Dependent Random Choice

Jacob Fox
Stanford University

Marston Morse Lecture Series
October 26, 2016

To prove that a structure with certain desired properties exists, one defines an appropriate probability space of structures and then shows that the desired properties hold with positive probability.

To prove that a structure with certain desired properties exists, one defines an appropriate probability space of structures and then shows that the desired properties hold with positive probability.

Example: Lower bound on Ramsey numbers

Definition

The Ramsey number $r(n)$ is the minimum N such that every 2-edge-coloring of K_{N} contains a monochromatic K_{n}.

Theorem (Erdős 1947)

$$
r(n)>2^{n / 2}
$$

Example: Lower bound on Ramsey numbers

Definition

The Ramsey number $r(n)$ is the minimum N such that every 2-edge-coloring of K_{N} contains a monochromatic K_{n}.

Theorem (Erdős 1947)

$$
r(n)>2^{n / 2}
$$

Proof: Color every edge of K_{N} with $N=2^{n / 2}$ randomly.

Example: Lower bound on Ramsey numbers

Definition

The Ramsey number $r(n)$ is the minimum N such that every 2-edge-coloring of K_{N} contains a monochromatic K_{n}.

Theorem (Erdős 1947)

$$
r(n)>2^{n / 2}
$$

Proof: Color every edge of K_{N} with $N=2^{n / 2}$ randomly.
A K_{n} is monochromatic with probability $2 \cdot 2^{-\binom{n}{2}}$.

Example: Lower bound on Ramsey numbers

Definition

The Ramsey number $r(n)$ is the minimum N such that every 2-edge-coloring of K_{N} contains a monochromatic K_{n}.

Theorem (Erdős 1947)

$$
r(n)>2^{n / 2}
$$

Proof: Color every edge of K_{N} with $N=2^{n / 2}$ randomly.
A K_{n} is monochromatic with probability $2 \cdot 2^{-\binom{n}{2}}$.
\exists a monochromatic K_{n} with probability at most $\binom{N}{n} 2 \cdot 2^{-\binom{n}{2}}<1$.

Example: Lower bound on Ramsey numbers

Definition

The Ramsey number $r(n)$ is the minimum N such that every 2-edge-coloring of K_{N} contains a monochromatic K_{n}.

Theorem (Erdős 1947)

$$
r(n)>2^{n / 2}
$$

Proof: Color every edge of K_{N} with $N=2^{n / 2}$ randomly.
A K_{n} is monochromatic with probability $2 \cdot 2^{-\binom{n}{2}}$.
\exists a monochromatic K_{n} with probability at most $\binom{N}{n} 2 \cdot 2^{-\binom{n}{2}}<1$. Therefore, there is a coloring without any monochromatic cliques.

Example: Lower bound on Ramsey numbers

Definition

The Ramsey number $r(n)$ is the minimum N such that every 2-edge-coloring of K_{N} contains a monochromatic K_{n}.

Theorem (Erdős 1947)

$$
r(n)>2^{n / 2}
$$

Proof: Color every edge of K_{N} with $N=2^{n / 2}$ randomly.
A K_{n} is monochromatic with probability $2 \cdot 2^{-\binom{n}{2} \text {. }}$
\exists a monochromatic K_{n} with probability at most $\binom{N}{n} 2 \cdot 2^{-\binom{n}{2}}<1$. Therefore, there is a coloring without any monochromatic cliques.

Open Problem

Find an explicit coloring giving $r(n)>2^{c n}$.

Example: Lower bound on Ramsey numbers

Definition

The Ramsey number $r(n)$ is the minimum N such that every 2-edge-coloring of K_{N} contains a monochromatic K_{n}.

Theorem (Erdős 1947)

$$
r(n)>2^{n / 2}
$$

Proof: Color every edge of K_{N} with $N=2^{n / 2}$ randomly.
A K_{n} is monochromatic with probability $2 \cdot 2^{-\binom{n}{2}}$.
\exists a monochromatic K_{n} with probability at most $\binom{N}{n} 2 \cdot 2^{-\binom{n}{2}}<1$. Therefore, there is a coloring without any monochromatic cliques.

Open Problem

Find an explicit coloring giving $r(n)>2^{c n}$.
Progress: Frankl-Wilson, Barak-Rao-Shaltiel-Wigderson, Chattopadhyay-Zuckerman, Cohen

Dependent Random Choice

Rough Claim

Every dense graph G contains a large vertex subset U in which every set of d vertices has many common neighbors.

Dependent Random Choice

Rough Claim

Every dense graph G contains a large vertex subset U in which every set of d vertices has many common neighbors.

Proof idea: Let U be the set of vertices adjacent to every vertex in a random set R of appropriate size.

Dependent Random Choice

Rough Claim

Every dense graph G contains a large vertex subset U in which every set of d vertices has many common neighbors.

Proof idea: Let U be the set of vertices adjacent to every vertex in a random set R of appropriate size.

As G is dense, we expect U to be large.

Dependent Random Choice

Rough Claim

Every dense graph G contains a large vertex subset U in which every set of d vertices has many common neighbors.

Proof idea: Let U be the set of vertices adjacent to every vertex in a random set R of appropriate size.

As G is dense, we expect U to be large.
If d vertices have only few common neighbors, it is very unlikely that R will be chosen among these neighbors. Hence we do not expect U to contain any such d vertices.

Dependent Random Choice: Applications

Dependent Random Choice has many applications in Ramsey Theory, Extremal Graph Theory, Additive Combinatorics, and Combinatorial Geometry. Example we will cover include:

- Erdős problem on heavy monochromatic cliques
- Conjectures of Hajós and Erdős-Fajtlowicz
- Conjectures of Erdős-Simonovits and Sidorenko
- Burr-Erdős conjecture on Ramsey numbers

Heavy Monochromatic Cliques

The weight of $S \subset \mathbb{N}$ is $w(S)=\sum_{i \in S} \frac{1}{\log i}$.

Heavy Monochromatic Cliques

The weight of $S \subset \mathbb{N}$ is $w(S)=\sum_{i \in S} \frac{1}{\log i}$.
Definition
Let $f(N)$ be the maximum number such that every 2-coloring of the edges of the complete graph on $\{2, \ldots, N\}$ has a monochromatic clique of weight at least $f(N)$.

Heavy Monochromatic Cliques

The weight of $S \subset \mathbb{N}$ is $w(S)=\sum_{i \in S} \frac{1}{\log i}$.

Definition

Let $f(N)$ be the maximum number such that every 2 -coloring of the edges of the complete graph on $\{2, \ldots, N\}$ has a monochromatic clique of weight at least $f(N)$.

Conjecture: (Erdős 1981)

$$
f(N) \longrightarrow \infty
$$

Heavy Monochromatic Cliques

The weight of $S \subset \mathbb{N}$ is $w(S)=\sum_{i \in S} \frac{1}{\log i}$.

Definition

Let $f(N)$ be the maximum number such that every 2 -coloring of the edges of the complete graph on $\{2, \ldots, N\}$ has a monochromatic clique of weight at least $f(N)$.

Conjecture: (Erdős 1981)

$$
f(N) \longrightarrow \infty .
$$

Problem: (Erdős 1981)

Estimate $f(N)$.

Heavy Monochromatic Cliques

The weight of $S \subset \mathbb{N}$ is $w(S)=\sum_{i \in S} \frac{1}{\log i}$.

Definition

Let $f(N)$ be the maximum number such that every 2-coloring of the edges of the complete graph on $\{2, \ldots, N\}$ has a monochromatic clique of weight at least $f(N)$.

Conjecture: (Erdős 1981)

$$
f(N) \longrightarrow \infty
$$

Problem: (Erdős 1981)
Estimate $f(N)$.
Theorem: (Rödl 2003)

$$
c_{1} \frac{\log \log \log \log N}{\log \log \log \log \log N} \leq f(N) \leq c_{2} \log \log \log N .
$$

Upper bound proof: $f(N)=O(\log \log \log N)$

Upper bound proof: $f(N)=O(\log \log \log N)$

Partition vertex set $[2, N]$ into $s=\log \log N$ intervals
$I_{j}=\left[2^{2^{j-1}}, 2^{2^{j}}\right)$.

Upper bound proof: $f(N)=O(\log \log \log N)$

Partition vertex set $[2, N]$ into $s=\log \log N$ intervals
$I_{j}=\left[2^{2^{j-1}}, 2^{2^{j}}\right)$.
Color edges inside interval l_{j} with no monochromatic set of order $2 \log 2^{2^{j}}=2^{j+1}$. Then I_{j} contributes at most $2^{j+1} / \log 2^{2^{j-1}}=4$ to the weight of any monochromatic clique.

Upper bound proof: $f(N)=O(\log \log \log N)$

Partition vertex set $[2, N]$ into $s=\log \log N$ intervals
$I_{j}=\left[2^{2^{j-1}}, 2^{2^{j}}\right)$.
Color edges inside interval I_{j} with no monochromatic set of order $2 \log 2^{2^{j}}=2^{j+1}$. Then I_{j} contributes at most $2^{j+1} / \log 2^{2^{j-1}}=4$ to the weight of any monochromatic clique.

Consider a 2-edge-coloring c of the complete graph on [s] with no monochromatic K_{t} with $t>2 \log s$. For $j \neq j^{\prime}$, color the edges from I_{j} to $I_{j^{\prime}}$ the color $c\left(j, j^{\prime}\right)$.

Upper bound proof: $f(N)=O(\log \log \log N)$

Partition vertex set $[2, N]$ into $s=\log \log N$ intervals
$I_{j}=\left[2^{2^{j-1}}, 2^{2^{j}}\right)$.
Color edges inside interval I_{j} with no monochromatic set of order $2 \log 2^{2^{j}}=2^{j+1}$. Then I_{j} contributes at most $2^{j+1} / \log 2^{2^{j-1}}=4$ to the weight of any monochromatic clique.

Consider a 2-edge-coloring c of the complete graph on [s] with no monochromatic K_{t} with $t>2 \log s$. For $j \neq j^{\prime}$, color the edges from I_{j} to $I_{j^{\prime}}$ the color $c\left(j, j^{\prime}\right)$.

Hence,

$$
f(N) \leq 4 \cdot 2 \log s=8 \log \log \log N
$$

Theorem: (Conlon-F.-Sudakov)

$$
f(N)=\Theta(\log \log \log N)
$$

That is, every 2-edge-coloring of the complete graph on $\{2, \ldots, N\}$ contains a monochromatic clique S with

$$
\sum_{i \in S} \frac{1}{\log i}=\Omega(\log \log \log N)
$$

A subdivision of a graph is obtained by replacing edges by paths.

HAJÓS CONJECTURE

Conjecture: (Hajós 1961)
If a graph contains no subdivision of K_{t+1}, then it is t-colorable.

Hajós conjecture

Conjecture: (Hajós 1961)
If a graph contains no subdivision of K_{t+1}, then it is t-colorable.

Strengthening of Hadwiger's conjecture and the Four Color Theorem.

Hajós conjecture

Conjecture: (Hajós 1961)
If a graph contains no subdivision of K_{t+1}, then it is t-colorable.

Strengthening of Hadwiger's conjecture and the Four Color Theorem.

Disproved by Catlin in 1979 for $t \geq 6$.

Hajós conjecture

Conjecture: (Hajós 1961)
If a graph contains no subdivision of K_{t+1}, then it is t-colorable.

Strengthening of Hadwiger's conjecture and the Four Color Theorem.

Disproved by Catlin in 1979 for $t \geq 6$.
Erdős and Fajtlowicz in 1981 showed that: almost all graphs are counterexamples!
$\sigma(G)=$ maximum t for which G contains a subdivision of K_{t}. $\chi(G)=$ chromatic number of G.

ERDŐS-FAJTLOWICZ THEOREM

$\sigma(G)=$ maximum t for which G contains a subdivision of K_{t}.
$\chi(G)=$ chromatic number of G.

Theorem: (Erdős and Fajtlowicz 1981)

The random graph $G=G(n, 1 / 2)$ almost surely satisfies

$$
\chi(G)=\Theta(n / \log n) \quad \text { and } \quad \sigma(G)=\Theta(\sqrt{n})
$$

ERDŐS-FAJTLOWICZ THEOREM

$\sigma(G)=$ maximum t for which G contains a subdivision of K_{t}.
$\chi(G)=$ chromatic number of G.

Theorem: (Erdős and Fajtlowicz 1981)

The random graph $G=G(n, 1 / 2)$ almost surely satisfies

$$
\chi(G)=\Theta(n / \log n) \quad \text { and } \quad \sigma(G)=\Theta(\sqrt{n})
$$

Definition

$H(n)$ is the maximum of $\chi(G) / \sigma(G)$ over all n-vertex graphs G.

ERDŐS-FAJTLOWICZ THEOREM

$\sigma(G)=$ maximum t for which G contains a subdivision of K_{t}.
$\chi(G)=$ chromatic number of G.

Theorem: (Erdős and Fajtlowicz 1981)

The random graph $G=G(n, 1 / 2)$ almost surely satisfies

$$
\chi(G)=\Theta(n / \log n) \quad \text { and } \quad \sigma(G)=\Theta(\sqrt{n})
$$

Definition

$H(n)$ is the maximum of $\chi(G) / \sigma(G)$ over all n-vertex graphs G.

Hajós conjectured

$$
H(n)=1
$$

ERDŐS-FAJTLOWICZ THEOREM

$\sigma(G)=$ maximum t for which G contains a subdivision of K_{t}.
$\chi(G)=$ chromatic number of G.

Theorem: (Erdős and Fajtlowicz 1981)

The random graph $G=G(n, 1 / 2)$ almost surely satisfies

$$
\chi(G)=\Theta(n / \log n) \quad \text { and } \quad \sigma(G)=\Theta(\sqrt{n})
$$

Definition

$H(n)$ is the maximum of $\chi(G) / \sigma(G)$ over all n-vertex graphs G.

$$
\begin{aligned}
& H(n)=1 \\
& H(n)>c n^{1 / 2} / \log n
\end{aligned}
$$

Hajós conjectured
Erdős-Fajtlowicz proved

ERDŐS-FAJTLOWICZ THEOREM

$\sigma(G)=$ maximum t for which G contains a subdivision of K_{t}.
$\chi(G)=$ chromatic number of G.

Theorem: (Erdős and Fajtlowicz 1981)

The random graph $G=G(n, 1 / 2)$ almost surely satisfies

$$
\chi(G)=\Theta(n / \log n) \quad \text { and } \quad \sigma(G)=\Theta(\sqrt{n})
$$

Definition

$H(n)$ is the maximum of $\chi(G) / \sigma(G)$ over all n-vertex graphs G.

Hajós conjectured

$$
H(n)=1 .
$$

Erdős-Fajtlowicz proved

They further conjectured that the random graph is essentially the strongest counterexample!

ERDŐS-FAJTLOWICZ CONJECTURE

$\sigma(G)=$ maximum t for which G contains a subdivision of K_{t}.
$\chi(G)=$ chromatic number of G.

DEFINITION

$H(n)$ is the maximum of $\chi(G) / \sigma(G)$ over all n-vertex graphs G.

Hajós conjectured
Erdős-Fajtlowicz proved

$$
H(n)=1
$$

$$
H(n)>c n^{1 / 2} / \log n
$$

Conjecture: (Erdős and Fajtlowicz 1981)

There is C such that for all n,

$$
H(n)<C n^{1 / 2} / \log n
$$

ERDŐS-FAJTLOWICZ CONJECTURE

$\sigma(G)=$ maximum t for which G contains a subdivision of K_{t}.
$\chi(G)=$ chromatic number of G.

DEFInition

$H(n)$ is the maximum of $\chi(G) / \sigma(G)$ over all n-vertex graphs G.

Hajós conjectured
Erdős-Fajtlowicz proved
$H(n)=1$.
$H(n)>c n^{1 / 2} / \log n$.

Conjecture: (Erdős and Fajtlowicz 1981)

There is C such that for all n,

$$
H(n)<C n^{1 / 2} / \log n
$$

Theorem: (F.-Lee-Sudakov)
The Erdős-Fajtlowicz conjecture is true.

Large systems contain patterns.

Large systems contain patterns.

Question:
How many monochromatic copies of a graph H must there be in every 2-edge-coloring of K_{n} ?

Ramsey Theory

Large systems contain patterns.

QuESTION:

How many monochromatic copies of a graph H must there be in every 2-edge-coloring of K_{n} ?

Conjecture: (Erdős 1962, Burr-Rosta 1980)

For each H, the random 2-edge-coloring of K_{n} in expectation asymptotically minimizes the number of monochromatic copies of H over all 2-edge-colorings of K_{n}.

Ramsey Theory

Large systems contain patterns.

QuESTION:

How many monochromatic copies of a graph H must there be in every 2-edge-coloring of K_{n} ?

Conjecture: (Erdős 1962, Burr-Rosta 1980)

For each H, the random 2-edge-coloring of K_{n} in expectation asymptotically minimizes the number of monochromatic copies of H over all 2-edge-colorings of K_{n}.

Random systems minimize patterns.

Ramsey Theory

Large systems contain patterns.

QuESTION:

How many monochromatic copies of a graph H must there be in every 2-edge-coloring of K_{n} ?

Conjecture: (Erdős 1962, Burr-Rosta 1980)

For each H, the random 2-edge-coloring of K_{n} in expectation asymptotically minimizes the number of monochromatic copies of H over all 2-edge-colorings of K_{n}.

Random systems minimize patterns.
(Goodman 1959) True for $H=K_{3}$.

Ramsey Theory

Large systems contain patterns.

QuESTION:

How many monochromatic copies of a graph H must there be in every 2-edge-coloring of K_{n} ?

Conjecture: (Erdős 1962, Burr-Rosta 1980)

For each H, the random 2-edge-coloring of K_{n} in expectation asymptotically minimizes the number of monochromatic copies of H over all 2-edge-colorings of K_{n}.

Random systems minimize patterns.
(Goodman 1959) True for $H=K_{3}$.
(Thomason 1989) False for $H=K_{4}$.

Question:

How many copies of a graph H must there be in a graph with n vertices and m edges?

Question:

How many copies of a graph H must there be in a graph with n vertices and m edges?

Conjecture: (Sidorenko, Erdős-Simonovits 1980s)

If H is bipartite, the random graph with edge density p has in expectation asymptotically the minimum number of copies of H over all graphs of the same order and edge density.

Question:

How many copies of a graph H must there be in a graph with n vertices and m edges?

Conjecture: (Sidorenko, Erdős-Simonovits 1980s)

If H is bipartite, the random graph with edge density p has in expectation asymptotically the minimum number of copies of H over all graphs of the same order and edge density.

Known for trees, complete bipartite graphs, even cycles, and cubes.

Question:

How many copies of a graph H must there be in a graph with n vertices and m edges?

Conjecture: (Sidorenko, Erdős-Simonovits 1980s)

If H is bipartite, the random graph with edge density p has in expectation asymptotically the minimum number of copies of H over all graphs of the same order and edge density.

Known for trees, complete bipartite graphs, even cycles, and cubes. Has connections to matrix theory, Markov chains, graph limits, and quasi-randomness.

Homomorphism version

HOMOMORPHISM VERSION

DEFINITION:

- $h_{H}(G)=$ number of homomorphisms from H to G.

HOMOMORPHISM VERSION

DEFINITION:

- $h_{H}(G)=$ number of homomorphisms from H to G.
- $t_{H}(G)=\frac{h_{H}(G)}{|G|^{|H|}}=$ fraction of mappings from H to G which are homomorphisms.

HOMOMORPHISM VERSION

DEFINITION:

- $h_{H}(G)=$ number of homomorphisms from H to G.
- $t_{H}(G)=\frac{h_{H}(G)}{|G|^{|H|}}=$ fraction of mappings from H to G which are homomorphisms.

Conjecture: (Sidorenko, Erdős-Simonovits 1980s)

For every bipartite graph H and every graph G,

$$
t_{H}(G) \geq t_{K_{2}}(G)^{e(H)}
$$

Analytic formulation of Sidorenko's Conjecture

Let μ be the Lebesgue measure on $[0,1]$,

Analytic formulation of Sidorenko's Conjecture

Let μ be the Lebesgue measure on $[0,1], w(x, y)$ be a bounded, non-negative, symmetric and measurable function on $[0,1]^{2}$,

Analytic formulation of Sidorenko's Conjecture

Let μ be the Lebesgue measure on $[0,1], w(x, y)$ be a bounded, non-negative, symmetric and measurable function on $[0,1]^{2}$, and E be a subset of $[t] \times[s]$.

Analytic formulation of Sidorenko's Conjecture

Let μ be the Lebesgue measure on $[0,1], w(x, y)$ be a bounded, non-negative, symmetric and measurable function on $[0,1]^{2}$, and E be a subset of $[t] \times[s]$. Then

$$
\int \prod_{(i, j) \in E} w\left(x_{i}, y_{j}\right) d \mu^{s+t} \geq\left(\int w d \mu^{2}\right)^{|E|}
$$

Analytic formulation of Sidorenko's Conjecture

Let μ be the Lebesgue measure on $[0,1], w(x, y)$ be a bounded, non-negative, symmetric and measurable function on $[0,1]^{2}$, and E be a subset of $[t] \times[s]$. Then

$$
\int \prod_{(i, j) \in E} w\left(x_{i}, y_{j}\right) d \mu^{s+t} \geq\left(\int w d \mu^{2}\right)^{|E|}
$$

Remark: The expression on the left hand side is quite common. For example, Feynman integrals in quantum field theory, Mayer integrals in statistical mechanics, and multicenter integrals in quantum chemistry are of this form.

Chung, Graham, and Wilson: a large number of interesting graph properties satisfied by random graphs are all equivalent.

Chung, Graham, and Wilson: a large number of interesting graph properties satisfied by random graphs are all equivalent.

Definition

A sequence ($G_{n}: n=1,2, \ldots$) of graphs is called quasirandom with density p if, for every graph H,

$$
\begin{equation*}
t_{H}\left(G_{n}\right)=p^{e(H)}+o(1) \tag{1}
\end{equation*}
$$

Quasirandom graphs

Chung, Graham, and Wilson: a large number of interesting graph properties satisfied by random graphs are all equivalent.

Definition

A sequence ($G_{n}: n=1,2, \ldots$) of graphs is called quasirandom with density p if, for every graph H,

$$
\begin{equation*}
t_{H}\left(G_{n}\right)=p^{e(H)}+o(1) \tag{1}
\end{equation*}
$$

One of the many equivalent properties is that every subset S contains $p\binom{|S|}{2}+o\left(n^{2}\right)$ edges.

Quasirandom graphs

Chung, Graham, and Wilson: a large number of interesting graph properties satisfied by random graphs are all equivalent.

Definition

A sequence ($G_{n}: n=1,2, \ldots$) of graphs is called quasirandom with density p if, for every graph H,

$$
\begin{equation*}
t_{H}\left(G_{n}\right)=p^{e(H)}+o(1) \tag{1}
\end{equation*}
$$

One of the many equivalent properties is that every subset S contains $p\binom{|S|}{2}+o\left(n^{2}\right)$ edges.

Surprising fact

Quasirandomness follows from (1) for $H=K_{2}$ and $H=C_{4}$.

Definition

A graph F is p-forcing if $t_{H}\left(G_{n}\right)=p^{e(H)}+o(1)$ holds for $H=K_{2}$ and $H=F$ implies $\left(G_{n}\right)$ is quasirandom with density p.

Definition

A graph F is p-forcing if $t_{H}\left(G_{n}\right)=p^{e(H)}+o(1)$ holds for $H=K_{2}$ and $H=F$ implies $\left(G_{n}\right)$ is quasirandom with density p.
F is forcing if it is p-forcing for all p.

Quasirandom graphs

Definition

A graph F is p-forcing if $t_{H}\left(G_{n}\right)=p^{e(H)}+o(1)$ holds for $H=K_{2}$ and $H=F$ implies $\left(G_{n}\right)$ is quasirandom with density p.
F is forcing if it is p-forcing for all p.

Question: (Chung, Graham, Wilson 1989)

Which graphs are forcing?

Definition

A graph F is p-forcing if $t_{H}\left(G_{n}\right)=p^{e(H)}+o(1)$ holds for $H=K_{2}$ and $H=F$ implies $\left(G_{n}\right)$ is quasirandom with density p.
F is forcing if it is p-forcing for all p.

Question: (Chung, Graham, Wilson 1989)

Which graphs are forcing?

Chung, Graham, Wilson: even cycles are forcing.

Definition

A graph F is p-forcing if $t_{H}\left(G_{n}\right)=p^{e(H)}+o(1)$ holds for $H=K_{2}$ and $H=F$ implies $\left(G_{n}\right)$ is quasirandom with density p.
F is forcing if it is p-forcing for all p.

Question: (Chung, Graham, Wilson 1989)

Which graphs are forcing?

Chung, Graham, Wilson: even cycles are forcing.
Skokan and Thoma: $K_{a, b}$ with $a, b \geq 2$ are forcing.

Quasirandom graphs

Definition

A graph F is p-forcing if $t_{H}\left(G_{n}\right)=p^{e(H)}+o(1)$ holds for $H=K_{2}$ and $H=F$ implies $\left(G_{n}\right)$ is quasirandom with density p.
F is forcing if it is p-forcing for all p.

Question: (Chung, Graham, Wilson 1989)

Which graphs are forcing?

Chung, Graham, Wilson: even cycles are forcing.
Skokan and Thoma: $K_{a, b}$ with $a, b \geq 2$ are forcing.

Forcing Conjecture

A graph is forcing if and only if it is bipartite and contains a cycle.

QuAsirandom graphs

Definition

A graph F is p-forcing if $t_{H}\left(G_{n}\right)=p^{e(H)}+o(1)$ holds for $H=K_{2}$ and $H=F$ implies $\left(G_{n}\right)$ is quasirandom with density p.
F is forcing if it is p-forcing for all p.

Question: (Chung, Graham, Wilson 1989)

Which graphs are forcing?

Chung, Graham, Wilson: even cycles are forcing.
Skokan and Thoma: $K_{a, b}$ with $a, b \geq 2$ are forcing.

Forcing Conjecture

A graph is forcing if and only if it is bipartite and contains a cycle.
Provides a stronger stability result for Sidorenko's conjecture.

Theorem: (Conlon, F., Sudakov 2010)
Sidorenko's conjecture holds for every bipartite graph H which has a vertex complete to the other part.

Theorem: (Conlon, F., Sudakov 2010)

Sidorenko's conjecture holds for every bipartite graph H which has a vertex complete to the other part.

Remarks: Sidorenko's conjecture holds for a large class of graphs.

Theorem: (Conlon, F., Sudakov 2010)

Sidorenko's conjecture holds for every bipartite graph H which has a vertex complete to the other part.

Remarks: Sidorenko's conjecture holds for a large class of graphs. An approximate version holds for all graphs.

Theorem: (Conlon, F., Sudakov 2010)

Sidorenko's conjecture holds for every bipartite graph H which has a vertex complete to the other part.

Remarks: Sidorenko's conjecture holds for a large class of graphs. An approximate version holds for all graphs.

Theorem: (Conlon, F., Sudakov 2010)

The forcing conjecture holds for every bipartite H which has two vertices in one part complete to the other part.

Theorem: (Conlon, F., Sudakov 2010)

Sidorenko's conjecture holds for every bipartite graph H which has a vertex complete to the other part.

Remarks: Sidorenko's conjecture holds for a large class of graphs. An approximate version holds for all graphs.

Theorem: (Conlon, F., Sudakov 2010)

The forcing conjecture holds for every bipartite H which has two vertices in one part complete to the other part.

Hence, the forcing conjecture holds for a large class of graphs.

Definition

$r(H)$ is the minimum N such that every 2-edge-coloring of K_{N} contains a monochromatic copy of graph H.

Ramsey numbers

Definition

$r(H)$ is the minimum N such that every 2-edge-coloring of K_{N} contains a monochromatic copy of graph H.

Theorem (Erdős-Szekeres, Erdős)

$$
2^{n / 2} \leq r\left(K_{n}\right) \leq 2^{2 n} .
$$

Ramsey numbers

Definition

$r(H)$ is the minimum N such that every 2-edge-coloring of K_{N} contains a monochromatic copy of graph H.

Theorem (Erdős-Szekeres, Erdős)

$$
2^{n / 2} \leq r\left(K_{n}\right) \leq 2^{2 n}
$$

Question (Burr-Erdős 1975)

How large is $r(H)$ for a sparse graph H on n vertices?

Conjecture (Burr-Erdős 1975)
For every d there is a constant c_{d} such that if a graph H has n vertices and maximum degree d, then

$$
r(H) \leq c_{d} n .
$$

Ramsey numbers of bounded degree graphs

Conjecture (Burr-Erdős 1975)
For every d there is a constant c_{d} such that if a graph H has n vertices and maximum degree d, then

$$
r(H) \leq c_{d} n .
$$

Theorem

(1) (Chvátal-Rödl-Szemerédi-Trotter 1983) c_{d} exists.

Ramsey numbers of bounded degree graphs

Conjecture (Burr-Erdős 1975)
For every d there is a constant c_{d} such that if a graph H has n vertices and maximum degree d, then

$$
r(H) \leq c_{d} n .
$$

Theorem

(1) (Chvátal-Rödl-Szemerédi-Trotter 1983) c_{d} exists.
(2) (Eaton 1998)

$$
c_{d} \leq 2^{2^{30 d}}
$$

Ramsey numbers of bounded degree graphs

Conjecture (Burr-Erdős 1975)

For every d there is a constant c_{d} such that if a graph H has n vertices and maximum degree d, then

$$
r(H) \leq c_{d} n .
$$

Theorem

(1) (Chvátal-Rödl-Szemerédi-Trotter 1983) c_{d} exists.
(2) (Eaton 1998)

$$
\begin{aligned}
c_{d} & \leq 2^{2^{30 d}} \\
2^{c^{\prime} d} \leq c_{d} & \leq 2^{c d \log ^{2} d} .
\end{aligned}
$$

(3) (Graham-Rödl-Rucinski 2000)

Ramsey numbers of bounded degree graphs

Conjecture (Burr-Erdős 1975)

For every d there is a constant c_{d} such that if a graph H has n vertices and maximum degree d, then

$$
r(H) \leq c_{d} n .
$$

Theorem

(1) (Chvátal-Rödl-Szemerédi-Trotter 1983)

$$
c_{d} \text { exists. }
$$

(2) (Eaton 1998)

$$
\begin{aligned}
c_{d} & \leq 2^{2^{30 d}} \\
2^{c^{\prime} d} \leq c_{d} & \leq 2^{c d \log ^{2} d} \\
r(H) & \leq 2^{O(d)} n .
\end{aligned}
$$

(3) (Graham-Rödl-Rucinski 2000)
(9) (F.-Sudakov 2009) $\chi(H)$ constant

Ramsey numbers of bounded degree graphs

Conjecture (Burr-Erdős 1975)

For every d there is a constant c_{d} such that if a graph H has n vertices and maximum degree d, then

$$
r(H) \leq c_{d} n .
$$

Theorem

(1) (Chvátal-Rödl-Szemerédi-Trotter 1983)

$$
c_{d} \text { exists. }
$$

(2) (Eaton 1998)

$$
\begin{aligned}
c_{d} & \leq 2^{2^{30 d}} \\
2^{c^{\prime} d} \leq c_{d} & \leq 2^{c d \log ^{2} d} \\
r(H) & \leq 2^{O(d)} n . \\
c_{d} & \leq 2^{c d \log d} .
\end{aligned}
$$

3 (Graham-Rödl-Rucinski 2000)
(9) (F.-Sudakov 2009) $\chi(H)$ constant
(5) (Conlon-F.-Sudakov 2012)

Ramsey numbers of bounded degree graphs

Definition

A graph is d-degenerate if every subgraph of it has a vertex of degree at most d.

Burr-Erdős Conjecture 1975

For every d there is a constant c_{d} such that if a graph H has n vertices and maximum degree d, then

$$
r(H) \leq c_{d} n .
$$

Ramsey numbers of bounded degree graphs

Definition

A graph is d-degenerate if every subgraph of it has a vertex of degree at most d.

Burr-Erdős Conjecture 1975

For every d there is a constant c_{d} such that if a graph H has n vertices and maximum degree d, then

$$
r(H) \leq c_{d} n .
$$

Theorem

(1) (Kostochka-Sudakov 2003) $\quad r(H) \leq n^{1+o(1)}$.

Ramsey numbers of bounded degree graphs

Definition

A graph is d-degenerate if every subgraph of it has a vertex of degree at most d.

Burr-Erdős Conjecture 1975

For every d there is a constant c_{d} such that if a graph H has n vertices and maximum degree d, then

$$
r(H) \leq c_{d} n .
$$

Theorem

(1) (Kostochka-Sudakov 2003)

$$
\begin{aligned}
& r(H) \leq n^{1+o(1)} \\
& r(H) \leq 2^{c_{d} \sqrt{\log n}} n .
\end{aligned}
$$

(2) (F.-Sudakov 2009)

Ramsey numbers of bounded degree graphs

Definition

A graph is d-degenerate if every subgraph of it has a vertex of degree at most d.

Burr-Erdős Conjecture 1975

For every d there is a constant c_{d} such that if a graph H has n vertices and maximum degree d, then

$$
r(H) \leq c_{d} n .
$$

Theorem

(1) (Kostochka-Sudakov 2003)

$$
\begin{aligned}
& r(H) \leq n^{1+o(1)} \\
& r(H) \leq 2^{c_{d} \sqrt{\log n}} n .
\end{aligned}
$$

(2) (F.-Sudakov 2009)
(3) (Lee 2016+)

Ramsey numbers of bounded degree graphs

Definition

A graph is d-degenerate if every subgraph of it has a vertex of degree at most d.

Burr-Erdős Conjecture 1975

For every d there is a constant c_{d} such that if a graph H has n vertices and maximum degree d, then

$$
r(H) \leq c_{d} n .
$$

Theorem

(1) (Kostochka-Sudakov 2003)

$$
\begin{aligned}
& r(H) \leq n^{1+o(1)} \\
& r(H) \leq 2^{c_{d} \sqrt{\log n}} n .
\end{aligned}
$$

(2) (F.-Sudakov 2009)
(3) (Lee 2016+) The Burr-Erdős conjecture is true!

Hypergraph Ramsey numbers

Let H be a k-uniform hypergraph.

Hypergraph Ramsey numbers

Let H be a k-uniform hypergraph.

Definition

The Ramsey number $r(H)$ is the minimum N such that every 2-edge-coloring of K_{N}^{k} contains a monochromatic copy of H.

Hypergraph Ramsey numbers

Let H be a k-uniform hypergraph.

Definition

The Ramsey number $r(H)$ is the minimum N such that every 2-edge-coloring of K_{N}^{k} contains a monochromatic copy of H.

Conjecture (For $k=2$, by Burr and Erdős in 1975)
If H has n vertices and maximum degree Δ, then $r(H) \leq c(\Delta, k) n$.

Hypergraph Ramsey numbers

Let H be a k-uniform hypergraph.

Definition

The Ramsey number $r(H)$ is the minimum N such that every 2-edge-coloring of K_{N}^{k} contains a monochromatic copy of H.

Conjecture (For $k=2$, by Burr and Erdős in 1975)

If H has n vertices and maximum degree Δ, then $r(H) \leq c(\Delta, k) n$.
Proved using the hypergraph regularity method for $k=3$ by Cooley-Fountoulakis-Kühn-Osthus and Nagle-Rödl-OIsen-Schacht, and for all k by CFKS. Gives Ackermann-type bound on $c(\Delta, k)$.

Hypergraph Ramsey numbers

Let H be a k-uniform hypergraph.

Definition

The Ramsey number $r(H)$ is the minimum N such that every 2-edge-coloring of K_{N}^{k} contains a monochromatic copy of H.

Conjecture (For $k=2$, by Burr and Erdős in 1975)
If H has n vertices and maximum degree Δ, then $r(H) \leq c(\Delta, k) n$.
Proved using the hypergraph regularity method for $k=3$ by Cooley-Fountoulakis-Kühn-Osthus and Nagle-Rödl-Olsen-Schacht, and for all k by CFKS. Gives Ackermann-type bound on $c(\Delta, k)$.

Theorem (Conlon, F., Sudakov)

$c(\Delta, k) \leq t_{k}(c \Delta)$ for $k \geq 4$, where $t_{0}(x)=x$ and $t_{i+1}(x)=2^{t_{i}(x)}$.
This bound is essentially best possible.

Hypergraph Ramsey numbers

Let H be a k-uniform hypergraph.

Definition

The Ramsey number $r(H)$ is the minimum N such that every 2-edge-coloring of K_{N}^{k} contains a monochromatic copy of H.

Conjecture (For $k=2$, by Burr and Erdős in 1975)
If H has n vertices and maximum degree Δ, then $r(H) \leq c(\Delta, k) n$.
Proved using the hypergraph regularity method for $k=3$ by Cooley-Fountoulakis-Kühn-Osthus and Nagle-Rödl-Olsen-Schacht, and for all k by CFKS. Gives Ackermann-type bound on $c(\Delta, k)$.

Theorem (Conlon, F., Sudakov)

$c(\Delta, k) \leq t_{k}(c \Delta)$ for $k \geq 4$, where $t_{0}(x)=x$ and $t_{i+1}(x)=2^{t_{i}(x)}$. This bound is essentially best possible.

Simpler proof develops dependent random choice for hypergraphs.

