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Three Frameworks for Counting Problems

The following three frameworks are in increasing order of

strength.

1. Graph Homomorphisms

2. Constraint Satisfaction Problems (#CSP)

3. Holant Problems

In each framework, there has been remarkable progress in

the classification program.
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Holant

A signature grid Ω = (G,F , π) is a tuple, where G = (V,E) is

a graph, π labels each v ∈ V with a function fv ∈ F , and fv

maps {0, 1}deg(v) to C.

HolantΩ =
∑

σ:E→{0,1}

∏

v∈V

fv
(
σ |E(v)

)
.

where

• E(v) denotes the incident edges of v

• σ |E(v) denotes the restriction of σ to E(v).
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Perfect Matchings
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Matching as Holant

HolantΩ =
∑

σ:E→{0,1}

∏

v∈V

fv
(
σ |E(v)

)
.

The problem of counting Perfect Matchings on G

corresponds to attaching the Exact-One function at every

vertex of G.

The problem of counting all Matchings on G is to attach

the At-Most-One function at every vertex of G.
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Graph Homomorphisms

If instead we consider all vertex assignments ξ : V → [q],

and there is a single binary constraint function assigned to

each edge, then this is Graph Homomorphism

ZA(G) =
∑

ξ:V→[q]

∏

(u,v)∈E

Aξ(u),ξ(v).

E.g., Vertex Covers

A =


0 1

1 1




is the Or function.
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Three-Colorings

A =




0 1 1

1 0 1

1 1 0




is the Disequality function.

Even-Odd Induced Subgraphs

H =


1 1

1 −1




ZH(G) computes the number of induced subgraphs of G

with an even (or odd) number of edges.
(
2n − ZH(G)

)/
2

is the number of induced subgraphs of G with an odd

number of edges.
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Graph Homomorphism

Lovász first studied Graph homomorphisms.

L. Lovász: Operations with structures, Acta Math. Hung.

18 (1967), 321-328.

http://www.cs.elte.hu/~lovasz/hom-paper.html
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Getting Acquainted

Consider the constraint function

f : {0, 1}4 → C,

where if the input (x1, x2, x3, x4) has Hamming weight w,

then f(x1, x2, x3, x4) = 3, 0, 1, 0, 3, if w = 0, 1, 2, 3, 4, resp.

We denote this function by f = [3, 0, 1, 0, 3].

What is the counting problem defined by the Holant sum?

HolantΩ =
∑

σ:E→{0,1}

∏

v∈V

f
(
σ |E(v)

)
.
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What’s that problem?

On 4-regular graphs,
∑

σ

∏
v∈V f

(
σ |E(v)

)
is a sum over all

0-1 edge assignments σ of products of local evaluations.

We only sum over assignments which assign an even

number of 1’s to the incident edges of each vertex, since

f = [3, 0, 1, 0, 3]

Thus f = 0 for w = 1 and 3.

Then each vertex contributes a factor 3 if the 4 incident

edges are assigned all 0 or all 1, and contributes a factor 1

if exactly two incident edges are assigned 1.
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What’s that problem?

On 4-regular graphs,
∑

σ

∏
v∈V f

(
σ |E(v)

)
is a sum over all

0-1 edge assignments σ of products of local evaluations.

We only sum over assignments which assign an even

number of 1’s to the incident edges of each vertex, since

f = [3, 0, 1, 0, 3]

Thus f = 0 for w = 1 and 3.

Then each vertex contributes a factor 3 if the 4 incident

edges are assigned all 0 or all 1, and contributes a factor 1

if exactly two incident edges are assigned 1.

Before anyone thinks that this problem is artificial, let’s

consider a holographic transformation.
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An Equivalent Bipartite Formulation

Let

I(G) = (E(G), V (G), {(e, v) | v is incident to e in G})

be the edge-vertex incidence graph of G.

Holant (=2 | f) on I(G):

Each e ∈ E(G) is attached =2 (binary Equality).

The truth table of =2 is (1, 0, 0, 1) indexed by {0, 1}2.
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A Holographic Transformation

Apply

Z =
1√
2


1 1

i −i


 ,

to

Holant (=2 | f) = Holant
(
(=2)Z

⊗2 | (Z−1)⊗4f
)

Here (=2)Z
⊗2 is a row vector indexed by {0, 1}2 denoting

the transformed function under Z from (=2) = (1, 0, 0, 1),

and (Z−1)⊗4f is the column vector indexed by {0, 1}4
denoting the transformed function under Z−1 from f .
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A Holographic Transformation

Z = 1√
2

[
1 1
i −i

]
transforms =2 to the binary Disequality:

(=2)Z
⊗2 = (1 0 0 1)Z⊗2

=
{
(1 0)⊗2 + (0 1)⊗2

}
Z⊗2

= 1
2

{
(1 1)⊗2 + (i − i)⊗2

}

= (0 1 1 0)

= [0, 1, 0]

= ( 6=2).

14



A Holographic Transformation

Let f̂ = [0, 0, 1, 0, 0] be the Exact-Two function on {0, 1}4.
Consider Z⊗4f̂ , where

Z = 1√
2


1 1

i −i


 ,

Z
⊗4











1

0



 ⊗





1

0



 ⊗





0

1



 ⊗





0

1



 +





1

0



 ⊗





0

1



 ⊗





1

0



 ⊗





0

1



 + · · · +





0

1



 ⊗





0

1



 ⊗





1

0



 ⊗





1

0











= 1
4











1

i



 ⊗





1

i



 ⊗





1

−i



 ⊗





1

−i



 +





1

i



 ⊗





1

−i



 ⊗





1

i



 ⊗





1

−i



 + · · · +





1

−i



 ⊗





1

−i



 ⊗





1

i



 ⊗





1

i











= 1
2
[3, 0, 1, 0, 3]

= 1
2
f

Hence (Z−1)⊗4f = 2f̂ .
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What’s Natural and What’s Artificial?

Holant (=2 | f) = Holant
(

(=2)Z
⊗2 | (Z−1)⊗4f

)

= Holant ( 6=2| 2[0, 0, 1, 0, 0])

Hence, up to a global constant factor of 2n on a graph

with n vertices, the Holant problem with [3, 0, 1, 0, 3] is

exactly the same as Holant ( 6=2 | [0, 0, 1, 0, 0]).

A moment’s reflection shows that Holant ( 6=2 | [0, 0, 1, 0, 0]) is

counting the number of Eulerian orientations on 4-regular

graphs, an eminently natural problem!

Our goal is to classify all of them.
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Vanishing

For any a, b ∈ C,

Holant( 6=2 | [0, 0, 1, 0, 0]) = Holant ( 6=2 | [a, b, 1, 0, 0])

This is related to a phenomenon we call vanishing.

Definition

A set of signatures F is called vanishing if the value

HolantΩ(F) is zero for every signature grid Ω. A signature

f is called vanishing if the singleton set {f} is vanishing.

E.g.,

Holant(Z⊗4[a, b, 0, 0, 0]) = Holant ( 6=2 | [a, b, 0, 0, 0]) = 0
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Symmetrization

Definition

For positive integers t and n with t ≤ n and for unary

signatures v, v1, . . . , vn−t, we define

Symt
n(v; v1, . . . , vn−t) =

∑

π∈Sn

n⊗

k=1

uπ(k),

where the ordered sequence

(u1, u2, . . . , un) = (v, . . . , v︸ ︷︷ ︸
t copies

, v1, . . . , vn−t).
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Vanishing Degrees

Definition

A nonzero signature f of arity n has vanishing degree

vd+(f) = k, if 1 ≤ k ≤ n is the largest positive integer such

that for some n− k unary v1, . . . , vn−k

f = Symk
n([1, i]; v1, . . . , vn−k).

If f cannot be expressed as such, we define vd+(f) = 0.

If f is the all zero signature, we define vd+(f) = n+ 1.

Similarly we define vd−(f), using −i instead of i.
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E.g.,

Sym2
3([1, i]; [a, b])

= 2{[a, b]⊗ [1, i]⊗ [1, i] + [1, i]⊗ [a, b]⊗ [1, i] + [1, i]⊗ [1, i]⊗ [a, b]}

= 2[3a, 2ia+ b,−a+ 2ib,−3b].

E.g., for f = [1, 0, 1]

vd+(f) = vd−(f) = 1.
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The Vanishing Class

Definition

For σ ∈ {+,−}, we define

V
σ = {f | 2 vdσ(f) > arity(f)}.

Lemma

For a set of symmetric signatures F , if F ⊆ V + or F ⊆ V −,

then F is vanishing.
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Characterizing Vanishing Signatures

Lemma

Let f+ ∈ V + and f− ∈ V −. If neither f+ nor f− is the zero

signature, then the signature set {f+, f−} is not vanishing.

Lemma

Every symmetric vanishing signature is in V + ∪ V −.

Theorem

Let F be a set of symmetric signatures. Then F is

vanishing if and only if F ⊆ V + or F ⊆ V −.
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A Dual Characterization

Definition

A signature f = [f0, f1, . . . , fn] is in R
+
t for a nonnegative

integer t ≥ 0 if

• t > n; or

• For any 0 ≤ k ≤ n− t, fk, . . . , fk+t satisfy the recurrence

relation
(
t

t

)
itfk+t +

(
t

t− 1

)
it−1fk+t−1 + · · ·+

(
t

0

)
i0fk = 0.

We define R
−
t similarly but with −i replacing i.
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A Dual Characterization

Definition

For a nonzero symmetric signature f of arity n, it is of

positive (resp. negative) recurrence degree t ≤ n, denoted
by rd+(f) = t (resp. rd−(f) = t), if and only if f ∈ R

+
t+1 −R

+
t

(resp. f ∈ R
−
t+1 −R

−
t ).

If f is the all zero signature, define rd+(f) = rd−(f) = −1.

Lemma

Suppose f is a symmetric signature and σ ∈ {+,−}. Then

vdσ(f) + rdσ(f) = arity(f), and

V
σ = {f | 2 rdσ(f) < arity(f)}.
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Some Tractable Function Families

The following three families of functions

F1 = { λ([1, 0]⊗k + ir[0, 1]⊗k) | λ ∈ C, k ≥ 1, r = 0, 1, 2, 3};

F2 = { λ([1, 1]⊗k + ir[1,−1]⊗k) | λ ∈ C, k ≥ 1, r = 0, 1, 2, 3};

F3 = { λ([1, i]⊗k + ir[1, −i]⊗k) | λ ∈ C, k ≥ 1, r = 0, 1, 2, 3}.

give rise to tractable problems.

Theorem [C., Lu, Xia]

For every graph G where V (G) is labeled by F1 ∪ F2 ∪ F3,

HolantG is computable in P.
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F1 ∪ F2 ∪ F3

1. [1, 0, 0, . . . , 0,±1]; (F1, r = 0, 2)

2. [1, 0, 0, . . . , 0,±i]; (F1, r = 1, 3)

3. [1, 0, 1, 0, . . . , 0 or 1]; (F2, r = 0)

4. [0, 1, 0, 1, . . . , 0 or 1]; (F2, r = 2)

5. [1, i, 1, i, . . . , i or 1]; (F2, r = 3)

6. [1,−i, 1,−i, . . . , (−i) or 1]; (F2, r = 1)

7. [1, 0,−1, 0, 1, 0,−1, 0, . . . , 0 or 1 or (−1)]; (F3, r = 0)

8. [1, 1,−1,−1, 1, 1,−1,−1, . . . , 1 or (−1)]; (F3, r = 1)

9. [0, 1, 0,−1, 0, 1, 0,−1, . . . , 0 or 1 or (−1)]; (F3, r = 2)

10. [1,−1,−1, 1, 1,−1,−1, 1, . . . , 1 or (−1)]. (F3, r = 3)
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F1 ∪ F2 ∪ F3

1. [1, 0, 0, . . . , 0,±1]; (F1, r = 0, 2)

2. [1, 0, 0, . . . , 0,±i]; (F1, r = 1, 3)

3. [1, 0, 1, 0, . . . , 0 or 1]; (F2, r = 0)

4. [0, 1, 0, 1, . . . , 0 or 1]; (F2, r = 2)

5. [1, i, 1, i, . . . , i or 1]; (F2, r = 3)

6. [1,−i, 1,−i, . . . , (−i) or 1]; (F2, r = 1)

7. [1, 0,−1, 0, 1, 0,−1, 0, . . . , 0 or 1 or (−1)]; (F3, r = 0)

8. [1, 1,−1,−1, 1, 1,−1,−1, . . . , 1 or (−1)]; (F3, r = 1)

9. [0, 1, 0,−1, 0, 1, 0,−1, . . . , 0 or 1 or (−1)]; (F3, r = 2)

10. [1,−1,−1, 1, 1,−1,−1, 1, . . . , 1 or (−1)]. (F3, r = 3)
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F1 ∪ F2 ∪ F3

1. [1, 0, 0, . . . , 0,±1]; (F1, r = 0, 2)

2. [1, 0, 0, . . . , 0,±i]; (F1, r = 1, 3)

3. [1, 0, 1, 0, . . . , 0 or 1]; (F2, r = 0)

4. [0, 1, 0, 1, . . . , 0 or 1]; (F2, r = 2)

5. [1, i, 1, i, . . . , i or 1]; (F2, r = 3)

6. [1,−i, 1,−i, . . . , (−i) or 1]; (F2, r = 1)

7. [1, 0,−1, 0, 1, 0,−1, 0, . . . , 0 or 1 or (−1)]; (F3, r = 0)

8. [1, 1,−1,−1, 1, 1,−1,−1, . . . , 1 or (−1)]; (F3, r = 1)

9. [0, 1, 0,−1, 0, 1, 0,−1, . . . , 0 or 1 or (−1)]; (F3, r = 2)

10. [1,−1,−1, 1, 1,−1,−1, 1, . . . , 1 or (−1)]. (F3, r = 3)
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ZH(G) and Holant(F1 ∪ F2 ∪ F3)

Recall

H =


1 1

1 −1




ZH(G) is a special case of Holant with F1 ∪ F2 ∪ F3:

H is included in F1 ∪ F2 ∪ F3.

As a binary function H = [1, 1,−1].
We can take r = 1, k = 2 and λ = (1 + i)−1 in F3, to get H.

If we take r = 0, λ = 1 in F1, we get the Equality function

[1, 0, . . . , 0, 1] on k bits.

So ZH(·) is computable in P.
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Affine Signatures

Definition

A k-ary function f(x1, . . . , xk) is affine if it has the form

λ · χAx=0 ·
√
−1

∑n
j=1〈αj ,x〉

,

where λ ∈ C, x = (x1, x2, . . . , xk, 1)
T ∈ F

k+1
2 , A is a matrix over

F2, αj is a vector over F2, and χ is a 0-1 indicator function

such that χAx=0 is 1 iff Ax = 0.

The exponent of i =
√
−1 is a mod 4 sum of mod 2 sums.

We use A to denote the set of all affine functions.
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Dichotomy Theorem

Theorem

Let F be any set of symmetric, complex-valued signatures

in Boolean variables. Then Holant(F) is #P-hard unless F
satisfies one of the following conditions, in which case the

problem is in P:

1. All non-degenerate signatures in F have arity ≤ 2;

2. F is A -transformable;

3. F is P-transformable;

4. F ⊆ V σ ∪ {f ∈ Rσ
2 | arity(f) = 2} for σ ∈ {+,−};

5. All non-degenerate signatures in F are in Rσ
2 for

σ ∈ {+,−}.
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Some Sample Problems
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Vertex Cover

Input: An undirected graph G.

Output: The number of vertex covers in G.

Holant ([0, 1, 1] | EQ)

The degree two vertices assigned Or = [0, 1, 1] are edges

between its neighboring vertices.

Holographic transformation by

T =
[
0 −i
1 i

]
.

Why?
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[0, 1, 1] = (0 1 1 1)

=
{
[1, 1]⊗2 + [i, 0]⊗2

}

=
{
[1, 0]⊗2 + [0, 1]⊗2

}
[ 1 1
i 0 ]

⊗2

= (1 0 0 1)(T−1)⊗2

= (=2)(T
−1)⊗2.

Thus,

Holant ([0, 1, 1] | EQ) ≡T Holant
(
[0, 1, 1]T⊗2 | T−1EQ

)

≡T Holant
(
=2 | T−1EQ

)

≡T Holant(T−1EQ).
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T−1 transforms =k to

f(k) = (T−1)⊗k(=k)

= [ 1 1
i 0 ]

⊗k
{
[ 10 ]

⊗k
+ [ 01 ]

⊗k
}

= [ 1i ]
⊗k

+ [ 10 ]
⊗k

= [2, i,−1,−i, 1, i,−1,−i, 1, i, . . . ]T

of length k + 1.

By our dichotomy, Holant(f(k)) (the restriction to k-regular

graphs) is #P-hard, for every k ≥ 3.
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λ-VertexCover

Input: An undirected graph G.

Output:
∑

C∈C(G)

λe(C),

where C(G) denotes the set of all vertex covers of G, and

e(C) is the number of edges with both endpoints in C.

Holant ([0, 1, λ] | EQ)

Suppose λ 6= 0. On regular graphs, this problem is

equivalent to the so-called hardcore gas model,
∑

I∈I(G)

µ|I|.

Holant ([1, 1, 0] | [1, 0, . . . , 0, µ]) .
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NoSinkOrientation

Input: An undirected graph G.

Output: The number of orientations of G such that each

vertex has at least one outgoing edge.

Holant ([0, 1, 0] | F)
where F consists of f(k) = [0, 1, . . . , 1, 1] for any arity k.

Pick T = 1
2

[
1 −i
1 i

]
= 1√

2
Z−1, with T−1 =

√
2Z =

[
1 1
i −i

]
and get

Holant([0, 1, 0] | f(k)) ≡T Holant
(
[0, 1, 0]T⊗2 | (T−1)⊗kf(k)

)

≡T Holant
(

1
2 [1, 0, 1] | f̂(k)

)

≡T Holant(f̂(k)),

where f̂(k) = [2k − 1,−i, 1, i,−1, . . . ].
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This is actually a special case (consider −f̂(k)) of the

#λ-VertexCover problem with λ = 2eπi/k.

It is #P-hard by our dichotomy, but mod 2k, f̂(k) becomes

[−1,−i, 1, . . . ], and it is one of the tractable cases in our

dichotomy.
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NoSinkNoSourceOrientation

Input: An undirected graph G.

Output: The number of orientations of G such that each

vertex has at least one incoming and one outgoing edge.

Holant ([0, 1, 0] | F)
where F consists of f(k) = [0, 1, . . . , 1, 0] for any arity k.

Holant([0, 1, 0] | f(k)) ≡T Holant
(
[0, 1, 0]T⊗2 | (T−1)⊗kf(k)

)

≡T Holant
(

1
2 [1, 0, 1] | f̂(k)

)

≡T Holant(f̂(k)),

where f̂(k) = [2k − 2, 0, 2, 0,−2, . . . ].

38



Here we transform from one real weighted Holant problem

to another real weighted Holant problem via a complex

weighted transformation.

#NoSinkNoSourceOrientation is #P-hard, but it is

tractable modulo 2d, where d is the minimum degree of the

input graph.
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One-In-Or-One-Out-Orientation

Input: An undirected graph G.

Output: The number of orientations of G such that each

vertex has exactly 1 incoming or exactly 1 outgoing edge.

Holant ([0, 1, 0] | F)
where the set F = {f, g} and

f = [0, 1, 0, . . . , 0], and g = [0, . . . , 0, 1, 0].

After a holographic transformation,

f̂ = [k, (k − 2)i,−(k − 4), . . . ] and ĝ = [k,−(k − 2)i,−(k − 4), . . . ]

of arity k.

Each individually is tractable (because they are

vanishing), but together the problem is #P-hard.
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λ-WeightedMatching

Input: An undirected graph G.

Output:
∑

M∈M(G)

λv(M),

where M(G) is the set of all matchings in G and v(M) is

the number of unmatched vertices in the matching M .

Holant(F)
where F consists of signatures of the form [λ, 1, 0, . . . , 0].

When λ = 0, this problem counts perfect matchings, which

is #P-hard, but tractable over planar graphs.

When λ = 1, this problem counts all (not necessarily

perfect) matchings.

41



Vadhan (2001) proved that counting general matchings is

#P-hard over k-regular graphs for k ≥ 5, but left open the

question for k ≤ 4.

The dichotomy shows that they are also #P-hard for all

k ≥ 3.

The scope of our dichotomy theorem is such that it gives a

sweeping classification for all such problems; the open

case for k = 4 from [Vad01] is merely a single point in the

problem space.
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Dependency Graph

Arity 3 Arity 4

Vanishing

Single Signature

Theorem

Main

Theorem

A -transformable

and

P-transformable

Figure 1: Dependency graph of key hardness results for our main

dichotomy. Dependencies on previous dichotomies are not shown.
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A Peek Under the Hood

“A mathematics lecture without a proof is like a movie

without a love scene.”

— Hendrik Lenstra
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Arity 4 Signatures

Definition The signature matrix of an 4-ary symmetric
signature f = [f0, f1, f2, f3, f4] is

Mf =













f0 f1 f1 f2

f1 f2 f2 f3

f1 f2 f2 f3

f2 f3 f3 f4













.

For asymmetric signatures,

Mf =




f0000, f0010, f0001, f0011

f0100, f0110, f0101, f0111

f1000, f1010, f1001, f1011

f1100, f1110, f1101, f1111




indexed by (x1, x2) ∈ {0, 1}2 and columns by (x4, x3) ∈ {0, 1}2.
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An Isomorphism

A 4-by-4 matrix is called redundant if it has identical

middle two rows and identical middle two columns.

If f is symmetric then Mf is redundant. But not all

redundant matrices correspond to a symmetric signature.

RM4(C) denotes redundant 4-by-4 matrices.

There is a semi-group isomorphism

ϕ : RM4(C)→ C
3×3

defined by ϕ(M) = AMB, where A =

[
1 0 0 0
0 1

2
1
2 0

0 0 0 1

]
and

B =

[
1 0 0
0 1 0
0 1 0
0 0 1

]
. Denote by ψ = ϕ−1.

If Mf is redundant, we also define the compressed

signature matrix of f as M̃f = ϕ(Mf ).
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One Special Asymmetric Signature

Mg =

[
1 0 0 0
0 1

2
1
2 0

0 1
2

1
2 0

0 0 0 1

]
.

M̃g = I3.

Theorem

Holant(g) is #P-hard.
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#P-hardness of g

We reduce from the Eulerian orientation problem

Holant([1, 0, 1/3, 0, 1])

We achieve this via an arbitrarily close approximation

using the recursive construction.

48



N0 N1

N
k

Nk+1

Figure 2: Recursive construction to approximate [1, 0, 1/3, 0, 1]. The

vertices are assigned g.
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Approximation

We claim the matrix MNk
of Gadget Nk is

[
1 0 0 ak

0 ak+1 ak+1 0
0 ak+1 ak+1 0
ak 0 0 1

]
,

where ak = 1
3 − 1

3

(
− 1

2

)k
.

This is true for N0.

Inductively assume MNk
has this form. Then the rotated

form of the signature matrix for Nk in Nk+1 is

[
1 0 0 ak+1

0 ak ak+1 0
0 ak+1 ak 0

ak+1 0 0 1

]
.

This corresponds to the rotated placement of Nk in Nk+1

in the Figure.
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Approximation

The action of g on the far right side of Nk+1 is to replace

each of the middle two entries in the middle two rows of

this matrix with their average, (ak + ak+1)/2 = ak+2. This

gives MNk+1
.

Since ak approaches 1/3 exponentially fast, we may

approximate the signature [1, 0, 1/3, 0, 1] sufficiently close

after only polynomially many steps of gadget construction.

This completes the proof.
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A Reduction From g

Lemma

Let f be any arity 4 signature with complex weights. If

Mf is redundant and M̃f is nonsingular, then for any set F
containing f , we have

Holant(F ∪ {g}) ≤T Holant(F).
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A Construction

N1 N2

Ns

Ns+1

Figure 3: Recursive construction to interpolate g. The vertices are

assigned f . Diamonds indicates the most significant bit and the bits

are ordered in counter clockwise order.
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Suppose g appears n times in an instance Ω of

Holant(F ∪ {g}).
Construct instances Ωs of Holant(F) indexed by s ≥ 1.

We obtain Ωs from Ω by replacing each occurrence of g

with Ns with f assigned to all vertices.

To obtain Ωs from Ω, we effectively replace Mg with

MNs
= (Mf )

s.

Consider the Jordan normal form of M̃f

M̃f = TΛT−1 = T

[
λ1 b1 0
0 λ2 b2
0 0 λ3

]
T−1,

where b1, b2 ∈ {0, 1}.
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det(M̃f ) = λ1λ2λ3 6= 0.

Now we use the isomorphism ϕ and its inverse ψ:

Since M̃g = ϕ(Mg) = I3, and TI3T
−1 = I3, we have

ψ(T )Mgψ(T
−1) =Mg.

We can view our construction of Ωs as first replacing each

Mg by ψ(T )Mgψ(T
−1), which does not change the Holant

value, and then replacing each new Mg with ψ(Λs) = ψ(Λ)s

to obtain Ωs. Observe that

ϕ(ψ(T )ψ(Λs)ψ(T−1)) = TΛsT−1 = (M̃f )
s = ϕ((Mf )

s),

hence ψ(T )ψ(Λs)ψ(T−1) =MNs
.

Since Mg = ψ(T )Mgψ(T
−1) and MNs

= ψ(T )ψ(Λs)ψ(T−1),

replacing each Mg, sandwiched between ψ(T ) and ψ(T−1),

by ψ(Λs) indeed transforms Ω to Ωs.
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Stratification

Now stratify all assignments in Ωs based on the assignments to

ψ(Λs).

The inputs to each copy of ψ(Λs) are from {0, 1}2 × {0, 1}2.
However, we can combine 01 and 10, since ψ(Λs) is redundant.

Consider only the case b1 = b2 = 1.

We stratify all assignments to Λs according to:

• (0, 0) or (2, 2) i many times,

• (1, 1) j many times,

• (0, 1) k many times,

• (1, 2) ℓ many times, and

• (0, 2) m many times

All other assignments contribute a factor 0.
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Stratification

Let cijkℓm be the sum over all such assignments of the prod-

ucts of evaluations (including the contributions from T and T−1)

on Ωs.

HolantΩ =
∑

i+j=n

cij000
2j

.

HolantΩs =
∑

i+j+k+ℓ+m=n

λ
(i+j)s (

sλ
s−1)k+ℓ (

s(s− 1)λs−2)m
(

cijkℓm

2j+k+m

)

= λ
ns

∑

i+j+k+ℓ+m=n

s
k+ℓ+m(s− 1)m

(

cijkℓm

λk+ℓ+2m2j+k+m

)

.

By reduction to Holant(F), we have the values HolantΩs
.

Will view this as a linear equation system.
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Inverse Image ψ(Λs) in RM4(C)

HolantΩs =
∑

i+j+k+ℓ+m=n

λ
(i+j)s (

sλ
s−1)k+ℓ (

s(s− 1)λs−2)m
(

cijkℓm

2j+k+m

)

= λ
ns

∑

i+j+k+ℓ+m=n

s
k+ℓ+m(s− 1)m

(

cijkℓm

λk+ℓ+2m2j+k+m

)

.

comes from

ψ(Λs) = ψ




λs sλs−1
(
s
2

)
λs−2

0 λs sλs−1

0 0 λs


 =




λs sλs−1

2
sλs−1

2

(
s
2

)
λs−2

0 λs

2
λs

2 sλs−1

0 λs

2
λs

2 sλs−1

0 0 0 λs
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Rank Deficiency

Unfortunately this linear system is rank deficient.

We now define new unknowns for any p, q,m ≥ 0 and

p+ q +m = n,

c′pqm =
∑

i+j=p,k+ℓ=q

cijkℓm
λk+ℓ+2m2j+k+m

Note that c′n00 is precisely the desired value

HolantΩ =
∑

i+j=n

cij000
2j

The new linear system is

HolantΩs
= λns

∑

p+q+m=n

sq+m(s− 1)mc′pqm
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Unfortunately this new and condensed linear system is

still rank deficient.

We now index the columns by (q,m), where q ≥ 0, m ≥ 0,

and q +m ≤ n. Correspondingly, we rename the variables

xq,m = c′pqm. Note that p = n− q +m is determined by (q,m).

Observe that the column indexed by (q,m) is the sum of

the columns indexed by (q − 1,m) and (q − 2,m+ 1)

provided q − 2 ≥ 0. Namely,

sq+m(s− 1)m = sq−1+m(s− 1)m + sq−2+m+1(s− 1)m+1.
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We write the linear system as

∑

q≥0, m≥0, q+m≤n

αq,mxq,m =
HolantΩs

λns
,

where αq,m = sq+m(s− 1)m are the coefficients. Hence

αq,mxq,m = αq−1,mxq,m + αq−2,m+1xq,m, and we define new

variables

xq−1,m ← xq,m + xq−1,m

xq−2,m+1 ← xq,m + xq−2,m+1

from q = n down to 2.
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We write the linear system as

∑

q≥0, m≥0, q+m≤n

αq,mxq,m =
HolantΩs

λns
,

where αq,m = sq+m(s− 1)m are the coefficients. Hence

αq,mxq,m = αq−1,mxq,m + αq−2,m+1xq,m, and we define new

variables

xq−1,m ← xq,m + xq−1,m

xq−2,m+1 ← xq,m + xq−2,m+1

from q = n down to 2.
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A Triangular Table of Variables
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x0,0 x0,1 x0,2 · · · x0,n−2 x0,n−1 x0,n

x1,0 x1,1 x1,2 · · · x1,n−2 x1,n−1

x2,0 x2,1 x2,2 · · · x2,n−2

...
...

...

xn−2,0 xn−2,1 xn−2,2

xn−1,0 xn−1,1

xn,0
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x0,0 x0,1 x0,2 x0,3 x0,4 x0,5 x0,6

x1,0 x1,1 x1,2 x1,3 x1,4 x1,5

x2,0 x2,1 x2,2 x2,3 x2,4

x3,0 x3,1 x3,2 x3,3

x4,0 x4,1 x4,2

x5,0 x5,1

x6,0
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x0,0 x0,1 x0,2 x0,3 x0,4 x0,5 x0,6

x1,0 x1,1 x1,2 x1,3 x1,4 x1,5

x2,0 x2,1 x2,2 x2,3 x2,4

x3,0 x3,1 x3,2 x3,3

x4,0 x4,1 x4,2

x5,0 x5,1

x6,0
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x0,0 x0,1 x0,2 x0,3 x0,4 x0,5 x0,6

x1,0 x1,1 x1,2 x1,3 x1,4 x1,5

x2,0 x2,1 x2,2 x2,3 x2,4

x3,0 x3,1 x3,2 x3,3

x4,0 x4,1 x4,2

x5,0 x5,1

x6,0
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A crucial observation is that the column indexed by (0, 0)

is never updated.

Hence x0,0 = c′n00 is still the Holant value on Ω.

The 2n+ 1 unknowns that remain are

x0,0, x0,1, x0,2, . . . , x0,n−1, x0,n

x1,0, x1,1, x1,2, . . . , x1,n−1

and their coefficients in row s are

1, s, s(s− 1), . . . , sn−1(s− 1)n−1, sn(s− 1)n−1, sn(s− 1)n.

It is clear that the κ-th entry in this row is a monic

polynomial in s of degree κ, where 0 ≤ κ ≤ 2n, and thus sκ

is a linear combination of the first κ entries.
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Vandermonde

It follows that the coefficient matrix is a product of the

standard Vandermonde matrix multiplied to its right by

an upper triangular matrix with all 1’s on the diagonal.

Hence the matrix is nonsingular, and we can solve the

linear system, in particular, to compute c′n00 in polynomial

time.
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Some References

A Complete Dichotomy Rises from the Capture of

Vanishing Signatures

http://arxiv.org/abs/1204.6445 (53 pages)

Some other papers can be found on my web site

http://www.cs.wisc.edu/~jyc

THANK YOU!
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