger, competitive

I Alternate to move, Pebbler moves first
I Initial Set-up:

I Pebbler pebbles sink
I Challenger challenges sink (exactly one pebbled node is

challenged any time)

I Each round:
I Pebbler chooses a node to pebble

I Challenger chooses to stay or jump

I Pebbler wins if, before she moves, the challenged node has all
immediate predecessors pebbled

I Challenger aims to delay the inevitable

.

⇒
.

⇒
.

.

⇒
.

⇒

⇒

.

.

.

Dymond–Tompa Game

I Two players: Pebbler and Challenger, competitive

I Alternate to move, Pebbler moves first
I Initial Set-up:

I Pebbler pebbles sink
I Challenger challenges sink (exactly one pebbled node is

challenged any time)

I Each round:
I Pebbler chooses a node to pebble
I Challenger chooses to stay or jump

I Pebbler wins if, before she moves, the challenged node has all
immediate predecessors pebbled

I Challenger aims to delay the inevitable

.

⇒
.

⇒
.

.

⇒

.

⇒

⇒

.

.

.

Dymond–Tompa Game

I Two players: Pebbler and Challenger, competitive

I Alternate to move, Pebbler moves first
I Initial Set-up:

I Pebbler pebbles sink
I Challenger challenges sink (exactly one pebbled node is

challenged any time)

I Each round:
I Pebbler chooses a node to pebble
I Challenger chooses to stay or jump

I Pebbler wins if, before she moves, the challenged node has all
immediate predecessors pebbled

I Challenger aims to delay the inevitable

.

⇒
.

⇒
.

⇒
.

⇒

⇒

.

.

.

Dymond–Tompa Game

I Two players: Pebbler and Challenger, competitive

I Alternate to move, Pebbler moves first
I Initial Set-up:

I Pebbler pebbles sink
I Challenger challenges sink (exactly one pebbled node is

challenged any time)

I Each round:
I Pebbler chooses a node to pebble
I Challenger chooses to stay or jump

I Pebbler wins if, before she moves, the challenged node has all
immediate predecessors pebbled

I Challenger aims to delay the inevitable

.

⇒
.

⇒
.

⇒
.

⇒

⇒

.

.

.

Raz–McKenzie Pebble Game

I Give depth lower bounds to monotone circuits [Raz–McKenzie ’99]

Motivated by decision tree complexity of search problems
[Lovász–Naor–Newman–Wigderson ’95]

I Applications to Proof Complexity:

I Inspired pebbling contradictions (next slide)
I Separation and Trade-off Results:

I Cutting plane refutations [Bonet–Esteban–Galesi–Galesi ’98]

I Treelike resolution refutations [Ben-Sasson–Impagliazzo–Wigderson ’04]

[Urquhart ’11]

I Regular resolution refutations [Alekhnovich–Johannsen–Pitassi–Urquhart ’07]

I Clause learning algorithms [Beame–Impagliazzo–Pitassi–Segerlind ’10]

I Nullstellenzatz and Polynomial Calculus
[Buresh-Oppenheim–Clegg–Impagliazzo–Pitassi ’02]

I k-DNF resolution refutation [Esteban–Galesi–Messner ’04]

I Depth of resolution refutation [C. ’13]

Raz–McKenzie Pebble Game

I Give depth lower bounds to monotone circuits [Raz–McKenzie ’99]

Motivated by decision tree complexity of search problems
[Lovász–Naor–Newman–Wigderson ’95]

I Applications to Proof Complexity:

I Inspired pebbling contradictions (next slide)
I Separation and Trade-off Results:

I Cutting plane refutations [Bonet–Esteban–Galesi–Galesi ’98]

I Treelike resolution refutations [Ben-Sasson–Impagliazzo–Wigderson ’04]

[Urquhart ’11]

I Regular resolution refutations [Alekhnovich–Johannsen–Pitassi–Urquhart ’07]

I Clause learning algorithms [Beame–Impagliazzo–Pitassi–Segerlind ’10]

I Nullstellenzatz and Polynomial Calculus
[Buresh-Oppenheim–Clegg–Impagliazzo–Pitassi ’02]

I k-DNF resolution refutation [Esteban–Galesi–Messner ’04]

I Depth of resolution refutation [C. ’13]

Raz–McKenzie Pebble Game

I Give depth lower bounds to monotone circuits [Raz–McKenzie ’99]

Motivated by decision tree complexity of search problems
[Lovász–Naor–Newman–Wigderson ’95]

I Applications to Proof Complexity:

I Inspired pebbling contradictions (next slide)
I Separation and Trade-off Results:

I Cutting plane refutations [Bonet–Esteban–Galesi–Galesi ’98]

I Treelike resolution refutations [Ben-Sasson–Impagliazzo–Wigderson ’04]

[Urquhart ’11]

I Regular resolution refutations [Alekhnovich–Johannsen–Pitassi–Urquhart ’07]

I Clause learning algorithms [Beame–Impagliazzo–Pitassi–Segerlind ’10]

I Nullstellenzatz and Polynomial Calculus
[Buresh-Oppenheim–Clegg–Impagliazzo–Pitassi ’02]

I k-DNF resolution refutation [Esteban–Galesi–Messner ’04]

I Depth of resolution refutation [C. ’13]

Raz–McKenzie Pebble Game

I Give depth lower bounds to monotone circuits [Raz–McKenzie ’99]

Motivated by decision tree complexity of search problems
[Lovász–Naor–Newman–Wigderson ’95]

I Applications to Proof Complexity:
I Inspired pebbling contradictions (next slide)

I Separation and Trade-off Results:
I Cutting plane refutations [Bonet–Esteban–Galesi–Galesi ’98]

I Treelike resolution refutations [Ben-Sasson–Impagliazzo–Wigderson ’04]

[Urquhart ’11]

I Regular resolution refutations [Alekhnovich–Johannsen–Pitassi–Urquhart ’07]

I Clause learning algorithms [Beame–Impagliazzo–Pitassi–Segerlind ’10]

I Nullstellenzatz and Polynomial Calculus
[Buresh-Oppenheim–Clegg–Impagliazzo–Pitassi ’02]

I k-DNF resolution refutation [Esteban–Galesi–Messner ’04]

I Depth of resolution refutation [C. ’13]

Raz–McKenzie Pebble Game

I Give depth lower bounds to monotone circuits [Raz–McKenzie ’99]

Motivated by decision tree complexity of search problems
[Lovász–Naor–Newman–Wigderson ’95]

I Applications to Proof Complexity:
I Inspired pebbling contradictions (next slide)
I Separation and Trade-off Results:

I Cutting plane refutations [Bonet–Esteban–Galesi–Galesi ’98]

I Treelike resolution refutations [Ben-Sasson–Impagliazzo–Wigderson ’04]

[Urquhart ’11]

I Regular resolution refutations [Alekhnovich–Johannsen–Pitassi–Urquhart ’07]

I Clause learning algorithms [Beame–Impagliazzo–Pitassi–Segerlind ’10]

I Nullstellenzatz and Polynomial Calculus
[Buresh-Oppenheim–Clegg–Impagliazzo–Pitassi ’02]

I k-DNF resolution refutation [Esteban–Galesi–Messner ’04]

I Depth of resolution refutation [C. ’13]

Raz–McKenzie Pebble Game

I Give depth lower bounds to monotone circuits [Raz–McKenzie ’99]

Motivated by decision tree complexity of search problems
[Lovász–Naor–Newman–Wigderson ’95]

I Applications to Proof Complexity:
I Inspired pebbling contradictions (next slide)
I Separation and Trade-off Results:

I Cutting plane refutations [Bonet–Esteban–Galesi–Galesi ’98]

I Treelike resolution refutations [Ben-Sasson–Impagliazzo–Wigderson ’04]

[Urquhart ’11]

I Regular resolution refutations [Alekhnovich–Johannsen–Pitassi–Urquhart ’07]

I Clause learning algorithms [Beame–Impagliazzo–Pitassi–Segerlind ’10]

I Nullstellenzatz and Polynomial Calculus
[Buresh-Oppenheim–Clegg–Impagliazzo–Pitassi ’02]

I k-DNF resolution refutation [Esteban–Galesi–Messner ’04]

I Depth of resolution refutation [C. ’13]

Pebbling Contradictions

I Given G , construct an unsatisfiable CNF ΣG :

I One variable per node
I Add the following clauses:

Source All source variables are True,
Implication Truth propagates through the graph,

Sink The sink variable is false.

Example:

d

a

b c

d e f

Pebbling Contradictions

I Given G , construct an unsatisfiable CNF ΣG :

I One variable per node

I Add the following clauses:

Source All source variables are True,
Implication Truth propagates through the graph,

Sink The sink variable is false.

Example:

d

a

b c

d e f

Pebbling Contradictions

I Given G , construct an unsatisfiable CNF ΣG :

I One variable per node
I Add the following clauses:

Source All source variables are True,

Implication Truth propagates through the graph,
Sink The sink variable is false.

Example:

d

a

b c

d e f

Pebbling Contradictions

I Given G , construct an unsatisfiable CNF ΣG :

I One variable per node
I Add the following clauses:

Source All source variables are True,
Implication Truth propagates through the graph,

Sink The sink variable is false.

Example:

d

a

b c

d e f

Pebbling Contradictions

I Given G , construct an unsatisfiable CNF ΣG :

I One variable per node
I Add the following clauses:

Source All source variables are True,
Implication Truth propagates through the graph,

Sink The sink variable is false.

Example:

d

a

b c

d e f

Pebbling Contradictions

I Given G , construct an unsatisfiable CNF ΣG :

I One variable per node
I Add the following clauses:

Source All source variables are True,
Implication Truth propagates through the graph,

Sink The sink variable is false.

Example:

d

a

b c

d e f

Pebbling Contradictions

I Given G , construct an unsatisfiable CNF ΣG :

I One variable per node
I Add the following clauses:

Source All source variables are True,
Implication Truth propagates through the graph,

Sink The sink variable is false.

Example:

d

a

b c

d e f

Pebbling Contradictions

I Given G , construct an unsatisfiable CNF ΣG :

I One variable per node
I Add the following clauses:

Source All source variables are True,
Implication Truth propagates through the graph,

Sink The sink variable is false.

Example:

d
e

a

b c

d e f

Pebbling Contradictions

I Given G , construct an unsatisfiable CNF ΣG :

I One variable per node
I Add the following clauses:

Source All source variables are True,
Implication Truth propagates through the graph,

Sink The sink variable is false.

Example:

d
e

f
a

b c

d e f

Pebbling Contradictions

I Given G , construct an unsatisfiable CNF ΣG :

I One variable per node
I Add the following clauses:

Source All source variables are True,
Implication Truth propagates through the graph,

Sink The sink variable is false.

Example:

d
e

f

d̄ ∨ ē ∨ bd ∧ e ⇒ b a

b c

d e f

Pebbling Contradictions

I Given G , construct an unsatisfiable CNF ΣG :

I One variable per node
I Add the following clauses:

Source All source variables are True,
Implication Truth propagates through the graph,

Sink The sink variable is false.

Example:

d
e

f

d̄ ∨ ē ∨ b

ē ∨ f̄ ∨ c

d ∧ e ⇒ b

e ∧ f ⇒ c

a

b c

d e f

Pebbling Contradictions

I Given G , construct an unsatisfiable CNF ΣG :

I One variable per node
I Add the following clauses:

Source All source variables are True,
Implication Truth propagates through the graph,

Sink The sink variable is false.

Example:

d
e

f

d̄ ∨ ē ∨ b

ē ∨ f̄ ∨ c

b̄ ∨ c̄ ∨ a

d ∧ e ⇒ b

e ∧ f ⇒ c

b ∧ c ⇒ a

a

b c

d e f

Pebbling Contradictions

I Given G , construct an unsatisfiable CNF ΣG :

I One variable per node
I Add the following clauses:

Source All source variables are True,
Implication Truth propagates through the graph,

Sink The sink variable is false.

Example:

d
e

f

d̄ ∨ ē ∨ b

ē ∨ f̄ ∨ c

b̄ ∨ c̄ ∨ a
ā

d ∧ e ⇒ b

e ∧ f ⇒ c

b ∧ c ⇒ a

a

b c

d e f

Pebbling Contradictions

I Given G , construct an unsatisfiable CNF ΣG :

I One variable per node
I Add the following clauses:

Source All source variables are True,
Implication Truth propagates through the graph,

Sink The sink variable is false.

Resolution refutation of minimum depth for ΣG .

Resolution Refutation

Resolution Refutation

Resolution Step:
A ∨ x B ∨ x̄

A ∨ B

Resolution Refutation

Resolution Step:
A ∨ x B ∨ x̄

A ∨ B

∅

b

bc

.

bc̄

bc̄e

.

bc̄ē

.

b̄

.

Resolution Refutation

Resolution Step:
A ∨ x B ∨ x̄

A ∨ B

∅

b

bc

.

bc̄

bc̄e

.

bc̄ē

.

b̄

.

Resolution Refutation

Resolution Step:
A ∨ x B ∨ x̄

A ∨ B

∅

b

bc

.

bc̄

bc̄e

.

bc̄ē

.

b̄

.

Resolution Refutation

Resolution Step:
A ∨ x B ∨ x̄

A ∨ B

∅

b

bc

.

bc̄

bc̄e

.

bc̄ē

.

b̄

.

Resolution Refutation

Resolution Step:
A ∨ x B ∨ x̄

A ∨ B

∅

b

bc

.

bc̄

bc̄e

.

bc̄ē

.

b̄

.

Partial Assignment on Resolution Refutation

I When a branch grows to a clause of ΣG , this partial
assignment falsifies the clause

I If this partial assignment does not falsify any clause of ΣG ,
then the branch must grow deeper!

I To falsify a clause from ΣG :

Source d set d to False
Implication b̄ ∨ c̄ ∨ a set b, c to True, a to False

Sink ā set a to True

I Adversary Argument:

I When a variable is queried, answer True or False
I Try to avoid falsifying a clause from ΣG (as above)
I Number of answers before falsifying ≤ depth of resolution

refutation

Partial Assignment on Resolution Refutation

I When a branch grows to a clause of ΣG , this partial
assignment falsifies the clause

I If this partial assignment does not falsify any clause of ΣG ,
then the branch must grow deeper!

I To falsify a clause from ΣG :

Source d set d to False
Implication b̄ ∨ c̄ ∨ a set b, c to True, a to False

Sink ā set a to True

I Adversary Argument:

I When a variable is queried, answer True or False
I Try to avoid falsifying a clause from ΣG (as above)
I Number of answers before falsifying ≤ depth of resolution

refutation

Partial Assignment on Resolution Refutation

I When a branch grows to a clause of ΣG , this partial
assignment falsifies the clause

I If this partial assignment does not falsify any clause of ΣG ,
then the branch must grow deeper!

I To falsify a clause from ΣG :

Source d set d to False
Implication b̄ ∨ c̄ ∨ a set b, c to True, a to False

Sink ā set a to True

I Adversary Argument:

I When a variable is queried, answer True or False
I Try to avoid falsifying a clause from ΣG (as above)
I Number of answers before falsifying ≤ depth of resolution

refutation

Partial Assignment on Resolution Refutation

I When a branch grows to a clause of ΣG , this partial
assignment falsifies the clause

I If this partial assignment does not falsify any clause of ΣG ,
then the branch must grow deeper!

I To falsify a clause from ΣG :

Source d set d to False
Implication b̄ ∨ c̄ ∨ a set b, c to True, a to False

Sink ā set a to True

I Adversary Argument:
I When a variable is queried, answer True or False

I Try to avoid falsifying a clause from ΣG (as above)
I Number of answers before falsifying ≤ depth of resolution

refutation

Partial Assignment on Resolution Refutation

I When a branch grows to a clause of ΣG , this partial
assignment falsifies the clause

I If this partial assignment does not falsify any clause of ΣG ,
then the branch must grow deeper!

I To falsify a clause from ΣG :

Source d set d to False
Implication b̄ ∨ c̄ ∨ a set b, c to True, a to False

Sink ā set a to True

I Adversary Argument:
I When a variable is queried, answer True or False
I Try to avoid falsifying a clause from ΣG (as above)

I Number of answers before falsifying ≤ depth of resolution
refutation

Partial Assignment on Resolution Refutation

I When a branch grows to a clause of ΣG , this partial
assignment falsifies the clause

I If this partial assignment does not falsify any clause of ΣG ,
then the branch must grow deeper!

I To falsify a clause from ΣG :

Source d set d to False
Implication b̄ ∨ c̄ ∨ a set b, c to True, a to False

Sink ā set a to True

I Adversary Argument:
I When a variable is queried, answer True or False
I Try to avoid falsifying a clause from ΣG (as above)
I Number of answers before falsifying ≤ depth of resolution

refutation

Raz–McKenzie Pebble Game

I Two players: Pebbler and Colourer, competitive

I Alternate to move, Pebbler moves first
I Each round:

I Pebbler chooses a node to pebble
I Colourer chooses to colour it True or False

I Pebbler wins if, before she moves, some False node has all
immediate predecessors True (source and sink are treated
analogously)

I Colourer aims to delay the inevitable

I Is exactly the depth of resolution refutation for ΣG [C. ’13]

I Colourer strategy gives lower bound

I Pebbler strategy gives upper bound.

⇒
.

⇒

⇒

.

.

.

Raz–McKenzie Pebble Game

I Two players: Pebbler and Colourer, competitive

I Alternate to move, Pebbler moves first

I Each round:

I Pebbler chooses a node to pebble
I Colourer chooses to colour it True or False

I Pebbler wins if, before she moves, some False node has all
immediate predecessors True (source and sink are treated
analogously)

I Colourer aims to delay the inevitable

I Is exactly the depth of resolution refutation for ΣG [C. ’13]

I Colourer strategy gives lower bound

I Pebbler strategy gives upper bound.

⇒
.

⇒

⇒

.

.

.

Raz–McKenzie Pebble Game

I Two players: Pebbler and Colourer, competitive

I Alternate to move, Pebbler moves first
I Each round:

I Pebbler chooses a node to pebble
I Colourer chooses to colour it True or False

I Pebbler wins if, before she moves, some False node has all
immediate predecessors True (source and sink are treated
analogously)

I Colourer aims to delay the inevitable

I Is exactly the depth of resolution refutation for ΣG [C. ’13]

I Colourer strategy gives lower bound

I Pebbler strategy gives upper bound

.

⇒
.

⇒

⇒

.

.

.

Raz–McKenzie Pebble Game

I Two players: Pebbler and Colourer, competitive

I Alternate to move, Pebbler moves first
I Each round:

I Pebbler chooses a node to pebble

I Colourer chooses to colour it True or False

I Pebbler wins if, before she moves, some False node has all
immediate predecessors True (source and sink are treated
analogously)

I Colourer aims to delay the inevitable

I Is exactly the depth of resolution refutation for ΣG [C. ’13]

I Colourer strategy gives lower bound

I Pebbler strategy gives upper bound

.

⇒
.

⇒

⇒

.

.

.

Raz–McKenzie Pebble Game

I Two players: Pebbler and Colourer, competitive

I Alternate to move, Pebbler moves first
I Each round:

I Pebbler chooses a node to pebble
I Colourer chooses to colour it True or False

I Pebbler wins if, before she moves, some False node has all
immediate predecessors True (source and sink are treated
analogously)

I Colourer aims to delay the inevitable

I Is exactly the depth of resolution refutation for ΣG [C. ’13]

I Colourer strategy gives lower bound

I Pebbler strategy gives upper bound

.

⇒

.

⇒

⇒

.

.

.

Raz–McKenzie Pebble Game

I Two players: Pebbler and Colourer, competitive

I Alternate to move, Pebbler moves first
I Each round:

I Pebbler chooses a node to pebble
I Colourer chooses to colour it True or False

I Pebbler wins if, before she moves, some False node has all
immediate predecessors True (source and sink are treated
analogously)

I Colourer aims to delay the inevitable

I Is exactly the depth of resolution refutation for ΣG [C. ’13]

I Colourer strategy gives lower bound

I Pebbler strategy gives upper bound.

⇒
.

⇒

⇒

.

.

.

Raz–McKenzie Pebble Game

I Two players: Pebbler and Colourer, competitive

I Alternate to move, Pebbler moves first
I Each round:

I Pebbler chooses a node to pebble
I Colourer chooses to colour it True or False

I Pebbler wins if, before she moves, some False node has all
immediate predecessors True (source and sink are treated
analogously)

I Colourer aims to delay the inevitable

I Is exactly the depth of resolution refutation for ΣG [C. ’13]

I Colourer strategy gives lower bound

I Pebbler strategy gives upper bound.

⇒
.

⇒

⇒

.

.

.

Raz–McKenzie Pebble Game

I Two players: Pebbler and Colourer, competitive

I Alternate to move, Pebbler moves first
I Each round:

I Pebbler chooses a node to pebble
I Colourer chooses to colour it True or False

I Pebbler wins if, before she moves, some False node has all
immediate predecessors True (source and sink are treated
analogously)

I Colourer aims to delay the inevitable

I Is exactly the depth of resolution refutation for ΣG [C. ’13]

I Colourer strategy gives lower bound

I Pebbler strategy gives upper bound.

⇒
.

⇒

⇒

.

.

.

Raz–McKenzie Pebble Game

I Two players: Pebbler and Colourer, competitive

I Alternate to move, Pebbler moves first
I Each round:

I Pebbler chooses a node to pebble
I Colourer chooses to colour it True or False

I Pebbler wins if, before she moves, some False node has all
immediate predecessors True (source and sink are treated
analogously)

I Colourer aims to delay the inevitable

I Is exactly the depth of resolution refutation for ΣG [C. ’13]

I Colourer strategy gives lower bound

I Pebbler strategy gives upper bound.

⇒
.

⇒

⇒

.

.

.

Raz–McKenzie Pebble Game

I Two players: Pebbler and Colourer, competitive

I Alternate to move, Pebbler moves first
I Each round:

I Pebbler chooses a node to pebble
I Colourer chooses to colour it True or False

I Pebbler wins if, before she moves, some False node has all
immediate predecessors True (source and sink are treated
analogously)

I Colourer aims to delay the inevitable

I Is exactly the depth of resolution refutation for ΣG [C. ’13]

I Colourer strategy gives lower bound

I Pebbler strategy gives upper bound

.

⇒
.

⇒

⇒

.

.

.

Raz–McKenzie Pebble Game

I Two players: Pebbler and Colourer, competitive

I Alternate to move, Pebbler moves first
I Each round:

I Pebbler chooses a node to pebble
I Colourer chooses to colour it True or False

I Pebbler wins if, before she moves, some False node has all
immediate predecessors True (source and sink are treated
analogously)

I Colourer aims to delay the inevitable

I Add an initial set-up to make it more like Dymond–Tompa
game.

I Colourer strategy gives lower bound

I Pebbler strategy gives upper bound

.

⇒
.

⇒

⇒

.

.

.

Raz–McKenzie pebble game

I Two players: Pebbler and Colourer,
competitive

I Alternate to move, Pebbler moves first

I Initial Set-up:

I Pebbler pebbles sink
I Colourer colours sink False

I Each round:

I Pebbler chooses a node to pebble
I Colourer chooses to colour it

True or False

I Pebbler wins if, before she moves,
some False node has all immediate
predecessors True

I Colourer aims to delay the inevitable

Dymond–Tompa pebble game

I Two players: Pebbler and Challenger,
competitive

I Alternate to move, Pebbler moves first

I Initial Set-up:

I Pebbler pebbles sink
I Challenger challenges sink

I Each round:

I Pebbler chooses a node to pebble
I Challenger chooses to stay or

jump

I Pebbler wins if, before she moves, the
challenged node has all immediate
predecessors pebbled

I Challenger aims to delay the inevitable

Raz–McKenzie pebble game

I Two players: Pebbler and Colourer,
competitive

I Alternate to move, Pebbler moves first

I Initial Set-up:

I Pebbler pebbles sink
I Colourer colours sink False

I Each round:

I Pebbler chooses a node to pebble
I Colourer chooses to colour it

True or False

I Pebbler wins if, before she moves,
some False node has all immediate
predecessors True

I Colourer aims to delay the inevitable

Dymond–Tompa pebble game

I Two players: Pebbler and Challenger,
competitive

I Alternate to move, Pebbler moves first

I Initial Set-up:

I Pebbler pebbles sink
I Challenger challenges sink

I Each round:

I Pebbler chooses a node to pebble
I Challenger chooses to stay or

jump

I Pebbler wins if, before she moves, the
challenged node has all immediate
predecessors pebbled

I Challenger aims to delay the inevitable

Dymond–Tompa Game = Raz–McKenzie Game

I Simulation argument (reduction in combinatorial game):

1. Turn a Colourer strategy (Raz–McKenzie game) into a
Challenger strategy (Dymond–Tompa game).

2. If the Dymond–Tompa game is over, so is the Raz–McKenzie
game.

3. Implies Dymond–Tompa #Pebble ≥ Raz–McKenzie #Pebble.

Colourer strategy ⇒ Challenger strategy:
I Assume c is challenged. If v is pebbled, see what a Colourer

would do, and Challenger:

I jump if v is a predecessor of c , and v is coloured False
I stay otherwise

v

c

Dymond–Tompa Game = Raz–McKenzie Game

I Simulation argument (reduction in combinatorial game):

1. Turn a Colourer strategy (Raz–McKenzie game) into a
Challenger strategy (Dymond–Tompa game).

2. If the Dymond–Tompa game is over, so is the Raz–McKenzie
game.

3. Implies Dymond–Tompa #Pebble ≥ Raz–McKenzie #Pebble.

Colourer strategy ⇒ Challenger strategy:
I Assume c is challenged. If v is pebbled, see what a Colourer

would do, and Challenger:

I jump if v is a predecessor of c , and v is coloured False
I stay otherwise

v

c

Dymond–Tompa Game = Raz–McKenzie Game

I Simulation argument (reduction in combinatorial game):

1. Turn a Colourer strategy (Raz–McKenzie game) into a
Challenger strategy (Dymond–Tompa game).

2. If the Dymond–Tompa game is over, so is the Raz–McKenzie
game.

3. Implies Dymond–Tompa #Pebble ≥ Raz–McKenzie #Pebble.

Colourer strategy ⇒ Challenger strategy:
I Assume c is challenged. If v is pebbled, see what a Colourer

would do, and Challenger:

I jump if v is a predecessor of c , and v is coloured False
I stay otherwise

v

c

Dymond–Tompa Game = Raz–McKenzie Game

I Simulation argument (reduction in combinatorial game):

1. Turn a Colourer strategy (Raz–McKenzie game) into a
Challenger strategy (Dymond–Tompa game).

2. If the Dymond–Tompa game is over, so is the Raz–McKenzie
game.

3. Implies Dymond–Tompa #Pebble ≥ Raz–McKenzie #Pebble.

Colourer strategy ⇒ Challenger strategy:
I Assume c is challenged. If v is pebbled, see what a Colourer

would do, and Challenger:

I jump if v is a predecessor of c , and v is coloured False
I stay otherwise

v

c

Dymond–Tompa Game = Raz–McKenzie Game

I Simulation argument (reduction in combinatorial game):

1. Turn a Colourer strategy (Raz–McKenzie game) into a
Challenger strategy (Dymond–Tompa game).

2. If the Dymond–Tompa game is over, so is the Raz–McKenzie
game.

3. Implies Dymond–Tompa #Pebble ≥ Raz–McKenzie #Pebble.

Colourer strategy ⇒ Challenger strategy:

I Assume c is challenged. If v is pebbled, see what a Colourer
would do, and Challenger:

I jump if v is a predecessor of c , and v is coloured False
I stay otherwise

v

c

Dymond–Tompa Game = Raz–McKenzie Game

I Simulation argument (reduction in combinatorial game):

1. Turn a Colourer strategy (Raz–McKenzie game) into a
Challenger strategy (Dymond–Tompa game).

2. If the Dymond–Tompa game is over, so is the Raz–McKenzie
game.

3. Implies Dymond–Tompa #Pebble ≥ Raz–McKenzie #Pebble.

Colourer strategy ⇒ Challenger strategy:
I Assume c is challenged. If v is pebbled, see what a Colourer

would do, and Challenger:

I jump if v is a predecessor of c , and v is coloured False
I stay otherwise

v

c

Dymond–Tompa Game = Raz–McKenzie Game

I Simulation argument (reduction in combinatorial game):

1. Turn a Colourer strategy (Raz–McKenzie game) into a
Challenger strategy (Dymond–Tompa game).

2. If the Dymond–Tompa game is over, so is the Raz–McKenzie
game.

3. Implies Dymond–Tompa #Pebble ≥ Raz–McKenzie #Pebble.

Colourer strategy ⇒ Challenger strategy:
I Assume c is challenged. If v is pebbled, see what a Colourer

would do, and Challenger:
I jump if v is a predecessor of c , and v is coloured False
I stay otherwise

v

c

Simulation Argument

Colourer strategy ⇒ Challenger strategy:
I Assume c is challenged. If v is pebbled, see what a Colourer

would do, and Challenger:
I jump if v is a predecessor of c , and v is coloured False
I stay otherwise

If Dymond–Tompa game is over, so is Raz–McKenzie game.
I Invariant: challenged node c is the ‘earliest’ False node.

I Proof: by induction.

I When Dymond–Tompa game is over:

I c is pebbled,
I all immediate predecessors of c are pebbled,
I Raz–McKenzie game is over.

v

c

⇒
v

c

Simulation Argument

Colourer strategy ⇒ Challenger strategy:
I Assume c is challenged. If v is pebbled, see what a Colourer

would do, and Challenger:
I jump if v is a predecessor of c , and v is coloured False
I stay otherwise

If Dymond–Tompa game is over, so is Raz–McKenzie game.

I Invariant: challenged node c is the ‘earliest’ False node.

I Proof: by induction.

I When Dymond–Tompa game is over:

I c is pebbled,
I all immediate predecessors of c are pebbled,
I Raz–McKenzie game is over.

v

c

⇒
v

c

Simulation Argument

Colourer strategy ⇒ Challenger strategy:
I Assume c is challenged. If v is pebbled, see what a Colourer

would do, and Challenger:
I jump if v is a predecessor of c , and v is coloured False
I stay otherwise

If Dymond–Tompa game is over, so is Raz–McKenzie game.
I Invariant: challenged node c is the ‘earliest’ False node.

I Proof: by induction.

I When Dymond–Tompa game is over:

I c is pebbled,
I all immediate predecessors of c are pebbled,
I Raz–McKenzie game is over.

v

c

⇒
v

c

Simulation Argument

Colourer strategy ⇒ Challenger strategy:
I Assume c is challenged. If v is pebbled, see what a Colourer

would do, and Challenger:
I jump if v is a predecessor of c , and v is coloured False
I stay otherwise

If Dymond–Tompa game is over, so is Raz–McKenzie game.
I Invariant: challenged node c is the ‘earliest’ False node.

I Proof: by induction.

I When Dymond–Tompa game is over:

I c is pebbled,
I all immediate predecessors of c are pebbled,
I Raz–McKenzie game is over.

v

c

⇒
v

c

Simulation Argument

Colourer strategy ⇒ Challenger strategy:
I Assume c is challenged. If v is pebbled, see what a Colourer

would do, and Challenger:
I jump if v is a predecessor of c , and v is coloured False
I stay otherwise

If Dymond–Tompa game is over, so is Raz–McKenzie game.
I Invariant: challenged node c is the ‘earliest’ False node.

I Proof: by induction.

I When Dymond–Tompa game is over:

I c is pebbled,
I all immediate predecessors of c are pebbled,
I Raz–McKenzie game is over.

v

c

⇒
v

c

Simulation Argument

Colourer strategy ⇒ Challenger strategy:
I Assume c is challenged. If v is pebbled, see what a Colourer

would do, and Challenger:
I jump if v is a predecessor of c , and v is coloured False
I stay otherwise

If Dymond–Tompa game is over, so is Raz–McKenzie game.
I Invariant: challenged node c is the ‘earliest’ False node.

I Proof: by induction.

I When Dymond–Tompa game is over:
I c is pebbled,
I all immediate predecessors of c are pebbled,

I Raz–McKenzie game is over.
v

c

⇒
v

c

Simulation Argument

Colourer strategy ⇒ Challenger strategy:
I Assume c is challenged. If v is pebbled, see what a Colourer

would do, and Challenger:
I jump if v is a predecessor of c , and v is coloured False
I stay otherwise

If Dymond–Tompa game is over, so is Raz–McKenzie game.
I Invariant: challenged node c is the ‘earliest’ False node.

I Proof: by induction.

I When Dymond–Tompa game is over:
I c is pebbled (False),
I all immediate predecessors of c are pebbled (True),

I Raz–McKenzie game is over.
v

c

⇒
v

c

Simulation Argument

Colourer strategy ⇒ Challenger strategy:
I Assume c is challenged. If v is pebbled, see what a Colourer

would do, and Challenger:
I jump if v is a predecessor of c , and v is coloured False
I stay otherwise

If Dymond–Tompa game is over, so is Raz–McKenzie game.
I Invariant: challenged node c is the ‘earliest’ False node.

I Proof: by induction.

I When Dymond–Tompa game is over:
I c is pebbled (False),
I all immediate predecessors of c are pebbled (True),
I Raz–McKenzie game is over.

v

c

⇒
v

c

Summary of Results

I Equivalence of Pebble Games
I Reversible Pebble Game
I Dymond–Tompa Pebble Game
I Raz–McKenzie Pebble Game

I Relations to Computational Complexity
I Restricted lower bounds
I Depth complexity of circuits

I Applications to Proof Complexity
I Depth of resolution refutations
I Size of Tree-Like resolution refutations

I Complexity of Pebble Games
I PSPACE-complete

Summary of Results

I Equivalence of Pebble Games
I Reversible Pebble Game
I Dymond–Tompa Pebble Game
I Raz–McKenzie Pebble Game

I Relations to Computational Complexity
I Restricted lower bounds
I Depth complexity of circuits

I Applications to Proof Complexity
I Depth of resolution refutations
I Size of Tree-Like resolution refutations

I Complexity of Pebble Games
I PSPACE-complete

Summary of Results

I Equivalence of Pebble Games
I Reversible Pebble Game
I Dymond–Tompa Pebble Game
I Raz–McKenzie Pebble Game

I Relations to Computational Complexity
I Restricted lower bounds
I Depth complexity of circuits

I Applications to Proof Complexity
I Depth of resolution refutations
I Size of Tree-Like resolution refutations

I Complexity of Pebble Games
I PSPACE-complete

Summary of Results

I Equivalence of Pebble Games
I Reversible Pebble Game
I Dymond–Tompa Pebble Game
I Raz–McKenzie Pebble Game

I Relations to Computational Complexity
I Restricted lower bounds
I Depth complexity of circuits

I Applications to Proof Complexity
I Depth of resolution refutations
I Size of Tree-Like resolution refutations

I Complexity of Pebble Games
I PSPACE-complete

Summary of Results

I Equivalence of Pebble Games
I Reversible Pebble Game
I Dymond–Tompa Pebble Game
I Raz–McKenzie Pebble Game

I Relations to Computational Complexity
I Restricted lower bounds
I Depth complexity of circuits

I Applications to Proof Complexity
I Depth of resolution refutations
I Size of Tree-Like resolution refutations

I Complexity of Pebble Games
I PSPACE-complete (bounded fan-in)

Other Approaches

Lower Bounds by Communication Complexity
Multi-party pointer jumping

[Chakrabarti ’07] [Brody–Chakrabarti ’08] [Viola–Wigderson ’09] ACC0 ?
= P

Extensions of Karchmer–Wigderson framework

[Aaronson–Wigderson ’09] NL
?
= NP

[Kol–Raz ’13] NC
?
= P

Size and Depth of Circuits

[Allender–Koucký ’10] TC0 ?
= NC1

[Lipton–Williams ’12] NC
?
= P

Geometric Complexity Theory

[Mulmuley–Sohoni ’01 ’08] VP
?
= VNP

Other Approaches

Lower Bounds by Communication Complexity
Multi-party pointer jumping

[Chakrabarti ’07] [Brody–Chakrabarti ’08] [Viola–Wigderson ’09] ACC0 ?
= P

Extensions of Karchmer–Wigderson framework

[Aaronson–Wigderson ’09] NL
?
= NP

[Kol–Raz ’13] NC
?
= P

Size and Depth of Circuits

[Allender–Koucký ’10] TC0 ?
= NC1

[Lipton–Williams ’12] NC
?
= P

Geometric Complexity Theory

[Mulmuley–Sohoni ’01 ’08] VP
?
= VNP

Other Approaches

Lower Bounds by Communication Complexity
Multi-party pointer jumping

[Chakrabarti ’07] [Brody–Chakrabarti ’08] [Viola–Wigderson ’09] ACC0 ?
= P

Extensions of Karchmer–Wigderson framework

[Aaronson–Wigderson ’09] NL
?
= NP

[Kol–Raz ’13] NC
?
= P

Size and Depth of Circuits

[Allender–Koucký ’10] TC0 ?
= NC1

[Lipton–Williams ’12] NC
?
= P

Geometric Complexity Theory

[Mulmuley–Sohoni ’01 ’08] VP
?
= VNP

Other Approaches

Lower Bounds by Communication Complexity
Multi-party pointer jumping

[Chakrabarti ’07] [Brody–Chakrabarti ’08] [Viola–Wigderson ’09] ACC0 ?
= P

Extensions of Karchmer–Wigderson framework

[Aaronson–Wigderson ’09] NL
?
= NP

[Kol–Raz ’13] NC
?
= P

Size and Depth of Circuits

[Allender–Koucký ’10] TC0 ?
= NC1

[Lipton–Williams ’12] NC
?
= P

Geometric Complexity Theory

[Mulmuley–Sohoni ’01 ’08] VP
?
= VNP

Other Approaches

Lower Bounds by Communication Complexity
Multi-party pointer jumping

[Chakrabarti ’07] [Brody–Chakrabarti ’08] [Viola–Wigderson ’09] ACC0 ?
= P

Extensions of Karchmer–Wigderson framework

[Aaronson–Wigderson ’09] NL
?
= NP

[Kol–Raz ’13] NC
?
= P

Size and Depth of Circuits

[Allender–Koucký ’10] TC0 ?
= NC1

[Lipton–Williams ’12] NC
?
= P

Geometric Complexity Theory

[Mulmuley–Sohoni ’01 ’08] VP
?
= VNP

Questions

	Background
	Equivalence of Pebble Games
	Reversible Pebble Game
	Dymond–Tompa Pebble Game
	Raz–McKenzie Pebble Game

	Dymond–Tompa Game = Raz–McKenzie Game
	Wrap Up

