Pebble Games and Complexity

Siu Man Chan

Princeton CCI

21 Jan, 2014 @ IAS

Circuit Evaluation Problem

Circuit Evaluation Problem

> Input:
circuit C
instance x

Circuit Evaluation Problem

> Input:
circuit C
instance x
» Output:

x : Result of evaluating C on x

Circuit Evaluation Problem

» Complete for P

Circuit Evaluation Problem

» Complete for P
» “Complete” for NC' for restricted C of depth < O(log’ n)

Circuit Evaluation Problem

» Complete for P
» “Complete” for NC' for restricted C of depth < O(log’ n)

NC' = size (), depth O(log' n)

Circuit Evaluation Problem

» Complete for P
» “Complete” for NC' for restricted C of depth < O(log’ n)

NC' = size (), depth O(log' n)

0(1)

~ processors n parallel time O(log' n)

Circuit Evaluation Problem

» Complete for P
» “Complete” for NC' for restricted C of depth < O(log’ n)

NC' = size (), depth O(log' n)

0(1)

~ processors n parallel time O(log' n)

NC!'CNC?’CNC3C..-CNCCP

Circuit Evaluation Problem

» Complete for P
» “Complete” for NC' for restricted C of depth < O(log’ n)

NC' = size (), depth O(log' n)

0(1)

~ processors n parallel time O(log' n)

NC!CLCNLCNC?CNC]C...CNCCP

Circuit Evaluation Problem

» Complete for P
» “Complete” for NC' for restricted C of depth < O(log’ n)

NC' = size (), depth O(log' n)

0(1)

~ processors n parallel time O(log' n)

NC!CLCNLCNC?CNC]C...CNCCP

» Concerns space and parallel complexity

Circuit Evaluation Problem

» Complete for P
» “Complete” for NC' for restricted C of depth < O(log’ n)

NC' = size (), depth O(log' n)

0(1)

~ processors n parallel time O(log' n)

NC!CLCNLCNC?CNC]C...CNCCP

» Concerns space and parallel complexity

» Applications: Database query algorithms, Data flow models,
Big Data computation, etc.

Black Pebble Game

Black Pebble Game

Algorithms for Circuit Evaluation

Black Pebble Game

Algorithms for Circuit Evaluation

» Rule 1: add pebble to v if Q ’
all immediate predecessors
of v are pebbled 0 — 00

NN NN

Black Pebble Game

Algorithms for Circuit Evaluation

» Rule 1: add pebble to v if Q ’
all immediate predecessors
of v are pebbled 0 — 00

NN NN

0L = @

Black Pebble Game

Algorithms for Circuit Evaluation

» Rule 1: add pebble to v if
all immediate predecessors
of v are pebbled

» Rule 2: remove pebble at
any time

Black Pebble Game

Algorithms for Circuit Evaluation

» Rule 1: add pebble to v if
all immediate predecessors
of v are pebbled

» Rule 2: remove pebble at
any time

» Pebbled means value stored
in memory

Black Pebble Game

Algorithms for Circuit Evaluation

» Rule 1: add pebble to v if
all immediate predecessors
of v are pebbled

» Rule 2: remove pebble at
any time

» Pebbled means value stored
in memory

CQC

WARVARN

0!0

WAAVARN

Black Pebble Game

Algorithms for Circuit Evaluation

» Rule 1: add pebble to v if Q
all immediate predecessors

of v are pebbled C X]

> Rule 2: remove pebble at / \/ \
any time
» Pebbled means value stored .’

in memory / \/ \

0’0

WAAVARN

‘Q

AAVARN

Black Pebble Game

Algorithms for Circuit Evaluation

» Rule 1: add pebble to v if
all immediate predecessors
of v are pebbled

» Rule 2: remove pebble at
any time

» Pebbled means value stored
in memory

Space needed < O(#Pebbles)

Black Pebble Game

Algorithms for Circuit Evaluation

» Rule 1: add pebble to v if
all immediate predecessors
of v are pebbled VG
#Pebbles(G) < O(|G|/ log|G])

[Hopcroft—Paul-Valiant '77]

» Rule 2: remove pebble at
any time

ded < O(+#Pebbl
» Pebbled means value stored Space needed < O(#Pebbles)

in memory

Black Pebble Game

Algorithms for Circuit Evaluation
Time[t] C Space[t/ log t]
» Rule 1: add pebble to v if
all immediate predecessors
of v are pebbled VG
#Pebbles(G) < O(|G|/ log|G])

[Hopcroft—Paul-Valiant '77]

» Rule 2: remove pebble at
any time

ded < Pebbl
» Pebbled means value stored Space needed < O(#Pebbles)

in memory

Lower Bounds by Pebble Games

Lower Bounds by Pebble Games

NC!CLCNLCNC?CNC3C..-.CNCCP

Lower Bounds by Pebble Games

NC!CLCNLCNC?CNC3C..-.CNCCP

m-NCt C m-NL m-circuits [Karchmer-Wigderson '90]

Lower Bounds by Pebble Games

NC!CLCNLCNC?CNC3C..-.CNCCP

m-NCt C m-NL m-circuits [Karchmer-Wigderson '90]

m-NC! ¢ m-NL
m-circuits [Raz—McKenzie '99]

Lower Bounds by Pebble Games

NC!CLCNLCNC?CNC3C..-.CNCCP

m-NCt C m-NL m-circuits [Karchmer-Wigderson '90]
m-NC! ¢ m-NL
m-NC' C m-NC'+1 m-circuits [Raz-McKenzie '99]

m-NC C m-P

Lower Bounds by Pebble Games

NC!CLCNLCNC?CNC3C..-.CNCCP

m-NCt C m-NL m-circuits [Karchmer-Wigderson '90]
m-NC! ¢ m-NL
m-NC' C m-NC'+1 m-circuits [Raz-McKenzie '99]
m-NC C m-P

m-L C m-NL m-switching-networks [Potechin '10]

Lower Bounds by Pebble Games

NC!CLCNLCNC?CNC3C..-.CNCCP

m-NCt C m-NL m-circuits [Karchmer-Wigderson '90]
m-NC! ¢ m-NL
m-NC' C m-NC'+1 m-circuits [Raz-McKenzie '99]
m-NC C m-P

m-L C m-NL m-switching-networks [Potechin '10]

m-L C m-NL .
m-switching-networks [C.—Potechin '12]

Lower Bounds by Pebble Games

NC!CLCNLCNC?CNC3C..-.CNCCP

m-NCt C m-NL m-circuits [Karchmer-Wigderson '90]
m-NC! ¢ m-NL
m-NC' C m-NC'+1 m-circuits [Raz-McKenzie '99]
m-NC C m-P

m-L C m-NL m-switching-networks [Potechin '10]

m-L C m-NL
m-NC' ¢ m-NC'*1 m-switching-networks
m-NC C m-P

[C.—Potechin '12]

Lower Bounds by Pebble Games

NC!CLCNLCNC?CNC3C..-.CNCCP

m-NCt C m-NL m-circuits [Karchmer-Wigderson '90]
m-NC! ¢ m-NL
m-NC' C m-NC'+1 m-circuits [Raz-McKenzie '99]
m-NC C m-P

m-L C m-NL m-switching-networks [Potechin '10]

m-L C m-NL
m-NC' ¢ m-NC'*1 m-switching-networks
m-NC C m-P

[C.—Potechin '12]

sem-NC’ c sem-NC/*1

sem-NC C sem.p Sem-circuits [C. "13]

Lower Bounds by Pebble Games

NC!CLCNLCNC?CNC3C..-.CNCCP

m-NC! € m-NL

m-NC* ¢ m-NL
m-NC' C m-NC'+1
m-NC C m-P

m-L C m-NL
m-L C m-NL
m-NC' ¢ m-NC/*1
m-NC C m-P

sem-NC' c sem-NC/+1
sem-NC C sem-P

m-circuits

m-circuits

m-switching-networks

m-switching-networks

sem-circuits

[Karchmer-Wigderson '90]

[Raz—McKenzie '99]

[Potechin '10]

[C.—Potechin '12]

[C. '13]

Raz—McKenzie pebble game

Reversible pebble game

Reversible pebble game

Dymond-Tompa pebble game
Raz-McKenzie pebble game

Lower Bounds by Pebble Games

NC!CLCNLCNC?CNC3C..-.CNCCP

m-NC! € m-NL

m-NC* ¢ m-NL
m-NC' C m-NC'+1
m-NC C m-P

m-L C m-NL
m-L C m-NL
m-NC' ¢ m-NC/*1
m-NC C m-P

sem-NC' c sem-NC/+1
sem-NC C sem-P

Theorem (jc.13)

m-circuits

m-circuits

m-switching-networks

m-switching-networks

sem-circuits

[Karchmer-Wigderson '90]

[Raz—McKenzie '99]

[Potechin '10]

[C.—Potechin '12]

[C. '13]

VG Simulation of strategies among
Raz—McKenzie game, reversible game, and Dymond—Tompa game.

Raz—McKenzie pebble game

Reversible pebble game

Reversible pebble game

Dymond-Tompa pebble game
Raz-McKenzie pebble game

Lower Bounds by Pebble Games

NC!CLCNLCNC?CNC3C..-.CNCCP

m-NC! € m-NL
m-NC* ¢ m-NL
m-NC' C m-NC'+1
m-NC C m-P

m-L C m-NL

_m—L c m—'NL
m-NC' ¢ m-NC/*1
m-NC C m-P

sem-NC' c sem-NC/+1
sem-NC C sem-P

Theorem (jc.13)

m-circuits

m-circuits

m-switching-networks

m-switching-networks

sem-circuits

[Karchmer-Wigderson '90]

[Raz—McKenzie '99] Raz-McKenzie pebble game

[Potechin '10] Reversible pebble game

C.—Potechin '12 .
Filmus—Pitassi-Robere—Cook '13]Reversible pebble game

Dymond-Tompa pebble game

[C.'13] Raz-McKenzie pebble game

VG Simulation of strategies among
Raz—McKenzie game, reversible game, and Dymond—Tompa game.

Lower Bounds by Pebble Games

NC!CLCNLCNC?CNC3C..-.CNCCP

m-NCl C m- L
m-NCt Cm- L
m-NC' C m-NC'+1
m-NC C m-P

m-L C m-NL

_m—L c m—'NL
m-NC' ¢ m-NC'+1
m-NC C m-P

sem-NC' c sem-NC/*+1
sem-NC C sem-P

Theorem (jc. 13)

m-circuits

m-circuits

m-switching-networks

m-switching-networks

sem-circuits

[Karchmer-Wigderson '90]

[Raz—McKenzie '99] Raz-McKenzie pebble game

[Potechin '10] Reversible pebble game

C.—Potechin '12 .
Filmus—Pitassi-Robere—Cook '13]Reversible pebble game

Dymond-Tompa pebble game

[C.'13] Raz-McKenzie pebble game

VG Simulation of strategies among
Raz—McKenzie game, reversible game, and Dymond—Tompa game.

Semantic Circuit Bounds

Theorem (Karchmer-Wigderson)

Circuit Depth = Communication Complexity

Semantic Circuit Bounds

Theorem (Karchmer-Wigderson)

Circuit Depth = Communication Complexity

. . . Edmonds—Impagliazzo-Rudich-Sgall '01
NC! vs NC? Universal composition relation []

Semantic Circuit Bounds

Theorem (Karchmer-Wigderson)

Circuit Depth = Communication Complexity

. . . Edmonds—Impagliazzo-Rudich-Sgall '01
NC! vs NC? Universal composition relation []

NC! vs NC?> Universal composition relation [Hsstad-Wigderson '97]

Semantic Circuit Bounds

Theorem (Karchmer-Wigderson)

Circuit Depth = Communication Complexity

. . . Edmonds—Impagliazzo-Rudich-Sgall '01
NC! vs NC? Universal composition relation []

NC! vs NC?> Universal composition relation [Hsstad-Wigderson '97]

NC' vs NC'*!

NC vs P Iterated indexing [C. '13]

Semantic Circuit Bounds

Theorem (Karchmer-Wigderson)

Circuit Depth = Communication Complexity

. . . Edmonds—Impagliazzo-Rudich-Sgall '01
NC! vs NC? Universal composition relation []

NC! vs NC?> Universal composition relation [Hsstad-Wigderson '97]

NC' vs NC'*!

NC vs P Iterated indexing [C. '13]

In the bounds for Iterated indexing:
» Upper bound by Dymond—Tompa game

» Lower bound by Raz—McKenzie game

Semantic Circuit Bounds

Theorem (Karchmer-Wigderson)

Circuit Depth = Communication Complexity

. e . [Edmonds—Impagliazzo-Rudich—Sgall '01]
NC! vs NC? Universal composition relation
[Gavinsky—Meir-Weinstein—-Wigderson '13]

NC! vs NC?> Universal composition relation [Hsstad-Wigderson '97]

NC' vs NC'*!

NC vs P Iterated indexing [C. '13]

In the bounds for Iterated indexing:
» Upper bound by Dymond—Tompa game

» Lower bound by Raz—McKenzie game

My audience

v

Parallel Complexity

v

Space Complexity

v

Randomised Complexity

» Communication Complexity

v

Decision Tree Complexity (Certificate Complexity)

v

Proof Complexity

v

Algebraic Complexity

Reversible game
I

Dymond—Tompa game
|
Raz—McKenzie game

Reversible Pebble Game

Reversible Pebble Game

» Rule 1: add pebble to v if Q ’
all immediate predecessors
of v are pebbled ‘ . — . .

SNON NS

Reversible Pebble Game

» Rule 1: add pebble to v if Q ’
all immediate predecessors
of v are pebbled ‘ . <~ . .

SNON NS

> Rule 2: remove pebble if all
immediate predecessors of v
are pebbled

Reversible Pebble Game

» Rule 1: add pebble to v if Q ’
all immediate predecessors
of v are pebbled ‘ . <~ . .

SNON NS

> Rule 2: remove pebble if all
immediate predecessors of v
are pebbled

Reversible Pebble Game

» Reversible Computation [gennett '73):

Reversible Pebble Game

» Reversible Computation [gennett '73):
» May reduce energy dissipation

Reversible Pebble Game

» Reversible Computation [gennett '73):

» May reduce energy dissipation
» Observation-free quantum computation is reversible

Reversible Pebble Game

» Reversible Computation [gennett '73):
» May reduce energy dissipation
» Observation-free quantum computation is reversible
» Reversible simulation of irreversible computation [gennett 's9]
[Li~Vitanyi '96, '97] [Kral'ovic '01]

[Irreversible Progra m]—)[Reversible Program]

Reversible Pebble Game

» Reversible Computation [gennett '73):
» May reduce energy dissipation
» Observation-free quantum computation is reversible
» Reversible simulation of irreversible computation [gennett 's9]
[Li-Vitanyi '96, '97] [Kral'ovi¢ '01]

» Monotone space lower bounds [potechin '10] [C.~Potechin '12]:

Reversible Pebble Game

» Reversible Computation [gennett '73):
» May reduce energy dissipation
» Observation-free quantum computation is reversible
» Reversible simulation of irreversible computation [gennett 's9]
[Li-Vitanyi '96, '97] [Kral'ovi¢ '01]
» Monotone space lower bounds [potechin '10] [C.~Potechin '12]:
» Determinism equals reversibility/symmetry [Lange-McKenzie-Tapp '00]
[Reingold "08]

Dymond—Tompa Pebble Game

Dymond—Tompa Pebble Game

> To design parallel algorithms [pymond-Tompa ‘85, Gal-Jang '11]

Dymond—Tompa Pebble Game

> To design parallel algorithms [pymond-Tompa ‘85, Gal-Jang '11]
Give parallel speed-ups (when #processors is unbounded).

Dymond—Tompa Pebble Game

> To design parallel algorithms [pymond-Tompa ‘85, Gal-Jang '11]
Give parallel speed-ups (when #processors is unbounded).

» Capture complexity classes and inclusions |venkateswaran-Tompa 's9]

Dymond—Tompa Pebble Game

> To design parallel algorithms [pymond-Tompa ‘85, Gal-Jang '11]
Give parallel speed-ups (when #processors is unbounded).

» Capture complexity classes and inclusions |venkateswaran-Tompa 's9]

» (#Pebble used) characterizes parallelism in NC’,NC, P, etc;

Dymond—Tompa Pebble Game

> To design parallel algorithms [pymond-Tompa ‘85, Gal-Jang '11]
Give parallel speed-ups (when #processors is unbounded).

» Capture complexity classes and inclusions |venkateswaran-Tompa 's9]

» (#Pebble used) characterizes parallelism in NC’,NC, P, etc;
» Simulates the inclusion of NL C NC2.

Parallel Evaluation, Recursively

To compute the value at a

Parallel Evaluation, Recursively

To compute the value at a

1. Pick a node, say ¢

Parallel Evaluation, Recursively

To compute the value at a
1. Pick a node, say ¢
2. In parallel, do

Parallel Evaluation, Recursively

To compute the value at a
1. Pick a node, say ¢

2. In parallel, do
» Compute the value at ¢

Parallel Evaluation, Recursively

To compute the value at a
1. Pick a node, say ¢

2. In parallel, do

» Compute the value at ¢
» For each possible value v, of ¢, assume
Ve is correct and compute the value at a

Parallel Evaluation, Recursively

To compute the value at a
1. Pick a node, say ¢

2. In parallel, do

» Compute the value at ¢
» For each possible value v, of ¢, assume
Ve is correct and compute the value at a

3. Recurse!

Parallel Evaluation, Recursively

To compute the value at a
1. Pick a node, say ¢

2. In parallel, do
» Compute the value at ¢
» For each possible value v, of ¢, assume
Ve is correct and compute the value at a
3. Recurse!

4. Combine the results in Step 2 in constant
time

Q P 0O P T

Parallel Evaluation, Recursively

Parallel Evaluation, Recursively

Parallel Evaluation, Recursively

OO
G0, 0,0

O@C0

Parallel Evaluation, Recursively

oOo00
| OO

Parallel Evaluation, Recursively

oOo00
| OO

@O0

CO@0

Dymond—Tompa Game

» Two players: Pebbler and Challenger, competitive

Dymond—Tompa Game

» Two players: Pebbler and Challenger, competitive

» Alternate to move, Pebbler moves first

Dymond—Tompa Game

» Two players: Pebbler and Challenger, competitive
» Alternate to move, Pebbler moves first
> Initial Set-up:

VA

ST

Dymond—Tompa Game

» Two players: Pebbler and Challenger, competitive
» Alternate to move, Pebbler moves first
> Initial Set-up:

» Pebbler pebbles sink

Q Q
=

SNIND NN

Dymond—Tompa Game

» Two players: Pebbler and Challenger, competitive
» Alternate to move, Pebbler moves first
> Initial Set-up:

» Pebbler pebbles sink

» Challenger challenges sink (exactly one pebbled node is
challenged any time)

9 Q Q

=
A VA VA VA VAR VAR

Dymond—Tompa Game

» Two players: Pebbler and Challenger, competitive
» Alternate to move, Pebbler moves first
> Initial Set-up:
» Pebbler pebbles sink
» Challenger challenges sink (exactly one pebbled node is
challenged any time)
» Each round:

Q

SNTN

Dymond—Tompa Game

» Two players: Pebbler and Challenger, competitive
» Alternate to move, Pebbler moves first
> Initial Set-up:
» Pebbler pebbles sink
» Challenger challenges sink (exactly one pebbled node is
challenged any time)
» Each round:

» Pebbler chooses a node to pebble

Q =

A VA AR VAR

Dymond—Tompa Game

» Two players: Pebbler and Challenger, competitive
» Alternate to move, Pebbler moves first
> Initial Set-up:
» Pebbler pebbles sink
» Challenger challenges sink (exactly one pebbled node is
challenged any time)
» Each round:

» Pebbler chooses a node to pebble
» Challenger chooses to stay or jump

AV U Vo U

Dymond—Tompa Game

» Two players: Pebbler and Challenger, competitive

» Alternate to move, Pebbler moves first
> Initial Set-up:
» Pebbler pebbles sink

» Challenger challenges sink (exactly one pebbled node is
challenged any time)

» Each round:
» Pebbler chooses a node to pebble
» Challenger chooses to stay or jump
» Pebbler wins if, before she moves, the challenged node has all
immediate predecessors pebbled

Dymond—Tompa Game

» Two players: Pebbler and Challenger, competitive

» Alternate to move, Pebbler moves first
> Initial Set-up:
» Pebbler pebbles sink

» Challenger challenges sink (exactly one pebbled node is
challenged any time)

» Each round:
» Pebbler chooses a node to pebble
» Challenger chooses to stay or jump

» Pebbler wins if, before she moves, the challenged node has all
immediate predecessors pebbled

» Challenger aims to delay the inevitable

Raz—McKenzie Pebble Game

Raz—McKenzie Pebble Game

» Give depth lower bounds to monotone circuits [Raz-Mckenzie '99]

Raz—McKenzie Pebble Game

» Give depth lower bounds to monotone circuits [Raz-Mckenzie '99]
Motivated by decision tree complexity of search problems

[Lovasz—Naor-Newman-Wigderson '95]

Raz—McKenzie Pebble Game

» Give depth lower bounds to monotone circuits [Raz-Mckenzie '99]
Motivated by decision tree complexity of search problems
[Lovasz-Naor—Newman—Wigderson '95]

» Applications to Proof Complexity:

» Inspired pebbling contradictions (next slide)

Raz—McKenzie Pebble Game

» Give depth lower bounds to monotone circuits [Raz-Mckenzie '99]
Motivated by decision tree complexity of search problems

[Lovasz—Naor-Newman-Wigderson '95]
» Applications to Proof Complexity:

» Inspired pebbling contradictions (next slide)
» Separation and Trade-off Results:

» Cutting plane refutations [Bonet-Esteban-Galesi-Galesi '98]

> Treelike resolution refutations [Ben-Sasson—Impagliazzo-Wigderson '04]
[Urquhart "11]
Regular resolution refutations [Alekhnovich-Johannsen—Pitassi-Urquhart '07]

> Clause learning algorithms [Beame-Impagliazzo-Pitassi-Segerlind '10]

> Nullstellenzatz and Polynomial Calculus
[Buresh-Oppenheim-Clegg-Impagliazzo—Pitassi '02]

» k-DNF resolution refutation [Esteban-Galesi—Messner '04]

Raz—McKenzie Pebble Game

» Give depth lower bounds to monotone circuits [Raz-Mckenzie '99]
Motivated by decision tree complexity of search problems

[Lovasz—Naor-Newman-Wigderson '95]
» Applications to Proof Complexity:

» Inspired pebbling contradictions (next slide)
» Separation and Trade-off Results:
» Cutting plane refutations [Bonet-Esteban-Galesi-Galesi '98]
> Treelike resolution refutations [Ben-Sasson—Impagliazzo-Wigderson '04]
[Urquhart "11]
Regular resolution refutations [Alekhnovich-Johannsen—Pitassi-Urquhart '07]
> Clause learning algorithms [Beame-Impagliazzo-Pitassi-Segerlind '10]
> Nullstellenzatz and Polynomial Calculus
[Buresh-Oppenheim-Clegg-Impagliazzo—Pitassi '02]
» k-DNF resolution refutation [Esteban-Galesi—Messner '04]

» Depth of resolution refutation [c. 13

Pebbling Contradictions

» Given G, construct an unsatisfiable CNF X :

Pebbling Contradictions

» Given G, construct an unsatisfiable CNF X :

» One variable per node

Pebbling Contradictions

» Given G, construct an unsatisfiable CNF X :

» One variable per node
» Add the following clauses:
Source All source variables are TRUE,

Pebbling Contradictions

» Given G, construct an unsatisfiable CNF X :
» One variable per node

» Add the following clauses:

Source All source variables are TRUE,
Implication Truth propagates through the graph,

Pebbling Contradictions

» Given G, construct an unsatisfiable CNF X :

» One variable per node
» Add the following clauses:

Source All source variables are TRUE,
Implication Truth propagates through the graph,
Sink The sink variable is false.

Pebbling Contradictions

» Given G, construct an unsatisfiable CNF X :
» One variable per node

» Add the following clauses:

Source All source variables are TRUE,
Implication Truth propagates through the graph,
Sink The sink variable is false.

Example:

Pebbling Contradictions

» Given G, construct an unsatisfiable CNF X :

» One variable per node
» Add the following clauses:

Source All source variables are TRUE,
Implication Truth propagates through the graph,
Sink The sink variable is false.

Example:
(=)
(5) (2)
@) © O

Pebbling Contradictions

» Given G, construct an unsatisfiable CNF X :
» One variable per node

» Add the following clauses:

Source All source variables are TRUE,
Implication Truth propagates through the graph,
Sink The sink variable is false.

Example:

Pebbling Contradictions

» Given G, construct an unsatisfiable CNF X :

» One variable per node
» Add the following clauses:

Source All source variables are TRUE,
Implication Truth propagates through the graph,
Sink The sink variable is false.

[0}

Example: f

Pebbling Contradictions

» Given G, construct an unsatisfiable CNF X :
» One variable per node

» Add the following clauses:

Source All source variables are TRUE,
Implication Truth propagates through the graph,
Sink The sink variable is false.

d
e
Example: f

dhe—b d

Pebbling Contradictions

» Given G, construct an unsatisfiable CNF X :

» One variable per node
» Add the following clauses:

Source All source variables are TRUE,
Implication Truth propagates through the graph,
Sink The sink variable is false.

d
e
Example: f
drne=b dVevh e
eNf=c BVFfVc

Pebbling Contradictions

» Given G, construct an unsatisfiable CNF X :

» One variable per node
» Add the following clauses:

Source All source variables are TRUE,
Implication Truth propagates through the graph,
Sink The sink variable is false.

IR @ Q

Example:

dNe=b dVvVevh e

N = BV FV

NG VARG
@ & @

Pebbling Contradictions

» Given G, construct an unsatisfiable CNF X :

» One variable per node
» Add the following clauses:

Source All source variables are TRUE,
Implication Truth propagates through the graph,
Sink The sink variable is false.

IR @ Q

Example:

veve @)

evrFiv

svive (5) (2)
@ & D

LIl

Pebbling Contradictions

» Given G, construct an unsatisfiable CNF X :
» One variable per node

» Add the following clauses:

Source All source variables are TRUE,
Implication Truth propagates through the graph,
Sink The sink variable is false.

Resolution refutation of minimum depth for X ¢.

Resolution Refutation

Resolution Refutation

AVx BVx

Resolution Step: AV B

Resolution Refutation

AVx BVx

Resolution Step: AV B

Resolution Refutation

AVx BVx

Resolution Step: AV B

N/ bce\b_/bae
N e

Resolution Refutation

AVx BVx

Resolution Step: AV B

VA
~ ~

Resolution Refutation

AVx BVx

Resolution Step: AV B

Resolution Refutation

AVx BVx

Resolution Step: AV B

Partial Assignment on Resolution Refutation

» When a branch grows to a clause of ¥ ¢, this partial
assignment falsifies the clause

Partial Assignment on Resolution Refutation

» When a branch grows to a clause of ¥ ¢, this partial
assignment falsifies the clause

» If this partial assignment does not falsify any clause of ¥,
then the branch must grow deeper!

Partial Assignment on Resolution Refutation

» When a branch grows to a clause of ¥ ¢, this partial
assignment falsifies the clause

» If this partial assignment does not falsify any clause of ¥,
then the branch must grow deeper!

» To falsify a clause from X ¢:
Source d set d to FALSE
Implication bVEVa set b, c to TRUE, a to FALSE
Sink 2 set a to TRUE

Partial Assignment on Resolution Refutation

» When a branch grows to a clause of ¥ ¢, this partial
assignment falsifies the clause

» If this partial assignment does not falsify any clause of ¥,
then the branch must grow deeper!

» To falsify a clause from X ¢:

Source d set d to FALSE
Implication bV cVa set b, cto TRUE, ato FALSE
Sink 2 set a to TRUE

> Adversary Argument:
» When a variable is queried, answer TRUE or FALSE

Partial Assignment on Resolution Refutation

» When a branch grows to a clause of ¥ ¢, this partial
assignment falsifies the clause

» If this partial assignment does not falsify any clause of ¥,
then the branch must grow deeper!

» To falsify a clause from X ¢:

Source d set d to FALSE
Implication bV cVa set b, cto TRUE, ato FALSE
Sink 2 set a to TRUE

> Adversary Argument:

» When a variable is queried, answer TRUE or FALSE
» Try to avoid falsifying a clause from X (as above)

Partial Assignment on Resolution Refutation

» When a branch grows to a clause of ¥ ¢, this partial
assignment falsifies the clause

» If this partial assignment does not falsify any clause of ¥,
then the branch must grow deeper!

» To falsify a clause from X ¢:

Source d set d to FALSE
Implication bV cVa set b, cto TRUE, ato FALSE
Sink 2 set a to TRUE

> Adversary Argument:

» When a variable is queried, answer TRUE or FALSE

» Try to avoid falsifying a clause from X (as above)

» Number of answers before falsifying < depth of resolution
refutation

Raz—McKenzie Pebble Game

» Two players: Pebbler and Colourer, competitive

Raz—McKenzie Pebble Game

» Two players: Pebbler and Colourer, competitive

» Alternate to move, Pebbler moves first

Raz—McKenzie Pebble Game

» Two players: Pebbler and Colourer, competitive

» Alternate to move, Pebbler moves first
» Each round:

2N

SNTN

Raz—McKenzie Pebble Game

» Two players: Pebbler and Colourer, competitive

» Alternate to move, Pebbler moves first
» Each round:
» Pebbler chooses a node to pebble

NN g/"\

Raz—McKenzie Pebble Game

» Two players: Pebbler and Colourer, competitive

» Alternate to move, Pebbler moves first
» Each round:

» Pebbler chooses a node to pebble
» Colourer chooses to colour it TRUE or FALSE

ININ

o 1

e e
SRORR
e

| 3%

Raz—McKenzie Pebble Game

» Two players: Pebbler and Colourer, competitive

» Alternate to move, Pebbler moves first
» Each round:
» Pebbler chooses a node to pebble
» Colourer chooses to colour it TRUE or FALSE
» Pebbler wins if, before she moves, some FALSE node has all
immediate predecessors TRUE (source and sink are treated
analogously)

Raz—McKenzie Pebble Game

» Two players: Pebbler and Colourer, competitive

» Alternate to move, Pebbler moves first
» Each round:
» Pebbler chooses a node to pebble
» Colourer chooses to colour it TRUE or FALSE
» Pebbler wins if, before she moves, some FALSE node has all
immediate predecessors TRUE (source and sink are treated
analogously)

» Colourer aims to delay the inevitable

Raz—McKenzie Pebble Game

» Two players: Pebbler and Colourer, competitive

» Alternate to move, Pebbler moves first
» Each round:
» Pebbler chooses a node to pebble
» Colourer chooses to colour it TRUE or FALSE
» Pebbler wins if, before she moves, some FALSE node has all
immediate predecessors TRUE (source and sink are treated
analogously)

» Colourer aims to delay the inevitable

> |s exactly the depth of resolution refutation for g [c. 13

Raz—McKenzie Pebble Game

» Two players: Pebbler and Colourer, competitive

» Alternate to move, Pebbler moves first
» Each round:

» Pebbler chooses a node to pebble
» Colourer chooses to colour it TRUE or FALSE

» Pebbler wins if, before she moves, some FALSE node has all
immediate predecessors TRUE (source and sink are treated
analogously)

» Colourer aims to delay the inevitable

> |s exactly the depth of resolution refutation for g [c. 13

» Colourer strategy gives lower bound

Raz—McKenzie Pebble Game

» Two players: Pebbler and Colourer, competitive

» Alternate to move, Pebbler moves first
» Each round:

» Pebbler chooses a node to pebble
» Colourer chooses to colour it TRUE or FALSE

» Pebbler wins if, before she moves, some FALSE node has all
immediate predecessors TRUE (source and sink are treated
analogously)

» Colourer aims to delay the inevitable

> Is exactly the depth of resolution refutation for X ¢ [c 13
» Colourer strategy gives lower bound

» Pebbler strategy gives upper bound

Raz—McKenzie Pebble Game

» Two players: Pebbler and Colourer, competitive

» Alternate to move, Pebbler moves first
» Each round:
» Pebbler chooses a node to pebble
» Colourer chooses to colour it TRUE or FALSE
» Pebbler wins if, before she moves, some FALSE node has all
immediate predecessors TRUE (source and sink are treated
analogously)

» Colourer aims to delay the inevitable

» Add an initial set-up to make it more like Dymond—Tompa
game.

Raz—McKenzie pebble game

>

Two players: Pebbler and Colourer,
competitive

Alternate to move, Pebbler moves first
Initial Set-up:

» Pebbler pebbles sink

» Colourer colours sink FALSE

Each round:

» Pebbler chooses a node to pebble
» Colourer chooses to colour it
TRUE or FALSE

Pebbler wins if, before she moves,
some FALSE node has all immediate
predecessors TRUE

Colourer aims to delay the inevitable

Raz—McKenzie pebble game

>

Two players: Pebbler and Colourer,
competitive

Alternate to move, Pebbler moves first

Initial Set-up:
> Pebbler pebbles sink
» Colourer colours sink FALSE
Each round:
» Pebbler chooses a node to pebble
» Colourer chooses to colour it
TRUE or FALSE
Pebbler wins if, before she moves,

some FALSE node has all immediate
predecessors TRUE

Colourer aims to delay the inevitable

Dymond—Tompa pebble game

>

Two players: Pebbler and Challenger,
competitive

Alternate to move, Pebbler moves first
Initial Set-up:

> Pebbler pebbles sink

> Challenger challenges sink

Each round:

> Pebbler chooses a node to pebble
» Challenger chooses to stay or
jump
Pebbler wins if, before she moves, the
challenged node has all immediate
predecessors pebbled

Challenger aims to delay the inevitable

Dymond—Tompa Game = Raz—McKenzie Game

» Simulation argument (reduction in combinatorial game):

Dymond—Tompa Game = Raz—McKenzie Game

» Simulation argument (reduction in combinatorial game):

1. Turn a Colourer strategy (Raz-McKenzie game) into a
Challenger strategy (Dymond—Tompa game).

Dymond—Tompa Game = Raz—McKenzie Game

» Simulation argument (reduction in combinatorial game):
1. Turn a Colourer strategy (Raz-McKenzie game) into a
Challenger strategy (Dymond—Tompa game).

If the Dymond—Tompa game is over, so is the Raz-McKenzie
game.

2.

Dymond—Tompa Game = Raz—McKenzie Game

» Simulation argument (reduction in combinatorial game):

1.

Turn a Colourer strategy (Raz—McKenzie game) into a
Challenger strategy (Dymond—Tompa game).

. If the Dymond-Tompa game is over, so is the Raz—McKenzie

game.
Implies Dymond—Tompa #Pebble > Raz—McKenzie #Pebble.

Dymond—Tompa Game = Raz—McKenzie Game

» Simulation argument (reduction in combinatorial game):
1. Turn a Colourer strategy (Raz-McKenzie game) into a
Challenger strategy (Dymond—Tompa game).

2. If the Dymond—Tompa game is over, so is the Raz—McKenzie
game.

3. Implies Dymond—Tompa #Pebble > Raz—McKenzie #Pebble.
Colourer strategy = Challenger strategy:

Dymond—Tompa Game = Raz—McKenzie Game

» Simulation argument (reduction in combinatorial game):
1. Turn a Colourer strategy (Raz-McKenzie game) into a
Challenger strategy (Dymond—Tompa game).

2. If the Dymond—Tompa game is over, so is the Raz—McKenzie
game.

3. Implies Dymond—Tompa #Pebble > Raz—McKenzie #Pebble.
Colourer strategy = Challenger strategy:

» Assume c is challenged. If v is pebbled, see what a Colourer
would do, and Challenger:

Dymond—Tompa Game = Raz—McKenzie Game

» Simulation argument (reduction in combinatorial game):
1. Turn a Colourer strategy (Raz-McKenzie game) into a
Challenger strategy (Dymond—Tompa game).

2. If the Dymond—Tompa game is over, so is the Raz—McKenzie
game.

3. Implies Dymond—Tompa #Pebble > Raz—McKenzie #Pebble.

Colourer strategy = Challenger strategy:

» Assume c is challenged. If v is pebbled, see what a Colourer
would do, and Challenger:

» jump if v is a predecessor of ¢, and v is coloured FALSE 3
» stay otherwise

C

v

Simulation Argument

Colourer strategy = Challenger strategy:

» Assume c is challenged. If v is pebbled, see what a Colourer
would do, and Challenger:
» jump if v is a predecessor of ¢, and v is coloured FALSE
» stay otherwise

Simulation Argument

Colourer strategy = Challenger strategy:

» Assume c is challenged. If v is pebbled, see what a Colourer
would do, and Challenger:

» jump if v is a predecessor of ¢, and v is coloured FALSE
» stay otherwise

If Dymond—Tompa game is over, so is Raz—McKenzie game.

Simulation Argument

Colourer strategy = Challenger strategy:

» Assume c is challenged. If v is pebbled, see what a Colourer
would do, and Challenger:

» jump if v is a predecessor of ¢, and v is coloured FALSE
» stay otherwise

If Dymond—Tompa game is over, so is Raz—McKenzie game.
> Invariant: challenged node c is the ‘earliest’” FALSE node.

Simulation Argument

Colourer strategy = Challenger strategy:

» Assume c is challenged. If v is pebbled, see what a Colourer
would do, and Challenger:

» jump if v is a predecessor of ¢, and v is coloured FALSE
» stay otherwise

If Dymond—Tompa game is over, so is Raz—McKenzie game.
> Invariant: challenged node c is the ‘earliest’” FALSE node.

» Proof: by induction. [e
=
v

Simulation Argument

Colourer strategy = Challenger strategy:

» Assume c is challenged. If v is pebbled, see what a Colourer
would do, and Challenger:

» jump if v is a predecessor of ¢, and v is coloured FALSE
» stay otherwise

If Dymond—Tompa game is over, so is Raz—McKenzie game.
> Invariant: challenged node c is the ‘earliest’” FALSE node.
» Proof: by induction. [
» When Dymond—Tompa game is over:

Simulation Argument

Colourer strategy = Challenger strategy:

» Assume c is challenged. If v is pebbled, see what a Colourer
would do, and Challenger:

» jump if v is a predecessor of ¢, and v is coloured FALSE
» stay otherwise

If Dymond—Tompa game is over, so is Raz—McKenzie game.
> Invariant: challenged node c is the ‘earliest’” FALSE node.
» Proof: by induction. [
» When Dymond—Tompa game is over:

> c is pebbled,
» all immediate predecessors of ¢ are pebbled,

Simulation Argument

Colourer strategy = Challenger strategy:

» Assume c is challenged. If v is pebbled, see what a Colourer
would do, and Challenger:

» jump if v is a predecessor of ¢, and v is coloured FALSE
» stay otherwise

If Dymond—Tompa game is over, so is Raz—McKenzie game.
> Invariant: challenged node c is the ‘earliest’” FALSE node.
» Proof: by induction. [
» When Dymond—Tompa game is over:

» c is pebbled (FALSE),
» all immediate predecessors of ¢ are pebbled (TRUE),

Simulation Argument

Colourer strategy = Challenger strategy:

» Assume c is challenged. If v is pebbled, see what a Colourer
would do, and Challenger:

» jump if v is a predecessor of ¢, and v is coloured FALSE
» stay otherwise

If Dymond—Tompa game is over, so is Raz—McKenzie game.
> Invariant: challenged node c is the ‘earliest’” FALSE node.
» Proof: by induction. [
» When Dymond—Tompa game is over:

» c is pebbled (FALSE),
» all immediate predecessors of ¢ are pebbled (TRUE),
» Raz—McKenzie game is over. [

Summary of Results

» Equivalence of Pebble Games

» Reversible Pebble Game
» Dymond-Tompa Pebble Game
» Raz—McKenzie Pebble Game

Summary of Results

» Equivalence of Pebble Games
> Reversible Pebble Game
» Dymond-Tompa Pebble Game
» Raz-McKenzie Pebble Game
» Relations to Computational Complexity

> Restricted lower bounds
» Depth complexity of circuits

Summary of Results

» Equivalence of Pebble Games

» Reversible Pebble Game
» Dymond-Tompa Pebble Game
» Raz—McKenzie Pebble Game

» Relations to Computational Complexity

> Restricted lower bounds
» Depth complexity of circuits

» Applications to Proof Complexity

» Depth of resolution refutations
» Size of Tree-Like resolution refutations

Summary of Results

v

Equivalence of Pebble Games

> Reversible Pebble Game

» Dymond-Tompa Pebble Game

» Raz-McKenzie Pebble Game
Relations to Computational Complexity

> Restricted lower bounds
» Depth complexity of circuits

v

v

Applications to Proof Complexity

» Depth of resolution refutations
» Size of Tree-Like resolution refutations

v

Complexity of Pebble Games
» PSPACE-complete

Summary of Results

v

Equivalence of Pebble Games

> Reversible Pebble Game

» Dymond-Tompa Pebble Game

» Raz-McKenzie Pebble Game
Relations to Computational Complexity

> Restricted lower bounds
» Depth complexity of circuits

v

v

Applications to Proof Complexity

» Depth of resolution refutations
» Size of Tree-Like resolution refutations

v

Complexity of Pebble Games
» PSPACE-complete (bounded fan-in)

Other Approaches

Other Approaches

Lower Bounds by Communication Complexity
Multi-party pointer jumping

?

P

0
[Chakrabarti '07] [Brody—Chakrabarti '08] [Viola—Wigderson '09] ACC

Other Approaches

Lower Bounds by Communication Complexity
Multi-party pointer jumping

[Chakrabarti '07] [Brody—Chakrabarti '08] [Viola—Wigderson '09]
Extensions of Karchmer-Wigderson framework

[Aaronson—-Wigderson '09]

[Kol-Raz "13]

ACC L p
NL = NP
NC < P

Other Approaches

Lower Bounds by Communication Complexity
Multi-party pointer jumping

[Chakrabarti '07] [Brody—Chakrabarti '08] [Viola-Wigderson '09)] ACCO ; P
Extensions of Karchmer-Wigderson framework

[Aaronson-Wigderson 09 NL = NP

[Kol-Raz '13] NC z P

Size and Depth of Circuits
?
[Allender-Koucky '10] TCO = NCl
?
[Lipton-Williams '12] NC =P

Other Approaches

Lower Bounds by Communication Complexity

Multi-party pointer jumping
[Chakrabarti '07] [Brody-Chakrabarti '08] [Viola—Wigderson '09] ACCO ; P
Extensions of Karchmer-Wigderson framework
[Aaronson-Wigderson 09 NL = NP
[Kol-Raz '13] NC z P
Size and Depth of Circuits
[Allender—Koucky '10] TCO 2 NCt
NC <

[Lipton-Williams '12]

Geometric Complexity Theory
VP £ VNP

[Mulmuley-Sohoni '01 '08]

Questions

	Background
	Equivalence of Pebble Games
	Reversible Pebble Game
	Dymond–Tompa Pebble Game
	Raz–McKenzie Pebble Game

	Dymond–Tompa Game = Raz–McKenzie Game
	Wrap Up

