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Superimposed spectra

H =

[
H1

H2

]

p(x1, . . . , xN) =
1

C

N∏
l=1

e−x
2
l /2

∏
1≤j<k≤N

|xk − xj |
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Superimposed spectra (cont)

Label the 2N points x1 < x2 < · · · < x2N . Must compute∑
S⊂{1,...,2N}
|S|=N

p(xS)p(x{1,...,2N}−S)

With ∆(θS) =
∏

1≤j<k≤N sin((θsk − θsj )/2) it was proved by
Gunson that∑
S⊂{1,...,2N}
|S|=N

∆(θS)∆(θ{1,...,2N}−S) = 2N∆(θ{1,3,...,2N−1})∆(θ{2,4,...,2N})
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Superimposed spectra (cont)

Suggests that the distribution of every second eigenvalue is special.
Integrate {θ2, θ2, . . . , θ2N} over the region

RN = θ1 < θ2 < θ3 < θ4 < · · · < θ2N−1 < θ2N < 2π + θ1

Using the Vandermonde identity

∏
1≤j<k≤N

(xj − xk) =

∣∣∣∣∣∣∣∣∣∣∣

1 1 1 · · · 1
xN xN−1 xN−2 · · · x1

x2
N x2

N−1 x2
N−2 · · · x2

1
...

...
... · · ·

...

xN−1
N xN−1

N−1 xN−1
N−2 · · · xN−1

1

∣∣∣∣∣∣∣∣∣∣∣
can compute∫

RN

dθ2 · · · dθ2N ∆(θ{2,4,...,2N}) ∝ ∆(θ{1,3,...,2N−1})
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Dyson (1962) ex-conjecture

Let alt denote the operation of integration over every second
eigenvalue.
Let ∪ denote the operation of random superposition.
We have

alt
(
COEN ∪ COEN

)
= CUEN

Consequence for gap probabilities

Let EME
N (0, J) denote the probability that there are no eigenvalues

in the interval J of the matrix ensemble ME consisting of N
eigenvalues. We have

ECUE
N (0; (−θ, θ)) =

ECOE
N (0; (−θ, θ))

(
ECOE
N (0; (−θ, θ)) + ECOE

N (1; (−θ, θ))
)
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F & Rains (2001) (cont)

Question: For matrix ensembles with orthogonal symmetry,
eigenvalue PDF of the form

1

CN

N∏
l=1

f (xl)
∏

1≤j<k≤N
|xk − xj | =: OEN(f )

for what choices of f does

even
(
OEN(f ) ∪OEN+1(f )

)
= UEN(g)

for some g?
Must first obtain a Gunson type identity∑
S⊂{1,...,2N+1}

|S|=N

∆(xS)∆(x{1,...,2N+1}−S) = 2N∆(x{1,3,...,2N+1})∆(x{2,4,...,2N})

where ∆(xS) =
∏

1≤j<k≤N(xsk − xsj ).
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F & Rains (2001) (cont)

Answer: (up to linear fractional transformation) the four classical
weight functions:

f (x) =


e−x

2/2, Gaussian

x (a−1)/2e−x/2 (x > 0), Laguerre

(1− x)(a−1)/2(1 + x)(b−1)/2 (−1 < x < 1), Jacobi

(1 + ix)−(α+1)/2(1− ix)−(ᾱ+1)/2, Cauchy

g(x) =


e−x

2
, Gaussian

xae−x (x > 0), Laguerre
(1− x)a(1 + x)b (−1 < x < 1), Jacobi
(1 + ix)−α(1− ix)−ᾱ, Cauchy

In particular

even
(
GOEN+1 ∪ GOEN

)
= GUEN

7 / 21



Mehta and Dyson (1963)
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Using direct integration, showed

alt (COE2N) = CSEN

Consequence for gap probabilities
We have

ECSE
N (0; (−θ, θ))

= ECOE
2N (0; (−θ, θ)) +

1

2
ECOE

2N (1; (−θ, θ))

=
1

2

(
ECOE

2N (0; (−θ, θ)) +
ECUE

2N (0; (−θ, θ))

ECOE
2N (0; (−θ, θ))

)
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Further new question:

For what choice of f does

even
(
OE2N+1(f )

)
= SEN(g)

for some g?
Answer (FR 2001)

even
(
OE2N+1(f )

)
= SEN((g/f )2)⇔

even
(
OEN(f ) ∪OEN+1(f )

)
= UEN(g)

In particular, with (f , g) = (e−x
2/2, e−x

2
)

even
(
GOE2N+1

)
= GSEN
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A family of decimation relations (inspired by Bálint Virág)
Denote by MEβ,N(g(x)) the PDF proportional to

N∏
l=1

g(xl)
∏

1≤j<k≤N
|xk − xj |β

and let Dr denote the distribution of every r -th eigenvalue.
For the Gaussian case we have (F. 2009)

Dr+1(ME2/(r+1),(r+1)N+r (e−x
2
)) = ME2(r+1),N(e−(r+1)x2

)

e.g.
D3(ME2/3,3N+2(e−x

2
) = ME6,N(e−3x2

)
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D4(ME1/2,4N+3(e−x
2
) = ME8,N(e−4x2

)
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Consequences for asymptotic spacing distributions

Let pbulk,sp.β (n; s) denote the probability that in the bulk scaling
limit there are n eigenvalues between 2 eigenvalues separated by
distance s.
The decimation relations imply that for large s

Ebulk
2/(r+1)((r + 1)k + r ; (r + 1)s) ∼ Ebulk

2(r+1)(k ; s).

A conjecture of Dyson, and of Fogler and Shklovskii (1995),

log Ebulk
β (n; (0, s)) ∼

s→∞
− β (πs)2

16
+
(
βn +

β

2
− 1
)πs

2

+
{n

2

(
1− β

2
− βn

2

)
+

1

4

(β
2

+
2

β
− 3
)}

log s

has this property.
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Averages of characteristic polynomials
For the Gaussian β ensemble (Baker & F 1997)

〈 N∏
j=1

(c −
√
αyj)

n
〉
ME2/α,N(e−y2 )

=
〈 n∏

j=1

(c − iyj)
N
〉
ME2α,n(e−y2 )

.

Consequences

I The simplest case is n = 1. It tells us that the average of the
characteristic polynomial for the Gaussian β ensemble is
proportional to the Hermite polynomial HN(c).

I Suppose β is even. Then setting n = β the LHS multiplied by
e−c

2/α is proportional to the eigenvalue density at c/
√
α.

Hence, for even β, this can be expressed as a β dimensional
integral.

I Large N asymptotic analysis using the saddle point method
gives oscillatory corrections to the Wigner semi-circle law, and
the scaled density at the edge.
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Explicit form of the scaled density at the edge

We have (Desrosiers & F (2006))

lim
N→∞

1√
2N1/6

ρ(1)

(√
2N+

x√
2N1/6

)
=

Γ(1 + β/2)

2π

(4π

β

)β/2
β∏

j=1

Γ(1 + 2/β)

Γ(1 + 2j/β)
Kβ,β(x),

where

Kn,β(x) := − 1

(2πi)n

∫ i∞

−i∞
dv1 · · ·

∫ i∞

−i∞
dvn

n∏
j=1

ev
3
j /3−xvj

∏
1≤k<l≤n

|vk−vl |4/β .
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Asymptotics of the edge density

ρsoft,β(1) (x) ∼
x→∞

1

π

Γ(1 + β/2)

(4β)β/2

e−2βx3/2/3

x3β/4−1/2
+ O

( 1

x3β/4+1

)
,

ρsoft,β(1) (x) ∼
x→−∞

√
|x |
π
− Γ(1 + β/2)

26/β−1|x |3/β−1/2
cos
(4

3
|x |3/2 − π

2

(
1− 2

β

))
+ O

( 1

|x |5/2
,

1

|x |6/β−1/2

)
.

This has consequence to the asymptotics of the right tail of the
scaled distribution of the largest eigenvalue:

psoftβ (X ) ∼
X→∞

ρsoft,β(1) (X ).
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Averages of characteristic polynomials — circular ensemble

Let α = 2/β − 1 and µ ∈ Z+. We have

〈 N∏
l=1

|z−e iθl |2µ
〉
CEβ,N

∝
〈 µ∏

l=1

(
1−(1−|z |2)xl

)N〉
ME4/β,µ(xα(1−x)α)

.

This can be generalized to allow a factor |z − e iθl |2µ1 in the
product on the LHS.
Hence for even β the two-point function can be written as a
β-dimensional integral. It’s proportional to (F. (1994))

(2 sinπ(r1 − r2)/L)βe−πiβN(r1−r2)

∫
[0,1]β

du1 · · · duβ

×
β∏

j=1

(1− (1− e2πi(r1−r2))uj)
Nu
−1+2/β
j (1− uj)

−1+2/β
∏
j<k

|uk − uj |4/β .

15 / 21



I The large N bulk scaled limit can be taken immediately.
I Can analyze the large N global expansion (no scaling of

variables)(2π

N

)2
ρ(2)(0, θ) = 1− 1

β(2N sin θ/2)2
+

3(β − 2)2

2β3(2N sin θ/2)4
−· · ·

Not suited to computing the structure function. In the bulk, for
β = p/q have

S(k;β) =
|k |
πβ

f (|k |;β),

where for |k | < 2π

f (k;β) ∝
q∏

i=1

∫ ∞
0

dxi

p∏
j=1

∫ ∞
0

dyj Q
2
p,qF̂ (q, p, λ|{xi , yj}; k) δ(1− Qp,q),

with λ = β/2, Qp,q = 2π(
∑q

i=1 xi +
∑p

j=1 yj),

F̂ (q, p, λ|{xi , yj}; k) =
1∏q

i=1(xi (1 + kxi/λ))1−λ∏p
j=1(yj(1− kyj))1−1/λ

×
∏

i<i ′ |xi − xi ′ |2λ
∏

j<j′ |yj − yj′ |2/λ∏q
i=1

∏p
j=1(xi + λyj)2

.
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Functional equation for the structure function
From the exact form of ρbulk(2) (0; x) have

S(k) =



|k |
π
− |k |

2π
log
(

1 +
|k |
π

)
, |k | ≤ 2π, (β = 1)

|k |
2π
, |k | ≤ 2π, (β = 2)

|k |
4π
− |k |

8π
log
(

1− |k |
2π

)
, |k | ≤ 4π, (β = 1)

From the exact form for S(k) for β rational can check that with

f (k ;β) =
πβ

|k|
S(k;β), 0 < k < min (2π, πβ)

and f defined by analytic continuation for k < 0,

f (k ;β) = f
(
− 2k

β
;

4

β

)
.
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The simplest structure consistent with the functional equation is

πβ

|k |
S(k ;β) = 1 +

∞∑
j=1

pj(β/2)
( |k|
πβ

)j
, 0 < k < min (2π, πβ)

where pj(x) is a polynomial of degree j which satisfies the
functional relation

pj(1/x) = (−1)jx−jpj(x).

Put x = β/2, y = |k |/πβ. We have (F., Jancovici, McAnally
(2000))

πβ

|k|
S(k;β) = 1 + (x − 1)y + (x − 1)2y2 + (x − 1)(x2 − 11

6
x + 1)y3

+ (x − 1)2(x2 − 3

2
x + 1)y4 + (x − 1)(x4 − 91

30
x3 +

62

15
x2 − 91

30
x + 1)y5 + · · ·
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Moments of the density and loop equations
For the Gaussian β ensemble, with the eigenvalues scaled so that
the leading support is (−1, 1), and with λ = β/2, let

m2l(N, λ) =

∫ ∞
−∞

λ2lρN(1)(x ;λ) dx

It is known rigorously (Dumitriu and Edleman (2006)) that
m2l(N, λ) is a polynomial of a degree l + 1 in N with constant
term zero, satisfying

m2l(N, λ) = (−1)l+1λ−l−1m2l(−λN, λ−1).

m0 = N

m2 = N2 + N(−1 + λ−1)

m4 = 2N3 + 5N2(−1 + λ−1) + N(3− 5λ−1 + 3λ−2)

...
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Consequences.
Let

W (x ,N, λ) =

∫ ∞
−∞

ρN(1)(y ;λ)

x − y
dy

Then
W (x ,N, λ) = −λ−1W (x ,−λN, λ−1)

A linear differential equation of degree 2λ+ 1 for λ ∈ Z+ can be
derived for Y := ρN(1)(y ;λ), e.g. for β = 2 (Haagerup and

Thorbjornsen (2003))

1

4N2
Y ′′′ + (1− y2)Y ′ + yY = 0.

Can check that W satisfies an inhomogeneous form of the same
equation. Hence must have that

ρN(1)(x , λ) = −λ−1ρ−λN(1) (x , λ−1)

e.g. For β = 1 the density satisfies a 5th order homogeneous
differential equation which is the same as that satisfied for β = 4
but with N replaced by −N/2.
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On going research
I Linear differential equations for one-point functions/ averages

of characteristic polynomials. e.g. What is the behaviour of〈 N∏
l=1

|z − e iθl |2µ
〉
CEβ,N

as z → 1 for µ < 0?
I Can the loop equation formalism be used to systematically

generate the expansion(2π

N

)2
ρ(2)(0, θ) = 1− 1

β(2N sin θ/2)2
+

3(β − 2)2

2β3(2N sin θ/2)4
−· · ·

I What is the q, t generalization of the family of
Dixon-Anderson integrals used to derive the decimation
identities?

I Duality formulas for random matrix ensembles with a source
(Desrosiers).
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