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The Probabilistic Method

To prove that a structure with certain desired properties exists,

one defines an appropriate probability space of structures and then

shows that the desired properties hold with positive probability.
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Example: Lower bound on Ramsey numbers
Definition

The Ramsey number r(n) is the minimum N such that every
2-edge-coloring of KN contains a monochromatic Kn.

Theorem (Erdős 1947)

r(n) > 2n/2

Proof: Color every edge of KN with N = 2n/2 randomly.

A Kn is monochromatic with probability 2 · 2−(n2).

∃ a monochromatic Kn with probability at most
(N
n

)
2 · 2−(n2) < 1.

Therefore, there is a coloring without any monochromatic cliques.

Open Problem

Find an explicit coloring giving r(n) > 2cn.

Progress: Frankl-Wilson, Barak-Rao-Shaltiel-Wigderson,
Chattopadhyay-Zuckerman, Cohen
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r(n) > 2n/2

Proof: Color every edge of KN with N = 2n/2 randomly.

A Kn is monochromatic with probability 2 · 2−(n2).

∃ a monochromatic Kn with probability at most
(N
n

)
2 · 2−(n2) < 1.

Therefore, there is a coloring without any monochromatic cliques.

Open Problem

Find an explicit coloring giving r(n) > 2cn.

Progress: Frankl-Wilson, Barak-Rao-Shaltiel-Wigderson,
Chattopadhyay-Zuckerman, Cohen



Dependent Random Choice

Rough Claim

Every dense graph G contains a large vertex subset U in which
every set of d vertices has many common neighbors.

Proof idea: Let U be the set of vertices adjacent to every vertex
in a random set R of appropriate size.

As G is dense, we expect U to be large.

If d vertices have only few common neighbors,
it is very unlikely that R will be chosen among
these neighbors. Hence we do not expect U
to contain any such d vertices.
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Dependent Random Choice: Applications

Dependent Random Choice has many applications in Ramsey
Theory, Extremal Graph Theory, Additive Combinatorics, and
Combinatorial Geometry. Example we will cover include:

Erdős problem on heavy monochromatic cliques

Conjectures of Hajós and Erdős-Fajtlowicz

Conjectures of Erdős-Simonovits and Sidorenko

Burr-Erdős conjecture on Ramsey numbers



Heavy Monochromatic Cliques

The weight of S ⊂ N is w(S) =
∑

i∈S
1

log i .

Definition

Let f (N) be the maximum number such that every 2-coloring of
the edges of the complete graph on {2, . . . ,N} has a
monochromatic clique of weight at least f (N).

Conjecture: (Erdős 1981)

f (N) −→∞.

Problem: (Erdős 1981)

Estimate f (N).

Theorem: (Rödl 2003)

c1
log log log logN

log log log log logN
≤ f (N) ≤ c2 log log logN.
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Upper bound proof: f (N) = O(log log logN)

Partition vertex set [2,N] into s = log logN intervals

Ij = [22
j−1
, 22

j
).

Color edges inside interval Ij with no monochromatic set of order

2 log 22
j

= 2j+1. Then Ij contributes at most 2j+1/ log 22
j−1

= 4 to
the weight of any monochromatic clique.

Consider a 2-edge-coloring c of the complete graph on [s] with no
monochromatic Kt with t > 2 log s. For j 6= j ′, color the edges
from Ij to Ij ′ the color c(j , j ′).

Hence,
f (N) ≤ 4 · 2 log s = 8 log log logN.
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Solved!

Theorem: (Conlon-F.-Sudakov)

f (N) = Θ(log log logN).

That is, every 2-edge-coloring of the complete graph on {2, . . . ,N}
contains a monochromatic clique S with∑

i∈S

1

log i
= Ω(log log logN).



Graph subdivision

A subdivision of a graph is obtained by replacing edges by paths.



Hajós conjecture

Conjecture: (Hajós 1961)

If a graph contains no subdivision of Kt+1, then it is t-colorable.

Strengthening of Hadwiger’s conjecture and the Four Color
Theorem.

Disproved by Catlin in 1979 for t ≥ 6.

Erdős and Fajtlowicz in 1981 showed that:

almost all graphs are counterexamples!
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Erdős-Fajtlowicz theorem

σ(G ) = maximum t for which G contains a subdivision of Kt .

χ(G ) = chromatic number of G .

Theorem: (Erdős and Fajtlowicz 1981)

The random graph G = G (n, 1/2) almost surely satisfies

χ(G ) = Θ(n/ log n) and σ(G ) = Θ(
√
n).

Definition

H(n) is the maximum of χ(G )/σ(G ) over all n-vertex graphs G .

Hajós conjectured H(n) = 1.

Erdős-Fajtlowicz proved H(n) > cn1/2/ log n.

They further conjectured that

the random graph is essentially the strongest counterexample!
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Erdős-Fajtlowicz conjecture

σ(G ) = maximum t for which G contains a subdivision of Kt .

χ(G ) = chromatic number of G .

Definition

H(n) is the maximum of χ(G )/σ(G ) over all n-vertex graphs G .

Hajós conjectured H(n) = 1.

Erdős-Fajtlowicz proved H(n) > cn1/2/ log n.

Conjecture: (Erdős and Fajtlowicz 1981)

There is C such that for all n,

H(n) < Cn1/2/ log n.

Theorem: (F.-Lee-Sudakov)

The Erdős-Fajtlowicz conjecture is true.
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The Erdős-Fajtlowicz conjecture is true.



Ramsey Theory

Large systems contain patterns.

Question:

How many monochromatic copies of a graph H must there be in
every 2-edge-coloring of Kn?

Conjecture: (Erdős 1962, Burr-Rosta 1980)

For each H, the random 2-edge-coloring of Kn in expectation
asymptotically minimizes the number of monochromatic copies of
H over all 2-edge-colorings of Kn.

Random systems minimize patterns.

(Goodman 1959) True for H = K3.

(Thomason 1989) False for H = K4.
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Conjecture: (Erdős 1962, Burr-Rosta 1980)

For each H, the random 2-edge-coloring of Kn in expectation
asymptotically minimizes the number of monochromatic copies of
H over all 2-edge-colorings of Kn.

Random systems minimize patterns.

(Goodman 1959) True for H = K3.

(Thomason 1989) False for H = K4.



Ramsey Theory

Large systems contain patterns.

Question:

How many monochromatic copies of a graph H must there be in
every 2-edge-coloring of Kn?
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Extremal graph theory

Question:

How many copies of a graph H must there be in a graph with n
vertices and m edges?

Conjecture: (Sidorenko, Erdős-Simonovits 1980s)

If H is bipartite, the random graph with edge density p has in
expectation asymptotically the minimum number of copies of H
over all graphs of the same order and edge density.

Known for trees, complete bipartite graphs, even cycles, and cubes.

Has connections to matrix theory, Markov chains, graph limits, and
quasi-randomness.
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Homomorphism version

Definition:

hH(G ) = number of homomorphisms from H to G .

tH(G ) = hH(G)

|G ||H| = fraction of mappings from H to G which

are homomorphisms.

Conjecture: (Sidorenko, Erdős-Simonovits 1980s)

For every bipartite graph H and every graph G ,

tH(G ) ≥ tK2(G )e(H).
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Analytic version

Analytic formulation of Sidorenko’s Conjecture

Let µ be the Lebesgue measure on [0, 1],

w(x , y) be a bounded,
non-negative, symmetric and measurable function on [0, 1]2, and E
be a subset of [t]× [s]. Then∫ ∏

(i ,j)∈E

w(xi , yj)dµ
s+t ≥

(∫
wdµ2

)|E |

Remark: The expression on the left hand side is quite common.
For example, Feynman integrals in quantum field theory, Mayer
integrals in statistical mechanics, and multicenter integrals in
quantum chemistry are of this form.



Analytic version

Analytic formulation of Sidorenko’s Conjecture

Let µ be the Lebesgue measure on [0, 1], w(x , y) be a bounded,
non-negative, symmetric and measurable function on [0, 1]2,

and E
be a subset of [t]× [s]. Then∫ ∏

(i ,j)∈E

w(xi , yj)dµ
s+t ≥

(∫
wdµ2

)|E |

Remark: The expression on the left hand side is quite common.
For example, Feynman integrals in quantum field theory, Mayer
integrals in statistical mechanics, and multicenter integrals in
quantum chemistry are of this form.



Analytic version

Analytic formulation of Sidorenko’s Conjecture

Let µ be the Lebesgue measure on [0, 1], w(x , y) be a bounded,
non-negative, symmetric and measurable function on [0, 1]2, and E
be a subset of [t]× [s].

Then∫ ∏
(i ,j)∈E

w(xi , yj)dµ
s+t ≥

(∫
wdµ2

)|E |

Remark: The expression on the left hand side is quite common.
For example, Feynman integrals in quantum field theory, Mayer
integrals in statistical mechanics, and multicenter integrals in
quantum chemistry are of this form.



Analytic version

Analytic formulation of Sidorenko’s Conjecture

Let µ be the Lebesgue measure on [0, 1], w(x , y) be a bounded,
non-negative, symmetric and measurable function on [0, 1]2, and E
be a subset of [t]× [s]. Then∫ ∏

(i ,j)∈E

w(xi , yj)dµ
s+t ≥

(∫
wdµ2

)|E |

Remark: The expression on the left hand side is quite common.
For example, Feynman integrals in quantum field theory, Mayer
integrals in statistical mechanics, and multicenter integrals in
quantum chemistry are of this form.



Analytic version

Analytic formulation of Sidorenko’s Conjecture

Let µ be the Lebesgue measure on [0, 1], w(x , y) be a bounded,
non-negative, symmetric and measurable function on [0, 1]2, and E
be a subset of [t]× [s]. Then∫ ∏

(i ,j)∈E

w(xi , yj)dµ
s+t ≥

(∫
wdµ2

)|E |

Remark: The expression on the left hand side is quite common.
For example, Feynman integrals in quantum field theory, Mayer
integrals in statistical mechanics, and multicenter integrals in
quantum chemistry are of this form.



Quasirandom graphs

Chung, Graham, and Wilson: a large number of interesting graph
properties satisfied by random graphs are all equivalent.

Definition

A sequence (Gn : n = 1, 2, . . .) of graphs is called quasirandom
with density p if, for every graph H,

tH(Gn) = pe(H) + o(1). (1)

One of the many equivalent properties is that every subset S
contains p

(|S |
2

)
+ o(n2) edges.

Surprising fact

Quasirandomness follows from (1) for H = K2 and H = C4.
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Quasirandom graphs

Definition

A graph F is p-forcing if tH(Gn) = pe(H) + o(1) holds for H = K2

and H = F implies (Gn) is quasirandom with density p.

F is forcing if it is p-forcing for all p.

Question: (Chung, Graham, Wilson 1989)

Which graphs are forcing?

Chung, Graham, Wilson: even cycles are forcing.

Skokan and Thoma: Ka,b with a, b ≥ 2 are forcing.

Forcing Conjecture

A graph is forcing if and only if it is bipartite and contains a cycle.

Provides a stronger stability result for Sidorenko’s conjecture.
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Progress

Theorem: (Conlon, F., Sudakov 2010)

Sidorenko’s conjecture holds for every bipartite graph H which has
a vertex complete to the other part.

Remarks: Sidorenko’s conjecture holds for a large class of graphs.
An approximate version holds for all graphs.

Theorem: (Conlon, F., Sudakov 2010)

The forcing conjecture holds for every bipartite H which has two
vertices in one part complete to the other part.

Hence, the forcing conjecture holds for a large class of graphs.
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Ramsey numbers

Definition

r(H) is the minimum N such that every 2-edge-coloring of KN

contains a monochromatic copy of graph H.

Theorem (Erdős-Szekeres, Erdős)

2n/2 ≤ r(Kn) ≤ 22n.

Question (Burr-Erdős 1975)

How large is r(H) for a sparse graph H on n vertices?
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Ramsey numbers of bounded degree graphs

Conjecture (Burr-Erdős 1975)

For every d there is a constant cd such that if a graph H has n
vertices and maximum degree d , then

r(H) ≤ cdn.

Theorem

1 (Chvátal-Rödl-Szemerédi-Trotter 1983) cd exists.

2 (Eaton 1998) cd ≤ 22
30d

.

3 (Graham-Rödl-Rucinski 2000) 2c
′d ≤ cd ≤ 2cd log2 d .

4 (F.-Sudakov 2009) χ(H) constant r(H) ≤ 2O(d)n.

5 (Conlon-F.-Sudakov 2012) cd ≤ 2cd log d .
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Ramsey numbers of bounded degree graphs

Definition

A graph is d-degenerate if every subgraph of it has a vertex of
degree at most d .

Burr-Erdős Conjecture 1975

For every d there is a constant cd such that if a graph H has n
vertices and maximum degree d , then

r(H) ≤ cdn.

Theorem

1 (Kostochka-Sudakov 2003) r(H) ≤ n1+o(1).

2 (F.-Sudakov 2009) r(H) ≤ 2cd
√
log nn.

3 (Lee 2016+) The Burr-Erdős conjecture is true!
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Hypergraph Ramsey numbers

Let H be a k-uniform hypergraph.

Definition

The Ramsey number r(H) is the minimum N such that every
2-edge-coloring of K k

N contains a monochromatic copy of H.

Conjecture (For k = 2, by Burr and Erdős in 1975)

If H has n vertices and maximum degree ∆, then r(H) ≤ c(∆, k)n.

Proved using the hypergraph regularity method for k = 3 by
Cooley-Fountoulakis-Kühn-Osthus and Nagle-Rödl-Olsen-Schacht,
and for all k by CFKS. Gives Ackermann-type bound on c(∆, k).

Theorem (Conlon, F., Sudakov)

c(∆, k) ≤ tk(c∆) for k ≥ 4, where t0(x) = x and ti+1(x) = 2ti (x).
This bound is essentially best possible.

Simpler proof develops dependent random choice for hypergraphs.
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