GSE statistics without spin

joint work with
Chris Joyner and Martin Sieber

Sebastian Müller

Spectral statistics

Spectral statistics

Spectra of chaotic systems have statistics in agreement with random matrix theory.
(Bohigas, Giannoni, Schmit 1984)

Spectral statistics

Spectra of chaotic systems have statistics in agreement with random matrix theory.
 (Bohigas, Giannoni, Schmit 1984)

Ensemble depends on symmetries.

Spectral statistics

Spectra of chaotic systems have statistics in agreement with random matrix theory.
(Bohigas, Giannoni, Schmit 1984)
Ensemble depends on symmetries.
Symmetry operators have to leave transition amplitudes $|\langle\phi \mid \psi\rangle|^{2}$ invariant.

Spectral statistics

Spectra of chaotic systems have statistics in agreement with random matrix theory.
(Bohigas, Giannoni, Schmit 1984)
Ensemble depends on symmetries.
Symmetry operators have to leave transition amplitudes $|\langle\phi \mid \psi\rangle|^{2}$ invariant.

- unitary symmetries, e.g. geometrical

Spectral statistics

Spectra of chaotic systems have statistics in agreement with random matrix theory.
(Bohigas, Giannoni, Schmit 1984)
Ensemble depends on symmetries.
Symmetry operators have to leave transition amplitudes $|\langle\phi \mid \psi\rangle|^{2}$ invariant.

- unitary symmetries, e.g. geometrical
- anti-unitary symmetries:

Spectral statistics

Spectra of chaotic systems have statistics in agreement with random matrix theory.
(Bohigas, Giannoni, Schmit 1984)
Ensemble depends on symmetries.
Symmetry operators have to leave transition amplitudes $|\langle\phi \mid \psi\rangle|^{2}$ invariant.

- unitary symmetries, e.g. geometrical
- anti-unitary symmetries:
(generalised) time reversal invariance \mathcal{T}

Spectral statistics

Spectra of chaotic systems have statistics in agreement with random matrix theory.
(Bohigas, Giannoni, Schmit 1984)
Ensemble depends on symmetries.
Symmetry operators have to leave transition amplitudes $|\langle\phi \mid \psi\rangle|^{2}$ invariant.

- unitary symmetries, e.g. geometrical
- anti-unitary symmetries:
(generalised) time reversal invariance \mathcal{T}

$$
\mathcal{T}(a|\psi\rangle+b|\phi\rangle)=a^{*} \mathcal{T}|\psi\rangle+b^{*} \mathcal{T}|\phi\rangle, \quad\langle\mathcal{T} \psi \mid \mathcal{T} \phi\rangle=\langle\psi \mid \phi\rangle^{*}
$$

Spectral statistics

Spectra of chaotic systems have statistics in agreement with random matrix theory.
(Bohigas, Giannoni, Schmit 1984)
Ensemble depends on symmetries.
Symmetry operators have to leave transition amplitudes $|\langle\phi \mid \psi\rangle|^{2}$ invariant.

- unitary symmetries, e.g. geometrical
- anti-unitary symmetries:
(generalised) time reversal invariance \mathcal{T}

$$
\mathcal{T}(a|\psi\rangle+b|\phi\rangle)=a^{*} \mathcal{T}|\psi\rangle+b^{*} \mathcal{T}|\phi\rangle, \quad\langle\mathcal{T} \psi \mid \mathcal{T} \phi\rangle=\langle\psi \mid \phi\rangle^{*}
$$

physically we also need $\mathcal{T}^{2}|\psi\rangle=c|\psi\rangle$

Spectral statistics

Spectra of chaotic systems have statistics in agreement with random matrix theory.
(Bohigas, Giannoni, Schmit 1984)
Ensemble depends on symmetries.
Symmetry operators have to leave transition amplitudes $|\langle\phi \mid \psi\rangle|^{2}$ invariant.

- unitary symmetries, e.g. geometrical
- anti-unitary symmetries:
(generalised) time reversal invariance \mathcal{T}

$$
\mathcal{T}(a|\psi\rangle+b|\phi\rangle)=a^{*} \mathcal{T}|\psi\rangle+b^{*} \mathcal{T}|\phi\rangle, \quad\langle\mathcal{T} \psi \mid \mathcal{T} \phi\rangle=\langle\psi \mid \phi\rangle^{*}
$$

physically we also need $\mathcal{T}^{2}|\psi\rangle=c|\psi\rangle$
together with anti-unitarity this implies $\mathcal{T}^{2}= \pm 1$

Spectral statistics

Spectra of chaotic systems have statistics in agreement with random matrix theory.
(Bohigas, Giannoni, Schmit 1984)
Ensemble depends on symmetries.
Symmetry operators have to leave transition amplitudes $|\langle\phi \mid \psi\rangle|^{2}$ invariant.

- unitary symmetries, e.g. geometrical
- anti-unitary symmetries:
(generalised) time reversal invariance \mathcal{T}

$$
\mathcal{T}(a|\psi\rangle+b|\phi\rangle)=a^{*} \mathcal{T}|\psi\rangle+b^{*} \mathcal{T}|\phi\rangle, \quad\langle\mathcal{T} \psi \mid \mathcal{T} \phi\rangle=\langle\psi \mid \phi\rangle^{*}
$$

physically we also need $\mathcal{T}^{2}|\psi\rangle=c|\psi\rangle$
together with anti-unitarity this implies $\mathcal{T}^{2}= \pm 1$
Example:

Spectral statistics

Spectra of chaotic systems have statistics in agreement with random matrix theory.
(Bohigas, Giannoni, Schmit 1984)
Ensemble depends on symmetries.
Symmetry operators have to leave transition amplitudes $|\langle\phi \mid \psi\rangle|^{2}$ invariant.

- unitary symmetries, e.g. geometrical
- anti-unitary symmetries:
(generalised) time reversal invariance \mathcal{T}

$$
\mathcal{T}(a|\psi\rangle+b|\phi\rangle)=a^{*} \mathcal{T}|\psi\rangle+b^{*} \mathcal{T}|\phi\rangle, \quad\langle\mathcal{T} \psi \mid \mathcal{T} \phi\rangle=\langle\psi \mid \phi\rangle^{*}
$$

physically we also need $\mathcal{T}^{2}|\psi\rangle=c|\psi\rangle$
together with anti-unitarity this implies $\mathcal{T}^{2}= \pm 1$
Example:
$H=\frac{\hat{p}^{2}}{2 m}+V(x)$

Spectral statistics

Spectra of chaotic systems have statistics in agreement with random matrix theory.
(Bohigas, Giannoni, Schmit 1984)
Ensemble depends on symmetries.
Symmetry operators have to leave transition amplitudes $|\langle\phi \mid \psi\rangle|^{2}$ invariant.

- unitary symmetries, e.g. geometrical
- anti-unitary symmetries:
(generalised) time reversal invariance \mathcal{T}

$$
\mathcal{T}(a|\psi\rangle+b|\phi\rangle)=a^{*} \mathcal{T}|\psi\rangle+b^{*} \mathcal{T}|\phi\rangle, \quad\langle\mathcal{T} \psi \mid \mathcal{T} \phi\rangle=\langle\psi \mid \phi\rangle^{*}
$$

physically we also need $\mathcal{T}^{2}|\psi\rangle=c|\psi\rangle$
together with anti-unitarity this implies $\mathcal{T}^{2}= \pm 1$
Example:
$H=\frac{\hat{\rho}^{2}}{2 m}+V(x)$ is invariant under complex conjugation K with $K^{2}=1$

Spectral statistics

Spectra of chaotic systems have statistics in agreement with random matrix theory.
(Bohigas, Giannoni, Schmit 1984)
Ensemble depends on symmetries.
Symmetry operators have to leave transition amplitudes $|\langle\phi \mid \psi\rangle|^{2}$ invariant.

- unitary symmetries, e.g. geometrical
- anti-unitary symmetries:
(generalised) time reversal invariance \mathcal{T}

$$
\mathcal{T}(a|\psi\rangle+b|\phi\rangle)=a^{*} \mathcal{T}|\psi\rangle+b^{*} \mathcal{T}|\phi\rangle, \quad\langle\mathcal{T} \psi \mid \mathcal{T} \phi\rangle=\langle\psi \mid \phi\rangle^{*}
$$

physically we also need $\mathcal{T}^{2}|\psi\rangle=c|\psi\rangle$
together with anti-unitarity this implies $\mathcal{T}^{2}= \pm 1$
Example:
$H=\frac{\hat{\rho}^{2}}{2 m}+V(x)$ is invariant under complex conjugation K with $K^{2}=1$

Random matrix ensembles

Random matrix ensembles

(in absence of unitary symmetries)

Random matrix ensembles

(in absence of unitary symmetries)

- no time-reversal invariance:

Random matrix ensembles

(in absence of unitary symmetries)

- no time-reversal invariance:

Gaussian Unitary Ensemble

Random matrix ensembles

(in absence of unitary symmetries)

- no time-reversal invariance:

Gaussian Unitary Ensemble

- time-reversal invariance with $\mathcal{T}^{2}=1$:

Random matrix ensembles

(in absence of unitary symmetries)

- no time-reversal invariance:

Gaussian Unitary Ensemble

- time-reversal invariance with $\mathcal{T}^{2}=1$:

Gaussian Orthogonal Ensemble

Random matrix ensembles

(in absence of unitary symmetries)

- no time-reversal invariance:

Gaussian Unitary Ensemble

- time-reversal invariance with $\mathcal{T}^{2}=1$:

Gaussian Orthogonal Ensemble

- time-reversal invariance with $\mathcal{T}^{2}=-1$:

Random matrix ensembles

(in absence of unitary symmetries)

- no time-reversal invariance:

Gaussian Unitary Ensemble

- time-reversal invariance with $\mathcal{T}^{2}=1$:

Gaussian Orthogonal Ensemble

- time-reversal invariance with $\mathcal{T}^{2}=-1$:

Gaussian Symplectic Ensemble

Spin systems

Spin systems

e.g.: spin $\frac{1}{2}$ system with spin-orbit coupling

Spin systems

e.g.: spin $\frac{1}{2}$ system with spin-orbit coupling

$$
H=\frac{\hat{p}^{2}}{2 m}+V(x)+\frac{\hbar}{2} \sum_{i=1}^{3} \sigma_{i} L_{i}
$$

Spin systems

e.g.: spin $\frac{1}{2}$ system with spin-orbit coupling

$$
\begin{aligned}
H & =\frac{\hat{p}^{2}}{2 m}+V(x)+\frac{\hbar}{2} \sum_{i=1}^{3} \sigma_{i} L_{i} \\
\sigma_{1} & =\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \quad \sigma_{2}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right) \quad \sigma_{3}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
\end{aligned}
$$

Spin systems

e.g.: spin $\frac{1}{2}$ system with spin-orbit coupling

$$
\begin{aligned}
H & =\frac{\hat{p}^{2}}{2 m}+V(x)+\frac{\hbar}{2} \sum_{i=1}^{3} \sigma_{i} L_{i} \\
\sigma_{1} & =\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \quad \sigma_{2}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right) \quad \sigma_{3}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
\end{aligned}
$$

commutes with

$$
\mathcal{T}=i \sigma_{2} K=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right) K
$$

Spin systems

e.g.: spin $\frac{1}{2}$ system with spin-orbit coupling

$$
\begin{aligned}
H & =\frac{\hat{p}^{2}}{2 m}+V(x)+\frac{\hbar}{2} \sum_{i=1}^{3} \sigma_{i} L_{i} \\
\sigma_{1} & =\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \quad \sigma_{2}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right) \quad \sigma_{3}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
\end{aligned}
$$

commutes with

$$
\mathcal{T}=i \sigma_{2} K=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right) K
$$

where

$$
\mathcal{T}^{2}=-1
$$

Spin systems

e.g.: spin $\frac{1}{2}$ system with spin-orbit coupling

$$
\begin{aligned}
H & =\frac{\hat{p}^{2}}{2 m}+V(x)+\frac{\hbar}{2} \sum_{i=1}^{3} \sigma_{i} L_{i} \\
\sigma_{1} & =\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \quad \sigma_{2}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right) \quad \sigma_{3}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
\end{aligned}
$$

commutes with

$$
\mathcal{T}=i \sigma_{2} K=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right) K
$$

where

$$
\mathcal{T}^{2}=-1
$$

GSE statistics!

Kramer's degeneracy

Kramer's degeneracy

for $\mathcal{T}^{2}=-1$ implies that states $|n\rangle$ and $|\mathcal{T} n\rangle$ are orthogonal and have same energy

Kramer's degeneracy

for $\mathcal{T}^{2}=-1$ implies that states $|n\rangle$ and $|\mathcal{T} n\rangle$ are orthogonal and have same energy
write Hamiltonian in a basis $|n\rangle,|\mathcal{T} n\rangle$:

Kramer's degeneracy

for $\mathcal{T}^{2}=-1$ implies that states $|n\rangle$ and $|\mathcal{T} n\rangle$ are orthogonal and have same energy
write Hamiltonian in a basis $|n\rangle,|\mathcal{T} n\rangle$:

$$
H_{n m}=\left(\begin{array}{cc}
\langle n| H|m\rangle & \langle n| H|\mathcal{T} m\rangle \\
\langle\mathcal{T} n| H|m\rangle & \langle\mathcal{T} n| H|\mathcal{T} m\rangle
\end{array}\right)
$$

Kramer's degeneracy

for $\mathcal{T}^{2}=-1$ implies that states $|n\rangle$ and $|\mathcal{T} n\rangle$ are orthogonal and have same energy
write Hamiltonian in a basis $|n\rangle,|\mathcal{T} n\rangle$:

$$
H_{n m}=\left(\begin{array}{cc}
\langle n| H|m\rangle & \langle n| H|\mathcal{T} m\rangle \\
\langle\mathcal{T} n| H|m\rangle & \langle\mathcal{T} n| H|\mathcal{T} m\rangle
\end{array}\right)
$$

it becomes quaternion-real, i.e.

Kramer's degeneracy

for $\mathcal{T}^{2}=-1$ implies that states $|n\rangle$ and $|\mathcal{T} n\rangle$ are orthogonal and have same energy
write Hamiltonian in a basis $|n\rangle,|\mathcal{T} n\rangle$:

$$
H_{n m}=\left(\begin{array}{cc}
\langle n| H|m\rangle & \langle n| H|\mathcal{T} m\rangle \\
\langle\mathcal{T} n| H|m\rangle & \langle\mathcal{T} n| H|\mathcal{T} m\rangle
\end{array}\right)
$$

it becomes quaternion-real, i.e.

$$
H_{n m}=\left(\begin{array}{cc}
\alpha & \beta \\
-\beta^{*} & \alpha^{*}
\end{array}\right)=a_{0} 1+a_{1} \underbrace{i \sigma_{1}}_{=1}+a_{2} \underbrace{i \sigma_{2}}_{=J}+a_{3} \underbrace{i \sigma_{3}}_{=K}
$$

Main message

Main message

GSE statistics can arise without spin.

Main message

GSE statistics can arise without spin.

Main message

GSE statistics can arise without spin.

- example: a quantum graph

Main message

GSE statistics can arise without spin.

- example: a quantum graph
- background: discrete geometrical symmetries

Quantum graphs

Quantum graphs

- networks of vertices connected by bonds (with lengths)

Quantum graphs

- networks of vertices connected by bonds (with lengths)

Quantum graphs

- networks of vertices connected by bonds (with lengths)

- Schrödinger equation on each bond

Quantum graphs

- networks of vertices connected by bonds (with lengths)

- Schrödinger equation on each bond

$$
-\frac{\hbar^{2}}{2 m} \frac{d^{2}}{d x^{2}} \psi(x)=E \psi(x)
$$

Quantum graphs

- networks of vertices connected by bonds (with lengths)

- Schrödinger equation on each bond

$$
-\frac{\hbar^{2}}{2 m} \frac{d^{2}}{d x^{2}} \psi(x)=E \psi(x)
$$

- conditions at the vertices:

Quantum graphs

- networks of vertices connected by bonds (with lengths)

- Schrödinger equation on each bond

$$
-\frac{\hbar^{2}}{2 m} \frac{d^{2}}{d x^{2}} \psi(x)=E \psi(x)
$$

- conditions at the vertices: e.g. continuity

Quantum graphs

- networks of vertices connected by bonds (with lengths)

- Schrödinger equation on each bond

$$
-\frac{\hbar^{2}}{2 m} \frac{d^{2}}{d x^{2}} \psi(x)=E \psi(x)
$$

- conditions at the vertices: e.g. continuity
+ Neumann conditions (sum over $\frac{d \psi}{d x}$ of adjacent bonds is 0)

Quantum graphs

- networks of vertices connected by bonds (with lengths)

- Schrödinger equation on each bond

$$
-\frac{\hbar^{2}}{2 m} \frac{d^{2}}{d x^{2}} \psi(x)=E \psi(x)
$$

- conditions at the vertices: e.g. continuity + Neumann conditions (sum over $\frac{d \psi}{d x}$ of adjacent bonds is 0)
- large well connected graphs display RMT spectral statistics

Quantum graphs

- networks of vertices connected by bonds (with lengths)

- Schrödinger equation on each bond

$$
-\frac{\hbar^{2}}{2 m} \frac{d^{2}}{d x^{2}} \psi(x)=E \psi(x)
$$

- conditions at the vertices: e.g. continuity + Neumann conditions (sum over $\frac{d \psi}{d x}$ of adjacent bonds is 0)
- large well connected graphs display RMT spectral statistics
- if Hamiltonian and vertex conditions symmetric w.r.t. complex conjugation: GOE

Quantum graphs

Quantum graphs

- here time-reversal invariance is broken by a complex phase factor: GUE

Quantum chaos

Quantum chaos

- the following graph has a symmetry $\mathcal{T}=P K$
($P=$ switching to other copy, $K=$ complex conjugation)

Quantum chaos

- the following graph has a symmetry $\mathcal{T}=P K$
($P=$ switching to other copy, $K=$ complex conjugation)

$\mathcal{T}^{2}=1$

Quantum chaos

- the following graph has a symmetry $\mathcal{T}=P K$
($P=$ switching to other copy, $K=$ complex conjugation)

$\mathcal{T}^{2}=1 \Longrightarrow$ GOE

Quantum graphs

Quantum graphs

- the following graph has the anti-unitary symmetry \mathcal{T} defined by

$$
\mathcal{T} \psi(x)=\left\{\begin{aligned}
\psi^{*}(P x) & x \in \text { left half } \\
-\psi^{*}(P x) & x \in \text { right half }
\end{aligned}\right.
$$

Quantum graphs

- the following graph has the anti-unitary symmetry \mathcal{T} defined by

$$
\mathcal{T} \psi(x)=\left\{\begin{aligned}
\psi^{*}(P x) & x \in \text { left half } \\
-\psi^{*}(P x) & x \in \text { right half }
\end{aligned}\right.
$$

$$
\mathcal{T}^{2}=-1
$$

Quantum graphs

- the following graph has the anti-unitary symmetry \mathcal{T} defined by

$$
\mathcal{T} \psi(x)=\left\{\begin{aligned}
\psi^{*}(P x) & x \in \text { left half } \\
-\psi^{*}(P x) & x \in \text { right half }
\end{aligned}\right.
$$

$$
\mathcal{T}^{2}=-1 \quad \Longrightarrow \quad \text { GSE }
$$

Quantum graphs

- the following graph has the anti-unitary symmetry \mathcal{T} defined by

$$
\mathcal{T} \psi(x)=\left\{\begin{aligned}
\psi^{*}(P x) & x \in \text { left half } \\
-\psi^{*}(P x) & x \in \text { right half }
\end{aligned}\right.
$$

$\mathcal{T}^{2}=-1 \quad \Longrightarrow \quad$ GSE

- proposed realization:

Quantum graphs

- the following graph has the anti-unitary symmetry \mathcal{T} defined by

$$
\mathcal{T} \psi(x)=\left\{\begin{aligned}
\psi^{*}(P x) & x \in \text { left half } \\
-\psi^{*}(P x) & x \in \text { right half }
\end{aligned}\right.
$$

$\mathcal{T}^{2}=-1 \quad \Longrightarrow \quad$ GSE

- proposed realization: e.g. optical fibres

Quantum graphs

- the following graph has the anti-unitary symmetry \mathcal{T} defined by

$$
\mathcal{T} \psi(x)=\left\{\begin{aligned}
\psi^{*}(P x) & x \in \text { left half } \\
-\psi^{*}(P x) & x \in \text { right half }
\end{aligned}\right.
$$

$\mathcal{T}^{2}=-1 \quad \Longrightarrow \quad$ GSE

- proposed realization: e.g. optical fibres

General approach to symmetries

Symmetries

Symmetries

Spectral statistics in systems with (discrete) geometric symmetries?

Symmetries

Spectral statistics in systems with (discrete) geometric symmetries?

Example: reflection symmetry

Symmetries

Spectral statistics in systems with (discrete) geometric symmetries?
Example: reflection symmetry

Symmetries

Spectral statistics in systems with (discrete) geometric symmetries?

Example: reflection symmetry

two subspectra:

Symmetries

Spectral statistics in systems with (discrete) geometric symmetries?

Example: reflection symmetry

two subspectra:

- eigenfunctions even under reflection

Symmetries

Spectral statistics in systems with (discrete) geometric symmetries?

Example: reflection symmetry

two subspectra:

- eigenfunctions even under reflection \Rightarrow GOE

Symmetries

Spectral statistics in systems with (discrete) geometric symmetries?

Example: reflection symmetry

two subspectra:

- eigenfunctions even under reflection \Rightarrow GOE
- eigenfunctions odd under reflection

Symmetries

Spectral statistics in systems with (discrete) geometric symmetries?

Example: reflection symmetry

two subspectra:

- eigenfunctions even under reflection \Rightarrow GOE
- eigenfunctions odd under reflection \Rightarrow GOE

Symmetries

Spectral statistics in systems with (discrete) geometric symmetries?

Example: reflection symmetry

two subspectra:

- eigenfunctions even under reflection \Rightarrow GOE
- eigenfunctions odd under reflection \Rightarrow GOE
- subspectra uncorrelated

General discrete symmetries

- group of classical symmetry operations g

General discrete symmetries

- group of classical symmetry operations g
in our example identity and reflection

General discrete symmetries

- group of classical symmetry operations g
in our example identity and reflection
- quantum symmetries

$$
U(g) \psi(\mathbf{r})=\psi\left(g^{-1} \mathbf{r}\right)
$$

commute with Hamiltonian,

General discrete symmetries

- group of classical symmetry operations g
in our example identity and reflection
- quantum symmetries

$$
U(g) \psi(\mathbf{r})=\psi\left(g^{-1} \mathbf{r}\right)
$$

commute with Hamiltonian,
they form a representation of the classical symmetry group, i.e.,

$$
U\left(g g^{\prime}\right)=U(g) U\left(g^{\prime}\right)
$$

General discrete symmetries

General discrete symmetries

- can diagonalize H and block-diagonalize symmetry operators

General discrete symmetries

- can diagonalize H and block-diagonalize symmetry operators

$$
U(g)=\left(\begin{array}{llllll}
M_{1}^{T}(g) & & & & & \\
& \ddots & & & & \\
& & M_{1}^{T}(g) & & & \\
& & & M_{2}^{T}(g) & & \\
& & & \ddots & \\
& & & & M_{2}^{T}(g) & \\
& & & & & \ddots
\end{array}\right)
$$

General discrete symmetries

- can diagonalize H and block-diagonalize symmetry operators

$$
U(g)=\left(\begin{array}{lllllll}
M_{1}^{\top}(g) & & & & & & \\
& \ddots & & & & & \\
& & M_{1}^{\top}(g) & M_{2}^{T}(g) & & & \\
& & & & \ddots & & \\
& & & & & M_{2}^{\top}(g) & \\
& & & & & & \ddots
\end{array}\right)
$$

- blocks $M_{\alpha}(g)$ are (irreducible) matrix representations of the classical group, they satisfy

General discrete symmetries

- can diagonalize H and block-diagonalize symmetry operators

$$
U(g)=\left(\begin{array}{lllllll}
M_{1}^{\top}(g) & & & & & & \\
& \ddots & & & & & \\
& & M_{1}^{\top}(g) & M_{2}^{T}(g) & & & \\
& & & & \ddots & & \\
& & & & & M_{2}^{\top}(g) & \\
& & & & & & \ddots
\end{array}\right)
$$

- blocks $M_{\alpha}(g)$ are (irreducible) matrix representations of the classical group, they satisfy

$$
M_{\alpha}\left(g g^{\prime}\right)=M_{\alpha}(g) M_{\alpha}\left(g^{\prime}\right)
$$

General discrete symmetries

- can diagonalize H and block-diagonalize symmetry operators

$$
U(g)=\left(\begin{array}{ccccccc}
M_{1}^{\top}(g) & & & & & & \\
& \ddots & & & & & \\
& & M_{1}^{\top}(g) & M_{2}^{\top}(g) & & & \\
& & & & \ddots & & \\
& & & & & M_{2}^{\top}(g) & \\
& & & & & & \ddots
\end{array}\right)
$$

- blocks $M_{\alpha}(g)$ are (irreducible) matrix representations of the classical group, they satisfy

$$
M_{\alpha}\left(g g^{\prime}\right)=M_{\alpha}(g) M_{\alpha}\left(g^{\prime}\right)
$$

- eigenfunctions corresponding to each block have same energy

General discrete symmetries

- can diagonalize H and block-diagonalize symmetry operators

$$
U(g)=\left(\begin{array}{ccccccc}
M_{1}^{\top}(g) & & & & & & \\
& \ddots & & & & & \\
& & M_{1}^{\top}(g) & M_{2}^{\top}(g) & & & \\
& & & & \ddots & & \\
& & & & & M_{2}^{\top}(g) & \\
& & & & & & \ddots
\end{array}\right)
$$

- blocks $M_{\alpha}(g)$ are (irreducible) matrix representations of the classical group, they satisfy

$$
M_{\alpha}\left(g g^{\prime}\right)=M_{\alpha}(g) M_{\alpha}\left(g^{\prime}\right)
$$

- eigenfunctions corresponding to each block have same energy if they are grouped into a vector $\boldsymbol{\psi}$ we get:

$$
U(g) \boldsymbol{\psi}=M_{\alpha}(g)^{T} \boldsymbol{\psi}
$$

General discrete symmetries

- can diagonalize H and block-diagonalize symmetry operators

$$
U(g)=\left(\begin{array}{ccccccc}
M_{1}^{\top}(g) & & & & & & \\
& \ddots & & & & & \\
& & M_{1}^{\top}(g) & M_{2}^{\top}(g) & & & \\
& & & & \ddots & & \\
& & & & & M_{2}^{\top}(g) & \\
& & & & & & \ddots
\end{array}\right)
$$

- blocks $M_{\alpha}(g)$ are (irreducible) matrix representations of the classical group, they satisfy

$$
M_{\alpha}\left(g g^{\prime}\right)=M_{\alpha}(g) M_{\alpha}\left(g^{\prime}\right)
$$

- eigenfunctions corresponding to each block have same energy if they are grouped into a vector $\boldsymbol{\psi}$ we get:

$$
U(g) \boldsymbol{\psi}=M_{\alpha}(g)^{T} \boldsymbol{\psi}
$$

- consider subspectra corresponding to irreducible representations

General discrete symmetries

- can diagonalize H and block-diagonalize symmetry operators

$$
U(g)=\left(\begin{array}{ccccccc}
M_{1}^{\top}(g) & & & & & & \\
& \ddots & & & & & \\
& & M_{1}^{\top}(g) & M_{2}^{\top}(g) & & & \\
& & & & \ddots & & \\
& & & & & M_{2}^{\top}(g) & \\
& & & & & & \ddots
\end{array}\right)
$$

- blocks $M_{\alpha}(g)$ are (irreducible) matrix representations of the classical group, they satisfy

$$
M_{\alpha}\left(g g^{\prime}\right)=M_{\alpha}(g) M_{\alpha}\left(g^{\prime}\right)
$$

- eigenfunctions corresponding to each block have same energy if they are grouped into a vector $\boldsymbol{\psi}$ we get:

$$
U(g) \boldsymbol{\psi}=M_{\alpha}(g)^{T} \boldsymbol{\psi}
$$

- consider subspectra corresponding to irreducible representations

General discrete symmetries

General discrete symmetries

- types of representations:

General discrete symmetries

- types of representations:
- complex M_{α}

General discrete symmetries

- types of representations:
- complex M_{α}
- real M_{α}

General discrete symmetries

- types of representations:
- complex M_{α}
- real M_{α}
- quaternion real (pseudo-real) M_{α}

Statistics inside subspectra

Statistics inside subspectra

	no T inv.	\mathcal{T} inv. $\left(\mathcal{T}^{2}=1\right)$	\mathcal{T} inv. $\left(\mathcal{T}^{2}=-1\right)$
complex rep.	GUE	GUE	GUE
real rep.	GUE	GOE	GSE
pseudo-real rep.	GUE	GSE	GOE

Statistics inside subspectra

	no T inv.	\mathcal{T} inv. $\left(\mathcal{T}^{2}=1\right)$	\mathcal{T} inv. $\left(\mathcal{T}^{2}=-1\right)$
complex rep.	GUE	GUE	GUE
real rep.	GUE	GOE	GSE
pseudo-real rep.	GUE	GSE	GOE

Why?

Statistics inside subspectra

	no T inv.	\mathcal{T} inv. $\left(\mathcal{T}^{2}=1\right)$	\mathcal{T} inv. $\left(\mathcal{T}^{2}=-1\right)$
complex rep.	GUE	GUE	GUE
real rep.	GUE	GOE	GSE
pseudo-real rep.	GUE	GSE	GOE

Why?

- consider $\mathcal{T}=$ complex conjugation; 2d pseudo-real representation

Statistics inside subspectra

	no T inv.	\mathcal{T} inv. $\left(\mathcal{T}^{2}=1\right)$	\mathcal{T} inv. $\left(\mathcal{T}^{2}=-1\right)$
complex rep.	GUE	GUE	GUE
real rep.	GUE	GOE	GSE
pseudo-real rep.	GUE	GSE	GOE

Why?

- consider $\mathcal{T}=$ complex conjugation; 2d pseudo-real representation
- $\boldsymbol{\psi}$ transform according to $U(g) \boldsymbol{\psi}=M_{\alpha}(g)^{\top} \boldsymbol{\psi}$

Statistics inside subspectra

	no T inv.	\mathcal{T} inv. $\left(\mathcal{T}^{2}=1\right)$	\mathcal{T} inv. $\left(\mathcal{T}^{2}=-1\right)$
complex rep.	GUE	GUE	GUE
real rep.	GUE	GOE	GSE
pseudo-real rep.	GUE	GSE	GOE

Why?

- consider $\mathcal{T}=$ complex conjugation; 2d pseudo-real representation
- $\boldsymbol{\psi}$ transform according to $U(g) \boldsymbol{\psi}=M_{\alpha}(g)^{\top} \boldsymbol{\psi}$
- but $\mathcal{T} \boldsymbol{\psi}$ transforms with $\left(M_{\alpha}(g)^{T}\right)^{*}$

Statistics inside subspectra

	no T inv.	\mathcal{T} inv. $\left(\mathcal{T}^{2}=1\right)$	\mathcal{T} inv. $\left(\mathcal{T}^{2}=-1\right)$
complex rep.	GUE	GUE	GUE
real rep.	GUE	GOE	GSE
pseudo-real rep.	GUE	GSE	GOE

Why?

- consider $\mathcal{T}=$ complex conjugation; 2d pseudo-real representation
- $\boldsymbol{\psi}$ transform according to $U(g) \boldsymbol{\psi}=M_{\alpha}(g)^{\top} \boldsymbol{\psi}$
- but $\mathcal{T} \boldsymbol{\psi}$ transforms with $\left(M_{\alpha}(g)^{\top}\right)^{*} \Rightarrow \mathcal{T}$ not compatible with structure of subspace

Statistics inside subspectra

	no T inv.	\mathcal{T} inv. $\left(\mathcal{T}^{2}=1\right)$	\mathcal{T} inv. $\left(\mathcal{T}^{2}=-1\right)$
complex rep.	GUE	GUE	GUE
real rep.	GUE	GOE	GSE
pseudo-real rep.	GUE	GSE	GOE

Why?

- consider $\mathcal{T}=$ complex conjugation; 2d pseudo-real representation
- $\boldsymbol{\psi}$ transform according to $U(g) \boldsymbol{\psi}=M_{\alpha}(g)^{\top} \boldsymbol{\psi}$
- but $\mathcal{T} \boldsymbol{\psi}$ transforms with $\left(M_{\alpha}(g)^{\top}\right)^{*} \Rightarrow \mathcal{T}$ not compatible with structure of subspace
- use $\overline{\mathcal{T}}=\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right) \mathcal{T}$ instead:

Statistics inside subspectra

	no T inv.	\mathcal{T} inv. $\left(\mathcal{T}^{2}=1\right)$	\mathcal{T} inv. $\left(\mathcal{T}^{2}=-1\right)$
complex rep.	GUE	GUE	GUE
real rep.	GUE	GOE	GSE
pseudo-real rep.	GUE	GSE	GOE

Why?

- consider $\mathcal{T}=$ complex conjugation; 2d pseudo-real representation
- $\boldsymbol{\psi}$ transform according to $U(g) \boldsymbol{\psi}=M_{\alpha}(g)^{\top} \boldsymbol{\psi}$
- but $\mathcal{T} \boldsymbol{\psi}$ transforms with $\left(M_{\alpha}(g)^{\top}\right)^{*} \Rightarrow \mathcal{T}$ not compatible with structure of subspace
- use $\overline{\mathcal{T}}=\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right) \mathcal{T}$ instead:
$\overline{\mathcal{T}} \boldsymbol{\psi}$ transforms as desired and $\overline{\mathcal{T}}$ commutes with H

Statistics inside subspectra

	no T inv.	\mathcal{T} inv. $\left(\mathcal{T}^{2}=1\right)$	\mathcal{T} inv. $\left(\mathcal{T}^{2}=-1\right)$
complex rep.	GUE	GUE	GUE
real rep.	GUE	GOE	GSE
pseudo-real rep.	GUE	GSE	GOE

Why?

- consider $\mathcal{T}=$ complex conjugation; 2d pseudo-real representation
- $\boldsymbol{\psi}$ transform according to $U(g) \boldsymbol{\psi}=M_{\alpha}(g)^{\top} \boldsymbol{\psi}$
- but $\mathcal{T} \boldsymbol{\psi}$ transforms with $\left(M_{\alpha}(g)^{\top}\right)^{*} \Rightarrow \mathcal{T}$ not compatible with structure of subspace
- use $\overline{\mathcal{T}}=\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right) \mathcal{T}$ instead:
$\overline{\mathcal{T}} \boldsymbol{\psi}$ transforms as desired and $\overline{\mathcal{T}}$ commutes with H
- $\overline{\mathcal{T}}^{2}=-1$

Statistics inside subspectra

	no T inv.	\mathcal{T} inv. $\left(\mathcal{T}^{2}=1\right)$	\mathcal{T} inv. $\left(\mathcal{T}^{2}=-1\right)$
complex rep.	GUE	GUE	GUE
real rep.	GUE	GOE	GSE
pseudo-real rep.	GUE	GSE	GOE

Why?

- consider $\mathcal{T}=$ complex conjugation; 2d pseudo-real representation
- $\boldsymbol{\psi}$ transform according to $U(g) \boldsymbol{\psi}=M_{\alpha}(g)^{\top} \boldsymbol{\psi}$
- but $\mathcal{T} \boldsymbol{\psi}$ transforms with $\left(M_{\alpha}(g)^{\top}\right)^{*} \Rightarrow \mathcal{T}$ not compatible with structure of subspace
- use $\overline{\mathcal{T}}=\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right) \mathcal{T}$ instead:
$\overline{\mathcal{T}} \boldsymbol{\psi}$ transforms as desired and $\overline{\mathcal{T}}$ commutes with H
- $\overline{\mathcal{T}}^{2}=-1 \Rightarrow$ GSE

Statistics inside subspectra

	no T inv.	\mathcal{T} inv. $\left(\mathcal{T}^{2}=1\right)$	\mathcal{T} inv. $\left(\mathcal{T}^{2}=-1\right)$
complex rep.	GUE	GUE	GUE
real rep.	GUE	GOE	GSE
pseudo-real rep.	GUE	GSE	GOE

Why?

- consider $\mathcal{T}=$ complex conjugation; 2d pseudo-real representation
- $\boldsymbol{\psi}$ transform according to $U(g) \boldsymbol{\psi}=M_{\alpha}(g)^{\top} \boldsymbol{\psi}$
- but $\mathcal{T} \boldsymbol{\psi}$ transforms with $\left(M_{\alpha}(g)^{\top}\right)^{*} \Rightarrow \mathcal{T}$ not compatible with structure of subspace
- use $\overline{\mathcal{T}}=\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right) \mathcal{T}$ instead:
$\overline{\mathcal{T}} \boldsymbol{\psi}$ transforms as desired and $\overline{\mathcal{T}}$ commutes with H
- $\overline{\mathcal{T}}^{2}=-1 \Rightarrow$ GSE

Find a graph whose symmetry group has a pseudo-real representation.

Construction of a GSE quantum graph

Construction of a GSE quantum graph

- simplest group with a pseudo-real representation:

Construction of a GSE quantum graph

- simplest group with a pseudo-real representation: quaternion group $Q 8=\left\{ \pm 1, \pm I, \pm J, \pm K: I^{2}=J^{2}=K^{2}=I J K=-1\right\}$

Construction of a GSE quantum graph

- simplest group with a pseudo-real representation: quaternion group $Q 8=\left\{ \pm 1, \pm I, \pm J, \pm K: I^{2}=J^{2}=K^{2}=I J K=-1\right\}$ elements can be written as products of the generators $/$ and J

Construction of a GSE quantum graph

- simplest group with a pseudo-real representation: quaternion group $Q 8=\left\{ \pm 1, \pm I, \pm J, \pm K: I^{2}=J^{2}=K^{2}=I J K=-1\right\}$ elements can be written as products of the generators $/$ and J
- Cayley graph:

Construction of a GSE quantum graph

- simplest group with a pseudo-real representation: quaternion group $Q 8=\left\{ \pm 1, \pm I, \pm J, \pm K: I^{2}=J^{2}=K^{2}=I J K=-1\right\}$ elements can be written as products of the generators $/$ and J
- Cayley graph:

Construction of a GSE quantum graph

- simplest group with a pseudo-real representation: quaternion group $Q 8=\left\{ \pm 1, \pm I, \pm J, \pm K: I^{2}=J^{2}=K^{2}=I J K=-1\right\}$ elements can be written as products of the generators $/$ and J
- Cayley graph:

- group elements as vertices

Construction of a GSE quantum graph

- simplest group with a pseudo-real representation: quaternion group $Q 8=\left\{ \pm 1, \pm I, \pm J, \pm K: I^{2}=J^{2}=K^{2}=I J K=-1\right\}$ elements can be written as products of the generators $/$ and J
- Cayley graph:

- group elements as vertices
- bonds of length $L_{/}$connect group elements related by right multiplication with /

Construction of a GSE quantum graph

- simplest group with a pseudo-real representation: quaternion group $Q 8=\left\{ \pm 1, \pm I, \pm J, \pm K: I^{2}=J^{2}=K^{2}=I J K=-1\right\}$ elements can be written as products of the generators $/$ and J
- Cayley graph:

- group elements as vertices
- bonds of length $L_{/}$connect group elements related by right multiplication with /

Construction of a GSE quantum graph

- simplest group with a pseudo-real representation: quaternion group $Q 8=\left\{ \pm 1, \pm I, \pm J, \pm K: I^{2}=J^{2}=K^{2}=I J K=-1\right\}$ elements can be written as products of the generators $/$ and J
- Cayley graph:

- group elements as vertices
- bonds of length $L_{/}$connect group elements related by right multiplication with I

Construction of a GSE quantum graph

- simplest group with a pseudo-real representation: quaternion group $Q 8=\left\{ \pm 1, \pm I, \pm J, \pm K: I^{2}=J^{2}=K^{2}=I J K=-1\right\}$ elements can be written as products of the generators $/$ and J
- Cayley graph:

- group elements as vertices
- bonds of length $L_{/}$connect group elements related by right multiplication with I

Construction of a GSE quantum graph

- simplest group with a pseudo-real representation: quaternion group $Q 8=\left\{ \pm 1, \pm I, \pm J, \pm K: I^{2}=J^{2}=K^{2}=I J K=-1\right\}$ elements can be written as products of the generators $/$ and J
- Cayley graph:

- group elements as vertices
- bonds of length $L_{/}$connect group elements related by right multiplication with /
- bonds of length L_{J} connect group elements related by right multiplication with J

Construction of a GSE quantum graph

- simplest group with a pseudo-real representation: quaternion group $Q 8=\left\{ \pm 1, \pm I, \pm J, \pm K: I^{2}=J^{2}=K^{2}=I J K=-1\right\}$ elements can be written as products of the generators $/$ and J
- Cayley graph:

Construction of a GSE quantum graph

- simplest group with a pseudo-real representation: quaternion group $Q 8=\left\{ \pm 1, \pm I, \pm J, \pm K: I^{2}=J^{2}=K^{2}=I J K=-1\right\}$ elements can be written as products of the generators $/$ and J
- Cayley graph:

graph symmetric w.r.t. left multiplication with any group element

Construction of a GSE quantum graph

Construction of a GSE quantum graph

- increase size:

Construction of a GSE quantum graph

- increase size: replace vertices by sub-graphs

Construction of a GSE quantum graph

- increase size: replace vertices by sub-graphs

Construction of a GSE quantum graph

- increase size: replace vertices by sub-graphs

graph with GSE subspectrum

Construction of a GSE quantum graph

Construction of a GSE quantum graph

- take fundamental domain (eighth of graph)

Construction of a GSE quantum graph

- take fundamental domain (eighth of graph)

Construction of a GSE quantum graph

- take fundamental domain (eighth of graph)

and choose boundary conditions selecting GSE subspectrum

Construction of a GSE quantum graph

- take fundamental domain (eighth of graph)

and choose boundary conditions selecting GSE subspectrum

Construction of a GSE quantum graph

- take fundamental domain (eighth of graph)

and choose boundary conditions selecting GSE subspectrum

graph with pure GSE statistics

Construction of a GSE quantum graph

- take fundamental domain (eighth of graph)

and choose boundary conditions selecting GSE subspectrum

graph with pure GSE statistics

Construction of a GSE quantum graph

- take fundamental domain (eighth of graph)

and choose boundary conditions selecting GSE subspectrum

graph with pure GSE statistics
... but boundary conditions mix pairs of degenerate eigenfunctions

Construction of a GSE quantum graph

Construction of a GSE quantum graph

- let each of the two eigenfunctions live on a separate copy of the graph

Construction of a GSE quantum graph

- let each of the two eigenfunctions live on a separate copy of the graph

Construction of a GSE quantum graph

- let each of the two eigenfunctions live on a separate copy of the graph

graph with a pure GSE spectrum and no resemblance of spin

Numerical Results

Numerical Results

Numerical Results

Agreement with GSE $;$

Conclusions

Conclusions

- Discrete symmetries with pseudo-real representations can be used to generate GSE statistics

Conclusions

- Discrete symmetries with pseudo-real representations can be used to generate GSE statistics
- Quantum graph with Q8 symmetry has GSE subspectrum, this can be isolated

Conclusions

- Discrete symmetries with pseudo-real representations can be used to generate GSE statistics
- Quantum graph with Q8 symmetry has GSE subspectrum, this can be isolated
- Generalisation to the 'tenfold way'?

Conclusions

- Discrete symmetries with pseudo-real representations can be used to generate GSE statistics
- Quantum graph with Q8 symmetry has GSE subspectrum, this can be isolated
- Generalisation to the 'tenfold way'?
- Experimental realisation?

