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NCi vs NCi+1

Iterated indexing [C. ’13]
NC vs P

In the bounds for Iterated indexing:

I Upper bound by Dymond–Tompa game

I Lower bound by Raz–McKenzie game



My audience

I Parallel Complexity

I Space Complexity

I Randomised Complexity

I Communication Complexity

I Decision Tree Complexity (Certificate Complexity)

I Proof Complexity

I Algebraic Complexity



Reversible game

=

Dymond–Tompa game

=
Raz–McKenzie game
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Reversible Pebble Game

I Reversible Computation [Bennett ’73]:

I May reduce energy dissipation
I Observation-free quantum computation is reversible
I Reversible simulation of irreversible computation [Bennett ’89]

[Li–Vitanyi ’96, ’97] [Král’ovič ’01]

I Monotone space lower bounds [Potechin ’10] [C.–Potechin ’12]:

I Determinism equals reversibility/symmetry [Lange–McKenzie–Tapp ’00]

[Reingold ’08]
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Dymond–Tompa Pebble Game

I To design parallel algorithms [Dymond–Tompa ’85, Gál–Jang ’11]

Give parallel speed-ups (when #processors is unbounded).

I Capture complexity classes and inclusions [Venkateswaran–Tompa ’89]

I (#Pebble used) characterizes parallelism in NCi ,NC,P, etc;
I Simulates the inclusion of NL ⊆ NC2.
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Parallel Evaluation, Recursively

To compute the value at a

1. Pick a node, say c

2. In parallel, do

I Compute the value at c
I For each possible value vc of c , assume

vc is correct and compute the value at a

3. Recurse!

4. Combine the results in Step 2 in constant
time
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Dymond–Tompa Game

I Two players: Pebbler and Challenger, competitive

I Alternate to move, Pebbler moves first
I Initial Set-up:

I Pebbler pebbles sink
I Challenger challenges sink (exactly one pebbled node is

challenged any time)

I Each round:

I Pebbler chooses a node to pebble
I Challenger chooses to stay or jump

I Pebbler wins if, before she moves, the challenged node has all
immediate predecessors pebbled

I Challenger aims to delay the inevitable
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Raz–McKenzie Pebble Game

I Give depth lower bounds to monotone circuits [Raz–McKenzie ’99]

Motivated by decision tree complexity of search problems
[Lovász–Naor–Newman–Wigderson ’95]

I Applications to Proof Complexity:

I Inspired pebbling contradictions (next slide)
I Separation and Trade-off Results:

I Cutting plane refutations [Bonet–Esteban–Galesi–Galesi ’98]

I Treelike resolution refutations [Ben-Sasson–Impagliazzo–Wigderson ’04]

[Urquhart ’11]

I Regular resolution refutations [Alekhnovich–Johannsen–Pitassi–Urquhart ’07]

I Clause learning algorithms [Beame–Impagliazzo–Pitassi–Segerlind ’10]

I Nullstellenzatz and Polynomial Calculus
[Buresh-Oppenheim–Clegg–Impagliazzo–Pitassi ’02]

I k-DNF resolution refutation [Esteban–Galesi–Messner ’04]

I Depth of resolution refutation [C. ’13]
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Pebbling Contradictions

I Given G , construct an unsatisfiable CNF ΣG :

I One variable per node
I Add the following clauses:

Source All source variables are True,
Implication Truth propagates through the graph,

Sink The sink variable is false.

Example:
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d̄ ∨ ē ∨ b
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Pebbling Contradictions

I Given G , construct an unsatisfiable CNF ΣG :

I One variable per node
I Add the following clauses:

Source All source variables are True,
Implication Truth propagates through the graph,

Sink The sink variable is false.

Resolution refutation of minimum depth for ΣG .
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Partial Assignment on Resolution Refutation

I When a branch grows to a clause of ΣG , this partial
assignment falsifies the clause

I If this partial assignment does not falsify any clause of ΣG ,
then the branch must grow deeper!

I To falsify a clause from ΣG :

Source d set d to False
Implication b̄ ∨ c̄ ∨ a set b, c to True, a to False

Sink ā set a to True

I Adversary Argument:

I When a variable is queried, answer True or False
I Try to avoid falsifying a clause from ΣG (as above)
I Number of answers before falsifying ≤ depth of resolution

refutation
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Raz–McKenzie Pebble Game

I Two players: Pebbler and Colourer, competitive

I Alternate to move, Pebbler moves first
I Each round:

I Pebbler chooses a node to pebble
I Colourer chooses to colour it True or False

I Pebbler wins if, before she moves, some False node has all
immediate predecessors True (source and sink are treated
analogously)

I Colourer aims to delay the inevitable

I Is exactly the depth of resolution refutation for ΣG [C. ’13]

I Colourer strategy gives lower bound

I Pebbler strategy gives upper bound. . . . . . . . .
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I Pebbler wins if, before she moves, some False node has all
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analogously)

I Colourer aims to delay the inevitable

I Add an initial set-up to make it more like Dymond–Tompa
game.

I Colourer strategy gives lower bound
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Raz–McKenzie pebble game

I Two players: Pebbler and Colourer,
competitive

I Alternate to move, Pebbler moves first

I Initial Set-up:

I Pebbler pebbles sink
I Colourer colours sink False

I Each round:

I Pebbler chooses a node to pebble
I Colourer chooses to colour it

True or False

I Pebbler wins if, before she moves,
some False node has all immediate
predecessors True

I Colourer aims to delay the inevitable

Dymond–Tompa pebble game

I Two players: Pebbler and Challenger,
competitive

I Alternate to move, Pebbler moves first

I Initial Set-up:

I Pebbler pebbles sink
I Challenger challenges sink

I Each round:

I Pebbler chooses a node to pebble
I Challenger chooses to stay or

jump

I Pebbler wins if, before she moves, the
challenged node has all immediate
predecessors pebbled

I Challenger aims to delay the inevitable
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Dymond–Tompa Game = Raz–McKenzie Game

I Simulation argument (reduction in combinatorial game):

1. Turn a Colourer strategy (Raz–McKenzie game) into a
Challenger strategy (Dymond–Tompa game).

2. If the Dymond–Tompa game is over, so is the Raz–McKenzie
game.

3. Implies Dymond–Tompa #Pebble ≥ Raz–McKenzie #Pebble.

Colourer strategy ⇒ Challenger strategy:
I Assume c is challenged. If v is pebbled, see what a Colourer

would do, and Challenger:

I jump if v is a predecessor of c , and v is coloured False
I stay otherwise

v

c
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Simulation Argument

Colourer strategy ⇒ Challenger strategy:
I Assume c is challenged. If v is pebbled, see what a Colourer

would do, and Challenger:
I jump if v is a predecessor of c , and v is coloured False
I stay otherwise

If Dymond–Tompa game is over, so is Raz–McKenzie game.
I Invariant: challenged node c is the ‘earliest’ False node.

I Proof: by induction.

I When Dymond–Tompa game is over:

I c is pebbled,
I all immediate predecessors of c are pebbled,
I Raz–McKenzie game is over.
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⇒
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= NC1

[Lipton–Williams ’12] NC
?
= P

Geometric Complexity Theory

[Mulmuley–Sohoni ’01 ’08] VP
?
= VNP



Other Approaches

Lower Bounds by Communication Complexity
Multi-party pointer jumping

[Chakrabarti ’07] [Brody–Chakrabarti ’08] [Viola–Wigderson ’09] ACC0 ?
= P

Extensions of Karchmer–Wigderson framework

[Aaronson–Wigderson ’09] NL
?
= NP

[Kol–Raz ’13] NC
?
= P

Size and Depth of Circuits

[Allender–Koucký ’10] TC0 ?
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