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Plan

1 Bourgain’s approach (94’) to invariant Gibbs measures and almost sure
global well-posedness for Hamiltonian dispersive PDE

2 Some further ideas in recent probabilistic well posedness results for the
nonlinear Schrödinger equation (NLS) on Td (d = 3,2,1)

I joint with G. Staffilani.

3 Existence and uniqueness of non-equilibrium invariant measures
associated to the NLS.

I joint with Z. Hani, J. Mattingly, L. Rey Bellet and G. Staffilani.
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The Nonlinear Schrödinger Equation

(NLS)
{

i ut + ∆u = ±|u|p−1u,
u(0, x) = u0(x) ∈ Hs, x ∈Md

where u : R×Md → C.

Md = Rd , Td or any compact manifold.

Two conserved quantities (constant in time):

Mass: M(u) :=
∫
|u(t , x)|2 dx

Hamiltonian: H(u) := 1
2

∫
|∇u(t , x)|2 dx ± 1

p+1

∫
|u(t , x)|p+1dx

Time reversibility: u0(x)→ u0(x), u(t , x)→ u(−t , x).
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Scaling on Rd

If u solves NLS, then

uλ(x , t) = λ−
2

p−1 u
(

x
λ
,

t
λ2

)
λ > 0

solves the same equation with initial datum u0,λ = λ−
2

p−1 u0( x
λ ).

‖u0,λ‖Ḣs ∼ λsc−s‖u0‖Ḣs

Scale invariant problem:

sc =
d
2
− 2

p − 1
(critical exponent.)

So we can classify the difficulty of the NLS problem above in terms of sc :

• If s > sc the space Hs is subcritical. Scaling help us.

• If s = sc the space Ḣs is critical. Scale invariant.

• If s < sc the space Hs is supercritical.Scaling is against us.
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Characteristic feature of dispersive equations is the fact that different
frequencies travel at different velocities.

On Rd dispersion→ decay of the solution.

Strichartz estimates −→ local well-posedness in subcritical and small
data global well posedness in certain critical regimes (mass, energy).

The question of long time well-posedness or blow up is far harder, more
complex!
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In last 20 years, lots of progress to prove large data global well-posedness and
scattering for the defocusing NLS on Rd :

In certain subcritical regimes:

High-low method (Bourgain)

I-Method of almost conservation laws (Colliander-Keel-Staffilani-Takaoka-Tao
[CKSTT])

At the level of the energy (H1) or mass (L2) norms when they are critical spaces:

Grillakis, Bourgain, CKSTT, Kenig-Merle, Tao, Killip-Visan, Zhang, Dodson, . . .
I concentrated compactness/rigidity method + new interaction Morawetz

estimates (CKSTT, Kenig-Merle (focusing also)).

Yet there remain some important open questions: eg. in certain critical regimes, in
supercritical case:

Defocusing case: does blow up occur? Unknown despite strong ill-posedness
results ("norm explosion" ) by Christ, Colliander and Tao.
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Strichartz estimates and well posedness on Td :

On compact domains, wave packets have no escape from interacting
indefinitely with each other.

Dispersion does not necessarily translate to decay.

We have limited dispersion. In fact, only a limited number of Strichartz
estimates survive: Bourgain (93’); Bourgain-Demeter (14’)

Bourgain showed that dispersion is indeed weaker in the periodic setting:
I For ex. the L6

xt in 1D or L4
xt in 2D necessarily have an ε-derivative-loss.

This ε-loss prevents us to close the estimates in L2(Td ) for the quintic
NLS in 1D and the cubic in 2D. Need s > 0.

Andrea R. Nahmod (UMass Amherst) Long time dynamics of random data NLS 6 / 38



Well-posedness for NLS on Td . (Bourgain 93’)
Sample results. In both cases sc = 0, results are in subcritical regime:

Theorem (d = 1,p = 5)
The quintic NLS on T (either focusing or defocusing) is LWP in Hs(T), s > 0

Theorem (d = 2,p = 3)
The defocusing cubic NLS on T2 is LWP in Hs(T2), s > 0.

One gets GWP for s ≥ 1.

Bourgain (93’) introduced two fundamental tools:

Strichartz estimates on tori.
Fourier restriction X s,b spaces/method in the context of NLS to perform
the iteration/fixed point.

Andrea R. Nahmod (UMass Amherst) Long time dynamics of random data NLS 7 / 38



Unlike the Rd case the only deterministic results for NLS on Td at critical
regularity are:

Global well-posedness in H1:

I Quintic defocusing NLS on T3: Ionescu-Pausader 12’ (large data); and
previously Herr-Tzvetkov-Tataru 11’ (small data).

I Cubic defocusing NLS on T4: H. Yue 16’ (large data).

. . .

Not even a local-wellposedness at the level of L2 for cubic NLS on T2.

Deterministic −→ Nondeterministic
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Invariant Measures and almost sure GWP on Td .

Starting point Bourgain (94’-96’): longtime dynamics of periodic NLS (d=1,2)
in the almost sure sense:

He proved that the equation is globally well-posed for a set of data of full
Gibbs measure and that the (Gibbs) measure is invariant under the flow.
Glimm-Jaffe (φ4); Lebowitz-Rose-Speer; Zhidkov (infinite dim. Hamiltonian systems)

Why does it work?:

The invariance of the Gibbs measure, just like the usual conserved quantities,
controls the growth in time of those solutions in its support and extend the
local in time solutions to global ones almost surely.

The virtue of the Gibbs measure is that it captures generic behavior of the flow.
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Challenges/limitations of this approach to a.s. GWP for dispersive PDE:

The actual existence of an invariant Gibbs (or weighted Wiener
measures) under the flow and the almost sure global well-posedness.

Measures are easier to construct on bounded domains.

Not available in higher dimensions.

I For d = 2, 3 and defocusing cubic NLS renormalization needed.
(Glimm-Jaffe (70’s)

I No Gibbs measure for defocusing NLS if d = 3 and p = 5.

I No Gibbs measure for focusing NLS on 2D (Brydges-Slade)

I No Gibbs measure for d ≥ 4. No Gibbs measure for focusing NLS on 2D
(Brydges-Slade)

If the PDE is not Hamiltonian: not always clear....
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We have Gibbs measures for defocusing NLS

on T2 and p = 5
on T3 and p = 3.

But the support lives in very rough spaces where there is not a well defined
flow/available estimates.

Proving their invariance and a.s. GWP is a challenge!
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Let us review Bourgain’s (94) work on the invariance of Gibbs measure and
a.s GWP for the focusing quintic NLS on T.

iut + uxx + |u|4u = 0

with Hamiltonian

H(u) :=
1
2

∫
|ux |2dx − 1

6

∫
|u|6dx =

1
2

∫
|ux |2dx −N (u).

L2 is conserved→ modify:

H(u) :=
1
2

∫
(|ux |2 + |u|2)dx − 1

6

∫
|u|6dx

=
1
2

∫
(|ux |2 + |u|2)dx − N (u).

• Think of u(t) as the infinite dimension vector given by its Fourier coefficients
(an(t) + ibn(t))n∈Z.
• The equation then becomes an infinite dimensional Hamiltonian system for
(an(t),bn(t))n∈Z.
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• Lebowitz, Rose and Speer (88’) considered the Gibbs measure formally
given by

‘dµ = Z−1 exp (−βH(u))
∏
x∈T

du(x)′

and showed that µ is a well-defined probability measure on Hs(T), s < 1
2

but not for s = 1
2 .

The definition of µ above - although suggestive – is a purely formal
expression.

I It is impossible to define the Lebesgue measure as a countably additive
measure on an infinite-dimensional space.

I In fact, as written, all factors are a.s. infinite

How is µ defined?
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Idea.
One uses a Gaussian measure as reference measure.

Then the weighted measure µ is constructed in two steps:

First one constructs a Gaussian measure ρ on Hs as the weak limit of
finite-dimensional Gaussian measures on R4N+2 given by

dρN = Z−1
N exp

(
− β

2

∑
|n|≤N

(1 + |n|2)|φ̂n|2
) ∏
|n|≤N

dandbn

where φ̂n = an + ibn.
View ρN as an induced probability measure on C2N+1 ≡ R4N+2 under the
map

ω 7−→
{

gn(ω)√
1 + |n|2

}
|n|≤N

.

where {gn(ω)}|n|≤N are i.i.d complex Gaussian random variables (centered)
on a probability space (Ω,F ,P).
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Then ρ makes sense as a countably additive probability measure:

On Hs(T) for any s < 1/2, but not for s ≥ 1/2.

On Hs(T2) for any s < 0, but not for s ≥ 0.

On Hs(T3) for any s < − 1
2 , but not for s ≥ − 1

2 .
. . .

ρ yields for φ the distribution of a random (Fourier) series

φ = φω =
∑
n∈Zd

gn(ω)√
1 + |n|2

ein·x .

which defines almost surely a function (d = 1) or a distribution.

One also has tail estimates:

ρ
(
{‖φ‖Hs > K}) < e−cK 2

.
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Once ρ has been constructed one constructs µ as a measure which is
absolutely continuous with respect to ρ and whose Radon-Nikodym
derivative is

dµ
dρ

= Z̃−1χ{‖φ‖2
L≤B}e

β
2N (φ) ∈ L1(dρ)

N (φ) is the potential energy.

For this measure to be normalizable one needs an L2-cutoff χ‖φ‖L2≤B,
B > 0 suff. small. [LRS]
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Theorem (Bourgain 94’)

Consider the Cauchy problem{
iut + uxx + |u|4u = 0

u(0, x) = φω(x), where x ∈ T.

where
φω(x) =

∑
n∈Z

gn(ω)√
1 + |n|2

einx

There exists Ω ⊂ H1/2−, such that µ(Ω) = 1 and for any φω ∈ Ω the IVP is
globally well-posed. Moreover µ is invariant.

What is important about Bourgain’s result?

Deterministically can only prove LWP in Hs, s > 0 and GWP in H1 from
conservation of Hamiltonian (small L2 in focusing).

Here, Bourgain uses the invariance of the measure to extend almost surely local
solutions to global when s = 1/2− and one has no conservation laws (small L2 in
focusing)
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How does Bourgain prove a.s GWP of the flow?
Let PN be the Fourier/Dirichlet projection onto the spatial frequencies ≤ N.

Consider the finite dimensional approximation to NLS: :

(FDA)

{
iuN

t + ∆uN + PN
(
|uN |4uN

)
= 0

uN(0, x) = PNφ
ω(x) =

∑
|n|≤N

gn(ω)√
1+|n|2

einx , x ∈ T.

By the deterministic local theory (1D) we have that (FDA) is LWP in
H1/2− with time of existence independent of N.

Crucial Fact:

FDA is still a Hamiltonian system: iuN
t = dH(uN )

duN
with Hamiltonian

H(uN)(t) =
1
2

∫
|uN

x |2dx − 1
6

∫
|uN |6dx

which is still conserved under the FDA flow.
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By Liouville’s theorem and the conservation of H(uN) we have that the
finite dimensional:

dµN = Z̃−1
N e−H(uN )

∏
|n|≤N

dandbn

is an invariant measure under the flow of (FDA); ûN(n) = an + ibn.

It is the invariance of µN what allow us to extend local in time solutions
to global ones. Provided the data is drawn from a good set of initial
data, the solutions uN to the FDA extend ‘globally’ in time.

By an Approximation Lemma: ‖u− uN‖Hs− → 0, one uses uN to walk u
to its side pass the local time τ and up to time T .

I Not entirely trivial: cannot compare u and uN directly on [0,T ]: after the first
step on [0, τ ], u and uN may in principle start becoming apart: we have no a
priori bound on u on [0,T ].

One still needs to prove that µN converges weakly to µ and that µ is an
invariant measure on H1/2−(T).

Andrea R. Nahmod (UMass Amherst) Long time dynamics of random data NLS 19 / 38



Cubic NLS on T2: Nondeterministic Approach to LWP

Theorem ( Bourgain 96’){
iut + ∆u = |u|2u

− 2(
∫
|u|2dx) u

u(x ,0) = φω(x) :=
∑

n∈Z2
gn(ω)√
1+|n|2

ein·x x ∈ T2,

is a.s. globally well-posed in H−ε and its associated Gibbs measure is
invariant

In 2D, e−
∫
T2 |φ|4 dx is unbounded a.s. −→Wick order |φ|4 in the

Hamiltonian.

This renormalization crucially removes certain resonant terms.

This is a supercritical well posedness result.
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Additional dificulty

Bourgain(93’) had proved LWP for s > 0 and GWP in H1(T2) for cubic NLS.

Unlike the quintic in 1D, here there is no deterministic LWP available for
data below L2(T2).

Bourgain’s Point:

1 Enough to prove a probabilistic local well posedness; i.e. for ‘typical
elements’ in the support of the measure. That is, for random data φω in
H−ε(T2) as above.

2 Once this is place, proceed as before to prove the invariance Gibbs
measure and a.s. GWP.
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On Randomized Data
Randomization does not improve regularity in terms of derivatives.

The improvement is with respect to Lp spaces almost surely which in turn,
imply better estimates than the deterministic ones.

Classical results of Rademacher, Kolmogorov, Paley and Zygmund show that random series
enjoy better Lp bounds than deterministic ones.

Bourgain’s strategy:

Look for solutions of the form u = S(t)φω + w
Use the fact that S(t)φω has a.s. better Lp estimates than φ to show that

w = u − S(t)φω

solves a difference equation that lives in a smoother space.

iwt + ∆w = N (S(t)φω + w)

Obtain for w a deterministic local well-posedness in the smoother space.
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As a consequence Bourgain showed that a.s. in ω the nonlinear part of the
solution

w : = u − S(t)φω

is smoother than the linear part.

Important
The difference equation that w solves is not back to merely being at a
‘smoother’ level but rather it is a hybrid equation with nonlinearity =

supercritical (but random) + deterministic (smoother).

iwt + ∆w = N (S(t)φω + w)
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Large Deviation-type Estimates

One uses the following, where k would represent the number of random terms
in a multilinear estimate at hand:

Proposition (Large Deviation-type)
Let d ≥ 1 and c(n1, . . . ,nk ) ∈ C. Let {(gn)}1≤n≤d as above. For k ≥ 1 denote
by A(k ,d) := {(n1, . . . ,nk ) ∈ {1, . . . ,d}k , n1 ≤ · · · ≤ nk} and

Fk (ω) =
∑

A(k,d)

c(n1, . . . ,nk )gn1 (ω) . . . gnk (ω).

Then for p ≥ 2
‖Fk‖Lp(Ω) .

√
k + 1(p − 1)

k
2 ‖Fk‖L2(Ω).
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As a consequence from Chebyshev’s inequality for every λ > 0,

P({ω : |Fk (ω)| > λ }) ≤ exp

 −C λ
2
k

‖Fk (ω)‖
2
k
L2(Ω)

.
Given δ > 0, the large deviation result above with

λ = δ−
k
2 ‖Fk (ω)‖L2(Ω)

says that in a set Ωδ with P(Ωc
δ) < e−

1
δ we can replace:

|Fk (ω)|2 −→ ‖Fk (ω)‖2
L2(Ω).
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An Example from Bourgain’s Work:

Take
φω(x) =

∑
n 6=0

gn(ω)

|n|
eix·n

and look at the cubic Wick ordered nonlinearity, involving its free evolution
S(t)φω(x), and that Bourgain had to estimate in L2:

‖F3(ω)‖`2
n`

2
m
,

where
F3(ω) =

∑
Sn,m

1
|n1|

1
|n2|

1
|n3|

gn1 (ω)gn2 (ω)gn3 (ω),

Sn,m = {(n1,n2,n3) /n1 − n2 + n3 = n; n1,n3 6= n2; m = |n1|2 − |n2|2 + |n3|2}

Wick ordering −→ n1,n3 6= n2

Naively we could just use C-S to estimate ‖F3(ω)‖2
`2

n`
2
m

and obtain
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∑
n,m

∣∣∣∣∣∣
∑
Sn,m

1
|n1|

1
|n2|

1
|n3|

gn1 (ω)gn2 (ω)gn3 (ω)

∣∣∣∣∣∣
2

.
∑
n,m

|Sn,m|
∑
Sn,m

1
|n1|2

1
|n2|2

1
|n3|2

where |Sn,m| = cardinality of Sn,m which translates into a loss of derivatives.

Instead, by the Large Deviation Estimate, outside a small set of ω’s we have:

‖F3(ω)‖2
`2

n`
2
m

=
∑
n,m

|F3(ω)|2 . δ−µ
∑
n,m

‖F3(ω)‖2
L2(Ω)

= δ−µ
∑
n,m

∑
Sn,m

∑
S′n,m

∫
Ω

gn1

|n1|
gn2

|n2|
gn3

|n3|
gn′1
|n′1|

gn′2
|n′2|

gn′3

|n′3|
dω

and by independence of the random variables the RHS contracts to

‖F3(ω)‖2
`2

n`
2
m
. δ−µ

∑
n,m

∑
Sn,m

1
|n1|2

1
|n2|2

1
|n3|2

and this has good enough decay to absorb some regularity and close.
Andrea R. Nahmod (UMass Amherst) Long time dynamics of random data NLS 27 / 38



To summarize so far:

When deterministic statements about existence, uniqueness and stability
of solutions to certain evolution equations are not feasible/available:

→ turn to a more probabilistic point of view and investigate these
problems from a nondeterministic viewpoint; e.g. for random data.

Randomization techniques have now been used in several contexts and
regimes to improve the LWP almost surely (not just for dispersive PDE)

How to pass from LWP to global is a separate issue which depends on
the equation, the dimension, and the regime (invariant measures, energy
methods, probabilistic adaptations of Bourgain’s high-low/I-method, etc.)

After Bourgain’s work (mid 90’s), this approach of almost sure
well-posedness was re-taken again in 07-08’. Lots of activity.
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Schrödinger Equations: Bourgain, Tzvetkov, Thomann-Tzvetkov,
A.N.-Oh-Rey-Bellet-Staffilani, A.N.-Rey-Bellet- Sheffield-Staffilani, Colliander-Oh,
Burq-Thomann-Tzevtkov, Y. Deng, Burq-Lebeau, Bourgain-Bulut, A.N.- Staffilani,
Poiret-Robert-Thomann, H. Yue, Bényi- Oh- Pocovnicu (conditional), . . .

KdV Equations: Bourgain, Oh, Richards.

NLW/NLKG Equations: Burq-Tzvetkov, de Suzzoni, Bourgain-Bulut,
Luehrmann-Mendelson, S. Xu, Pocovnicu, Oh-Pocovincu, Mendelson.

Benjamin-Ono Equations: Y. Deng, Tzvetkov-Visciglia. and Y. Deng-Tzvetkov-Visciglia.

Navier-Stokes Equations: A.N.-Pavlovic-Staffilani: infinite ‘energy’ global (weak) sols in
T2,T3, global energy bounds, uniqueness in T2. Also work by Deng-Cui and Zhang-Fang

. . . . . . . . .



Further Probabilistic results
A.s. local well-posedness and large data long time existence with positive
probability to the 3D quintic NLS for supercritical data in H1−ε(T3).
(A.N.- Staffilani)

I Local result is the analogue of Bourgain’s cubic NLS result on T2.

I Differences Local: quintic nonlinearity, integer lattice counting in 3D,
removal of resonances (no Wick ordering helps).

I Differences Global: No measure, no conserved quantity for the difference
equation

Probabilistic propagation of regularity result (A.N.- Staffilani)

I A.s global well-posedness for 2D, cubic defocusing NLS in Hs(T2), s > 0.

I A.s global well-posedness for 1D, quintic (small mass) focusing NLS in
Hs(T), s > 1/2.

These results close an important gap between the a.s GWP of Bourgain and the
known deterministic GWP
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Probabilistic propagation of regularity

What Was Known in 2D:

Deterministic methods: LWP for s > 0 (Bourgain) and GWP s > 2/3 (Bourgain;
De Silva-Pavlovic-Staffilani-Tzirakis)

Data randomization and invariant Gibbs measure µ: a.s. GWP in H−ε, (Bourgain)

Remark: Our theorem is not trivial: any Σ ⊂ Hs, s > 0, is such that for the Gibbs
measure µ one has µ(Σ) = 0.

Our key idea instead is to suitably decompose the data into a term that is close to
the support of the invariant measure in the rougher topology, and a smoother
remainder term to which deterministic arguments can be applied.

Then, a nondeterministic perturbation argument is used to conclude.

Argument is general given an a.s. GWP proved using an invariant or almost
invariant measure.
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Transfer of Energy and Out of Equilibrium Dynamics

On Rd we have by now several results that prove that dispersion sets in
and after a time long enough solutions settle into a purely linear behavior
(scattering/asymptotic stability).

I For linear solutions, the energy (kinetic or mass) while remaining conserved
- does not move its concentration zones from low to high frequencies or
viceversa. That is there is no forward / backward cascade.

As a consequence of scattering, nonlinear solutions in Rd also will avoid
these cascades.

On compact domains, asymptotic stability results around equilibrium
solutions (e.g. zero solution) are lost:

−→ Out of equilibrium dynamics are expected.
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Energy cascade

How to analytically describe this expected out-of-equilibrium behavior ?

This sort of problem also goes under the name weak turbulence.

Bourgain’s approach via growth of higher Sobolev norms→ Migration of
energy to high frequencies

I ‖u‖Hs weighs the higher frequencies more as s becomes larger.
I Its growth gives us a quantitative estimate for how much of the support of
|û|2 has transferred from the low to the high frequencies while maintaining
constant mass and energy (forward cascade.).

Important progress by Bourgain (95’-97’) and by Kuksin 97’. For ex.:
I Bourgain constructed a perturbed 1D NLW with periodic bdry conditions

exhibiting an energy transition from low to high Fourier modes and a
power-like growth of higher derivatives in time
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Bourgain Question (00’): Does there exist global solutions to the cubic
NLS whose Hs(Td ) norm (some s >> 1) grows indefinitely in time:

lim sup
t→∞

‖u‖Hs = +∞?

(unbounded orbits/infinite cascade conjecture).

Fundamental progress by Colliander-Keel-Staffilani-Takaoka-Tao, Hani,
Gerard-Grellier and Guardia-Kaloshin (10’-12’).

I CKSTT constructed large but finite growth of the Sobolev norms:
I For any 0 < δ < 1, and any K > 1 there exists a solution to the cubic NLS

on T2 and a time T such that

‖u(0)‖Hs(T2) ≤ δ, and ‖u(T )‖Hs(T2) ≥ K .

More recently, Hani-Pausader-Tzvetkov-Visciglia gave a positive answer
to Bourgain’s Q. for the cubic NLS on product domains R× Td ( d ≥ 2).

I Moreover, gave a rate.: there exists a sequence of times tk →∞ s.t.

‖u(tk )‖Hs(R×Td ) ≥ C exp (c log log tk )
1
2 .
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Non-Equilibrium Invariant Measures for resonant NLS

Z. Hani, J. Mattingly, A.N., L.Rey Bellet and G. Staffilani.

An intermediate problem between:

(1) The existence of (equilibrium) invariant Gibbs measures and

(2) Bourgain’s unbounded orbits conjecture/understanding of
out-of-equilibrium dynamics for NLS

is the study of the existence and uniqueness of non-equilibrium
invariant measures.

The latter has an interest in its own right.
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Even for stochastically forced systems, proving the existence and
uniqueness of non-equilibrium invariant measures is very hard in the
context of PDEs.

However, we have recent developments in understanding analogous
questions for some ODE systems modeling heat transfer in a chain of
oscillators:

Works of Eckmann, Pillet, and Rey-Bellet (99’) up to more recent
progress by Hairer and Mattingly (07’) for a finite collection (3) of
anharmonic oscillators with nearest neighbor couplings (classical
Hamiltonian system) put into contact with two heat baths at different
temperatures.

I Interaction with heat baths is modeled by standard Langevin dynamics.
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The stochastic ODE model
Our Point of departure: is the reduced Toy model first derived by [CKSTT]
whose Hamiltonian is given by:

H(c) =
1
2

(
∑

j

|cj |2)2 − 1
4

∑
j

|cj |4 +
1
2

n∑
j=1

(c2
j−1cj

2 + cj−1
2cj

2)

We will attach the first and the last modes c1 and cn to two heat baths at
temperatures T1 < Tn respectively.

This is a mechanism to stochastically add and dissipate energy from the system in a
controlled way.

For B = (B1,B3) a two-dimensional Brownian motion, γ > 0,

dc1 =i
∂H
∂c1

dt − γ ∂H
∂c1

dt +
√

2γT1dB1

dcj =i

[
2(
∑

k

|ck |2)cj − |cj |2cj + 2(c2
j−1 + c2

j+1)cj

]
dt j = 2, . . . ,n − 1

dcn =i
∂H
∂cn

dt − γ ∂H
∂cn

dt +
√

2γTndBn
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If T1 = Tn = T → equilibrium and we prove exp(−H/2T )dcdc is an
invariant Gibbs measure.

Interest in T1 < Tn: does there exist a unique smooth ergodic
nonequilibrium invariant measure?

I One expects an initial distribution of system to converge to a (stationary)
nonequilibrium state in which energy/matter is flowing.

Theorem [HMNRS16]
For n = 3 there exists a unique ergodic non-equilibrium invariant measure.

Steps involved:
Change coordinates Ij = |cj |2, ϕj = Arg cj .

Let M := I1 + I2 + I3 and L = the Fokker-Planck operator (generator of the
transition semigroup Tt ), we have:
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Hypoellipticity on X := (R3
+ × T3) \ {I2 = 0} (local smoothing)

Existence of Measure: We construct a continuous and piecewise C2

Lyapunov function V that penalizes the region I2 small and high energy.
I Such construction gives an upper bound on the hitting time of the good

region G (compact set) where the dynamics spends most of time:

LV ≤ −cV + κ1G

I Natural candidate is to use a coercive conserved quantity of the original
Hamiltonian system such as V = eM .

I But this does not work in the whole space.
I We need to split our phase space in 4 regions (difficulty).

F Need to solve suitable Poisson equations for V with eM at the boundary.
F Need to study of the behavior of the phases and and proving that asymptotically

they get locked.

Uniqueness and Ergodicity of the invariant measure follow from a
controllability lemma for the deterministic system showing one can
access any region of phase space + Strook-Varadhan theorem.
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