


Spectral statistics

Spectra of chaotic systems have statistics in agreement with random matrix
theory.
(Bohigas, Giannoni, Schmit 1984)

Ensemble depends on symmetries.

Symmetry operators have to leave transition amplitudes |〈φ|ψ〉|2 invariant.

unitary symmetries, e.g. geometrical

anti-unitary symmetries:
(generalised) time reversal invariance T

T (a|ψ〉+ b|φ〉) = a∗T |ψ〉+ b∗T |φ 〉 , 〈T ψ|T φ〉 = 〈ψ|φ〉∗

physically we also need T 2|ψ〉 = c|ψ〉
together with anti-unitarity this implies T 2 = ±1
Example:

H = p̂2

2m + V (x) is invariant under complex conjugation K with K 2 = 1
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Random matrix ensembles

(in absence of unitary symmetries)

no time-reversal invariance:
Gaussian Unitary Ensemble

time-reversal invariance with T 2 = 1:
Gaussian Orthogonal Ensemble

time-reversal invariance with T 2 = −1:
Gaussian Symplectic Ensemble
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Spin systems

e.g.: spin 1
2 system with spin-orbit coupling

H =
p̂2

2m
+ V (x) +

~
2

3∑
i=1

σiLi

σ1 =

(
0 1
1 0

)
σ2 =

(
0 −i
i 0

)
σ3 =

(
1 0
0 −1

)
commutes with

T = iσ2K =

(
0 1
−1 0

)
K

where
T 2 = −1

GSE statistics!
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Kramer’s degeneracy

for T 2 = −1 implies that states |n〉 and |T n〉 are orthogonal and have same
energy

write Hamiltonian in a basis |n〉, |T n〉:

Hnm =

(
〈n|H|m〉 〈n|H|T m〉
〈T n|H|m〉 〈T n|H|T m〉

)

it becomes quaternion-real, i.e.

Hnm =

(
α β
−β∗ α∗

)
= a01 + a1 iσ1︸︷︷︸

=I

+a2 iσ2︸︷︷︸
=J

+a3 iσ3︸︷︷︸
=K
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Quantum graphs

networks of vertices connected by bonds (with lengths)

Schrödinger equation on each bond

− ~2

2m
d2

dx2ψ(x) = Eψ(x)

conditions at the vertices: e.g. continuity
+ Neumann conditions (sum over dψ

dx of adjacent bonds is 0)

large well connected graphs display RMT spectral statistics

if Hamiltonian and vertex conditions symmetric w.r.t. complex
conjugation: GOE
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Quantum graphs

the following graph has the anti-unitary symmetry T defined by

T ψ(x) =

{
ψ∗(Px) x ∈ left half
−ψ∗(Px) x ∈ right half

i

i−
1+

1−

T 2 = −1 =⇒ GSE

proposed realization: e.g. optical fibres
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General approach to symmetries
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consider subspectra corresponding to irreducible representations
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Statistics inside subspectra

no T inv. T inv. (T 2 = 1) T inv. (T 2 = −1)
complex rep. GUE GUE GUE

real rep. GUE GOE GSE
pseudo-real rep. GUE GSE GOE

Why?

consider T = complex conjugation; 2d pseudo-real representation

ψψψ transform according to U(g)ψψψ = Mα(g)Tψψψ

but Tψψψ transforms with (Mα(g)T )∗ ⇒ T not compatible with structure of
subspace

use T̄ =

(
0 1
−1 0

)
T instead:

T̄ψψψ transforms as desired and T̄ commutes with H

T̄ 2 = −1⇒ GSE

Find a graph whose symmetry group has a pseudo-real representation.
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bonds of length connect group elements related by right
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