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» Complete for P
» “Complete” for NC' for restricted C of depth < O(log’ n)

NC' = size (), depth O(log' n)

0(1)

~ processors n parallel time O(log' n)

NC!CLCNLCNC?CNC]C...CNCCP

» Concerns space and parallel complexity

» Applications: Database query algorithms, Data flow models,
Big Data computation, etc.
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Black Pebble Game

Algorithms for Circuit Evaluation
Time[t] C Space[t/ log t]
» Rule 1: add pebble to v if
all immediate predecessors
of v are pebbled VG
#Pebbles(G) < O(|G|/ log|G])

[Hopcroft—Paul-Valiant '77]

» Rule 2: remove pebble at
any time

ded < Pebbl
» Pebbled means value stored Space needed < O(#Pebbles)

in memory
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Semantic Circuit Bounds

Theorem (Karchmer-Wigderson)

Circuit Depth = Communication Complexity

. e . [Edmonds—Impagliazzo-Rudich—Sgall '01]
NC! vs NC?  Universal composition relation
[Gavinsky—Meir-Weinstein—-Wigderson '13]

NC! vs NC?>  Universal composition relation  [Hsstad-Wigderson '97]

NC' vs NC'*!

NC vs P Iterated indexing [C. '13]

In the bounds for Iterated indexing:
» Upper bound by Dymond—Tompa game

» Lower bound by Raz—McKenzie game
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Reversible Pebble Game

» Reversible Computation [gennett '73):
» May reduce energy dissipation
» Observation-free quantum computation is reversible
» Reversible simulation of irreversible computation [gennett 's9]
[Li-Vitanyi '96, '97] [Kral'ovi¢ '01]
» Monotone space lower bounds [potechin '10] [C.~Potechin '12]:
» Determinism equals reversibility/symmetry [Lange-McKenzie-Tapp '00]
[Reingold "08]
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Dymond—Tompa Pebble Game

> To design parallel algorithms [pymond-Tompa ‘85, Gal-Jang '11]
Give parallel speed-ups (when #processors is unbounded).

» Capture complexity classes and inclusions |venkateswaran-Tompa 's9]

» (#Pebble used) characterizes parallelism in NC’,NC, P, etc;
» Simulates the inclusion of NL C NC2.
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Parallel Evaluation, Recursively

To compute the value at a
1. Pick a node, say ¢

2. In parallel, do
» Compute the value at ¢
» For each possible value v, of ¢, assume
Ve is correct and compute the value at a
3. Recurse!

4. Combine the results in Step 2 in constant
time

Q P 0O P T
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Dymond—Tompa Game

» Two players: Pebbler and Challenger, competitive

» Alternate to move, Pebbler moves first
> Initial Set-up:
» Pebbler pebbles sink

» Challenger challenges sink (exactly one pebbled node is
challenged any time)

» Each round:
» Pebbler chooses a node to pebble
» Challenger chooses to stay or jump

» Pebbler wins if, before she moves, the challenged node has all
immediate predecessors pebbled

» Challenger aims to delay the inevitable
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» Give depth lower bounds to monotone circuits [Raz-Mckenzie '99]
Motivated by decision tree complexity of search problems

[Lovasz—Naor-Newman-Wigderson '95]
» Applications to Proof Complexity:

» Inspired pebbling contradictions (next slide)
» Separation and Trade-off Results:

» Cutting plane refutations [Bonet-Esteban-Galesi-Galesi '98]

> Treelike resolution refutations [Ben-Sasson—Impagliazzo-Wigderson '04]
[Urquhart "11]
Regular resolution refutations [Alekhnovich-Johannsen—Pitassi-Urquhart '07]
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> Nullstellenzatz and Polynomial Calculus
[Buresh-Oppenheim-Clegg-Impagliazzo—Pitassi '02]

» k-DNF resolution refutation [Esteban-Galesi—Messner '04]



Raz—McKenzie Pebble Game

» Give depth lower bounds to monotone circuits [Raz-Mckenzie '99]
Motivated by decision tree complexity of search problems

[Lovasz—Naor-Newman-Wigderson '95]
» Applications to Proof Complexity:

» Inspired pebbling contradictions (next slide)
» Separation and Trade-off Results:
» Cutting plane refutations [Bonet-Esteban-Galesi-Galesi '98]
> Treelike resolution refutations [Ben-Sasson—Impagliazzo-Wigderson '04]
[Urquhart "11]
Regular resolution refutations [Alekhnovich-Johannsen—Pitassi-Urquhart '07]
> Clause learning algorithms [Beame-Impagliazzo-Pitassi-Segerlind '10]
> Nullstellenzatz and Polynomial Calculus
[Buresh-Oppenheim-Clegg-Impagliazzo—Pitassi '02]
» k-DNF resolution refutation [Esteban-Galesi—Messner '04]

» Depth of resolution refutation [c. 13



Pebbling Contradictions

» Given G, construct an unsatisfiable CNF X :



Pebbling Contradictions

» Given G, construct an unsatisfiable CNF X :

» One variable per node



Pebbling Contradictions

» Given G, construct an unsatisfiable CNF X :

» One variable per node
» Add the following clauses:
Source All source variables are TRUE,



Pebbling Contradictions

» Given G, construct an unsatisfiable CNF X :
» One variable per node

» Add the following clauses:

Source All source variables are TRUE,
Implication Truth propagates through the graph,



Pebbling Contradictions

» Given G, construct an unsatisfiable CNF X :

» One variable per node
» Add the following clauses:

Source All source variables are TRUE,
Implication Truth propagates through the graph,
Sink The sink variable is false.



Pebbling Contradictions

» Given G, construct an unsatisfiable CNF X :
» One variable per node

» Add the following clauses:

Source All source variables are TRUE,
Implication Truth propagates through the graph,
Sink The sink variable is false.

Example:



Pebbling Contradictions

» Given G, construct an unsatisfiable CNF X :

» One variable per node
» Add the following clauses:

Source All source variables are TRUE,
Implication Truth propagates through the graph,
Sink The sink variable is false.

Example:
(=)
(5) (2)
@) © O



Pebbling Contradictions

» Given G, construct an unsatisfiable CNF X :
» One variable per node

» Add the following clauses:

Source All source variables are TRUE,
Implication Truth propagates through the graph,
Sink The sink variable is false.

Example:



Pebbling Contradictions

» Given G, construct an unsatisfiable CNF X :

» One variable per node
» Add the following clauses:

Source All source variables are TRUE,
Implication Truth propagates through the graph,
Sink The sink variable is false.

[0}

Example: f



Pebbling Contradictions

» Given G, construct an unsatisfiable CNF X :
» One variable per node

» Add the following clauses:

Source All source variables are TRUE,
Implication Truth propagates through the graph,
Sink The sink variable is false.

d
e
Example: f

dhe—b d



Pebbling Contradictions

» Given G, construct an unsatisfiable CNF X :

» One variable per node
» Add the following clauses:

Source All source variables are TRUE,
Implication Truth propagates through the graph,
Sink The sink variable is false.

d
e
Example: f
drne=b dVevh e
eNf=c BVFfVc
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» Given G, construct an unsatisfiable CNF X :

» One variable per node
» Add the following clauses:

Source All source variables are TRUE,
Implication Truth propagates through the graph,
Sink The sink variable is false.
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Pebbling Contradictions

» Given G, construct an unsatisfiable CNF X :

» One variable per node
» Add the following clauses:

Source All source variables are TRUE,
Implication Truth propagates through the graph,
Sink The sink variable is false.

IR @ Q

Example:

veve @)
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Pebbling Contradictions

» Given G, construct an unsatisfiable CNF X :
» One variable per node

» Add the following clauses:

Source All source variables are TRUE,
Implication Truth propagates through the graph,
Sink The sink variable is false.

Resolution refutation of minimum depth for X ¢.
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Partial Assignment on Resolution Refutation

» When a branch grows to a clause of ¥ ¢, this partial
assignment falsifies the clause

» If this partial assignment does not falsify any clause of ¥,
then the branch must grow deeper!

» To falsify a clause from X ¢:

Source d set d to FALSE
Implication bV cVa set b, cto TRUE, ato FALSE
Sink 2 set a to TRUE

> Adversary Argument:

» When a variable is queried, answer TRUE or FALSE

» Try to avoid falsifying a clause from X (as above)

» Number of answers before falsifying < depth of resolution
refutation
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» Two players: Pebbler and Colourer, competitive

» Alternate to move, Pebbler moves first
» Each round:
» Pebbler chooses a node to pebble
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Raz—McKenzie Pebble Game

» Two players: Pebbler and Colourer, competitive

» Alternate to move, Pebbler moves first
» Each round:

» Pebbler chooses a node to pebble
» Colourer chooses to colour it TRUE or FALSE
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Raz—McKenzie Pebble Game

» Two players: Pebbler and Colourer, competitive

» Alternate to move, Pebbler moves first
» Each round:
» Pebbler chooses a node to pebble
» Colourer chooses to colour it TRUE or FALSE
» Pebbler wins if, before she moves, some FALSE node has all
immediate predecessors TRUE (source and sink are treated
analogously)

» Colourer aims to delay the inevitable

» Add an initial set-up to make it more like Dymond—Tompa
game.
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Raz—McKenzie pebble game

>

Two players: Pebbler and Colourer,
competitive

Alternate to move, Pebbler moves first

Initial Set-up:
> Pebbler pebbles sink
» Colourer colours sink FALSE
Each round:
» Pebbler chooses a node to pebble
» Colourer chooses to colour it
TRUE or FALSE
Pebbler wins if, before she moves,

some FALSE node has all immediate
predecessors TRUE

Colourer aims to delay the inevitable

Dymond—Tompa pebble game

>

Two players: Pebbler and Challenger,
competitive

Alternate to move, Pebbler moves first
Initial Set-up:

> Pebbler pebbles sink

> Challenger challenges sink

Each round:

> Pebbler chooses a node to pebble
» Challenger chooses to stay or
jump
Pebbler wins if, before she moves, the
challenged node has all immediate
predecessors pebbled

Challenger aims to delay the inevitable
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» Simulation argument (reduction in combinatorial game):
1. Turn a Colourer strategy (Raz-McKenzie game) into a
Challenger strategy (Dymond—Tompa game).

2. If the Dymond—Tompa game is over, so is the Raz—McKenzie
game.

3. Implies Dymond—Tompa #Pebble > Raz—McKenzie #Pebble.

Colourer strategy = Challenger strategy:

» Assume c is challenged. If v is pebbled, see what a Colourer
would do, and Challenger:

» jump if v is a predecessor of ¢, and v is coloured FALSE 3
» stay otherwise
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Simulation Argument

Colourer strategy = Challenger strategy:

» Assume c is challenged. If v is pebbled, see what a Colourer
would do, and Challenger:

» jump if v is a predecessor of ¢, and v is coloured FALSE
» stay otherwise

If Dymond—Tompa game is over, so is Raz—McKenzie game.
> Invariant: challenged node c is the ‘earliest’” FALSE node.
» Proof: by induction. [
» When Dymond—Tompa game is over:

» c is pebbled (FALSE),
» all immediate predecessors of ¢ are pebbled (TRUE),
» Raz—McKenzie game is over. [
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Summary of Results

v

Equivalence of Pebble Games

> Reversible Pebble Game

» Dymond-Tompa Pebble Game

» Raz-McKenzie Pebble Game
Relations to Computational Complexity

> Restricted lower bounds
» Depth complexity of circuits

v

v

Applications to Proof Complexity

» Depth of resolution refutations
» Size of Tree-Like resolution refutations

v

Complexity of Pebble Games
» PSPACE-complete (bounded fan-in)
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Lower Bounds by Communication Complexity

Multi-party pointer jumping
[Chakrabarti '07] [Brody-Chakrabarti '08] [Viola—Wigderson '09] ACCO ; P
Extensions of Karchmer-Wigderson framework
[Aaronson-Wigderson 09 NL = NP
[Kol-Raz '13] NC z P
Size and Depth of Circuits
[Allender—Koucky '10] TCO 2 NCt
NC <

[Lipton-Williams '12]
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