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Graphs

Definition (graph)

A graph G = (V ,E ) has a vertex set V and

a set E of edges, which are pairs of vertices.

Examples:

The Internet with computers connected by links

The World Wide Web with webpages and hyperlinks

Social networks like Facebook with users and friendships

Chemical networks with atoms and chemical bonds

Biological networks like the brain with neurons and synapses

Engineered networks like chips with transistors and wires

From Large Networks and Graph Limits by Lovász
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Szemerédi’s Regularity Lemma

Szemerédi’s regularity lemma

Roughly speaking, every graph can be

partitioned into a bounded number of roughly

equally-sized parts so that the graph is

random-like between almost all pairs of parts.

Rough structural result for all graphs.

One of the most powerful tool in combinatorics.
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Regularity

Let X and Y be vertex subsets of a graph G .

e(X ,Y ) = number of pairs in X × Y that are edges.

Definition (density)

d(X ,Y ) =
e(X ,Y )

|X | |Y |

Definition (irregularity)

irreg(X ,Y ) is the maximum over all

A ⊂ X and B ⊂ Y of∣∣∣e(A,B)− d(X ,Y )|A||B|
∣∣∣

A B

X Y

(X ,Y ) is ε-regular if irreg(X ,Y ) ≤ ε|X ||Y |.
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Szemerédi’s regularity lemma

Definition (Partition irregularity)

The irregularity of a vertex partition P of a graph G = (V ,E ) is

irreg(P) :=
∑

X ,Y∈P
irreg(X ,Y )

Partition P is ε-regular if irreg(P) ≤ ε|V |2.

Szemerédi’s regularity lemma

For every ε > 0, there is an M(ε) so that every graph G has an

ε-regular vertex partition P with at most M(ε) parts.
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Number of parts

Szemerédi’s regularity lemma

Every graph has an ε-regular partition into at most M(ε) parts.

Question

How big is M(ε)?

Tower function T (n) is given by T (1) = 2 and T (n) = 2T (n−1).

The proof of the regularity lemma gives M(ε) ≤ T (ε−2).

Gowers proved M(ε) ≥ T (ε−c) for some constant c > 0.

Question (Gowers 1997)

Determine the order of the tower height of M(ε).

Theorem (F.-L. M. Lovász 2016+)

M(ε) = T (Θ(ε−2))
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Szemerédi’s regularity lemma

Every graph has an ε-regular partition into at most M(ε) parts.

Question

How big is M(ε)?

Tower function T (n) is given by T (1) = 2 and T (n) = 2T (n−1).

The proof of the regularity lemma gives M(ε) ≤ T (ε−2).

Gowers proved M(ε) ≥ T (ε−c) for some constant c > 0.

Question (Gowers 1997)

Determine the order of the tower height of M(ε).

Theorem (F.-L. M. Lovász 2016+)

M(ε) = T (Θ(ε−2))



Number of parts
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Szemerédi’s regularity lemma: proof idea

Definition (Mean square density)

For a vertex partition P : V = V1 ∪ . . . ∪ Vk ,

q(P) =
∑
i ,j

pipjd(Vi ,Vj)
2

where pi = |Vi |
|V | .

Properties:

0 ≤ q(P) ≤ 1.

If P ′ is a refinement of P, then q(P ′) ≥ q(P).

Claim

If P with |P| = k is not ε-regular, then there is a refinement P ′

into at most k2k+1 parts such that q(P ′) ≥ q(P) + ε2.

At most ε−2 iterations before obtaining an ε-regular partition.
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Regularity method

Regularity method

1 Apply Szemerédi’s regularity lemma.

2 Use a counting lemma for embedding small graphs.

Triangle counting lemma

If each pair of parts is ε-regular, the number

of triangles across the three parts is

≈ d(X ,Y )d(X ,Z )d(Y ,Z ) |X | |Y | |Z | .

X

Y Z
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Triangle removal lemma

Triangle removal lemma (Ruzsa-Szemerédi 1976)

For any ε > 0 there is a δ > 0 such that every n-vertex graph with

≤ δn3 triangles can be made triangle-free by removing εn2 edges.

Has many applications in extremal graph theory, additive number
theory, theoretical computer science, and discrete geometry.

Proof idea:

1 Apply Szemerédi’s regularity lemma.

2 Delete edges between pairs which are irregular or sparse.

3 If there is a remaining triangle, then its edges go between

pairs which are both dense and regular. The counting lemma

then implies that there are more than δn3 triangles.
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Triangle removal lemma

Triangle removal lemma (Ruzsa-Szemerédi 1976)

For any ε > 0 there is a δ > 0 such that every n-vertex graph with

≤ δn3 triangles can be made triangle-free by removing εn2 edges.

Problem (Erdős, Alon, Gowers, Tao)

Find a new proof which gives a better bound.

Theorem (F. 2011)

We may take δ−1 to be a tower of twos of height log ε−1.

Best known lower bound on δ−1 is only ε−c log ε−1
.
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Triangle removal lemma: new proof idea

V1

V2 V3

Key lemma

If there are at most α|V1||V2||V3| triangles across V1,V2,V3,

then

there are 1 ≤ i < j ≤ 3 and equitable partitions Qi of Vi and Qj of

Vj each with at most 2α
−O(1)

parts such that there are at least
1

10 |Qi ||Qj | pairs (X ,Y ) ∈ Qi × Qj with d(X ,Y ) < 2α1/3.

Definition: Mean entropy density

For a vertex partition P : V = V1 ∪ . . . ∪ Vk ,

h(P) =
∑
i ,j

pipjd(Vi ,Vj) log d(Vi ,Vj)

where pi = |Vi |
|V | .
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Property Testing

Goal

Quickly distinguish between objects that have a property from

objects that are far from having that property.

Introduced by Rubinfeld and Sudan in 1996 and investigated by
Goldreich, Goldwasser, and Ron.

Testable graph properties

A graph property P is testable if for each ε > 0 there is a

randomized algorithm which in constant time (depending on ε and

P) distinguishes with probability at least 2/3 between graphs

having P and graphs which are ε-far from having P.
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What is testable?

Claim

Triangle-freeness is testable.

Proof: Pick 1/δ random triples of vertices.
Accept if no triple of vertices makes a triangle; reject otherwise.
If the graph is triangle-free, then the algorithm accepts.
If the graph is ε-far from being triangle-free, then it accepts with
probability ≤ (1− 6δ)1/δ ≤ e−6 < .01.

Further, H-freeness is testable (by the graph removal lemma).

Theorem (Alon-Fischer-Krivelevich-Szegedy 2000)

Induced H-freeness is testable.

Theorem (Alon-Shapira 2008)

Every hereditary graph property is testable.
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Induced graph removal lemma

Lemma (Alon-Fischer-Krivelevich-Szegedy 2000)

For each ε > 0 and graph H on h vertices there is δ > 0 such that

every graph on n vertices with at most δnh induced copies of H

can be made induced H-free by adding or removing εn2 edges.

Proof developed the strong regularity lemma, which is proved by
repeated use of Szemerédi’s regularity lemma and gives a
wowzer-type bound.

Wowzer function is given by W (1) = 2 and W (n) = T (W (n− 1)).

Problem (Alon)

Estimate the dependence of δ on ε.

In particular, can the wowzer-type bound be improved?
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repeated use of Szemerédi’s regularity lemma and gives a
wowzer-type bound.

Wowzer function is given by W (1) = 2 and W (n) = T (W (n− 1)).

Problem (Alon)

Estimate the dependence of δ on ε.

In particular, can the wowzer-type bound be improved?



Induced graph removal lemma

Lemma (Alon-Fischer-Krivelevich-Szegedy 2000)

For each ε > 0 and graph H on h vertices there is δ > 0 such that

every graph on n vertices with at most δnh induced copies of H

can be made induced H-free by adding or removing εn2 edges.

Proof developed the strong regularity lemma, which is proved by
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Wowzer and Tower

Wowzer function is given by W (1) = 2 and W (n) = T (W (n− 1)).

Theorem (Conlon-F. 2012)

W (ε−Ω(1)) parts are needed in the strong regularity lemma.
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We can take δ−1 = T (ε−O(1)) in the induced graph removal lemma.

Further, a tower-type bound holds for testing hereditary properties.
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Algorithmic regularity lemma

Question

Can the regularity lemma be made algorithmic?

Importance lies in that it would give approximation algorithms for
a large class of computationally hard problems.

Bottleneck: Determine if a pair of parts X ,Y is ε-regular, and, if
not, find X ′ ⊂ X , Y ′ ⊂ Y realizing this.

Theorem (Alon-Duke-Lefmann-Rödl-Yuster)

Yes!

Up to changing ε, checking regularity is the same as showing the
density of C4 with edges across X × Y is ≈ d(X ,Y )4.

Theorem (Kohayakawa-Rödl-Thoma)

Can be done in O(n2) time.
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Counting cliques

Algorithmic problem

Count the number of cliques of order k in a graph on n vertices.

Zuckerman showed NP-hard to approximate the size of the largest
clique within a factor n1−ε.

How fast can we approximate the count within an additive εnk?
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Counting cliques

Algorithmic problem

Count the number of cliques of order k in a graph on n vertices

within an additive εnk deterministically.

Duke, Lefmann, Rödl 1996: Can be done in time 2(k/ε)O(1)
nω.

Theorem (F.-L. M. Lovász-Zhao 2016)

Can be done in time O(ε−k
2
n + nω).

Corollary

We can approximate the count of K1000 in a graph on n vertices

within an additive n1000−10−6
in time O(n2.4).
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Regularity method for sparse graphs?

The original regularity method is only useful for dense graphs.

Kohayakawa, Rödl, and Scott proved a sparse regularity lemma.

Main Problem

Prove a counting lemma in sparse graphs.

Caveat: A general counting lemma in sparse graphs cannot hold.

How about within subgraphs of sparse pseudorandom graphs?

Theorem (Conlon-F.-Zhao)

A sparse counting lemma in graphs and hypergraphs.
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Green–Tao Theorem (2008)

The primes contain arbitrarily long arithmetic progressions.

Examples:

3, 5, 7

5, 11, 17, 23, 29

7, 37, 67, 97, 127, 157

Longest known: 26 terms



Green–Tao Theorem (2008)

The primes contain arbitrarily long arithmetic progressions (AP).

Szemerédi’s Theorem (1975)

Every positive density subset of contains arbitrarily long APs.

(upper) density of A ⊂ is lim sup
N→∞

|A ∩ [N]|
N

[N] := {1, 2, . . . ,N}

P = prime numbers

Prime number theorem:
|P ∩ [N]|

N
∼ 1

logN



Proof strategy of the Green–Tao theorem

Step 1:

Relative Szemerédi theorem (informally)

If S ⊂ satisfies certain pseudorandomness conditions, then every

subset of S of relative positive density contains long APs.

Step 2:Construct a superset of the primes satisfying these conditions.

P = prime numbers, Q = “almost primes”

P ⊆ Q with relative positive density, i.e.,
|P ∩ [N]|
|Q ∩ [N]|

> δ
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Relative Szemerédi theorem (informally)

If S ⊂ satisfies certain pseudorandomness conditions, then every

subset of S of positive density contains long APs.

What pseudorandomness conditions?

Green–Tao:
1 Linear forms condition

2 Correlation condition

← no longer needed

A natural question (asked by Green, Gowers, . . . )

Does a relative Szemerédi theorem hold with weaker and more

natural hypotheses?

Our main result

Yes! A weak linear forms condition suffices.
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Roth’s theorem

Roth’s theorem (1952)

If A ⊆ [N] is 3-AP-free, then |A| = o(N).

[N] := {1, 2, . . . ,N}

3-AP = 3-term arithmetic progression

It’ll be easier (and equivalent) to work in ZN := Z/NZ.



Proof of Roth’s theorem

Roth’s theorem (1952)

If A ⊆ ZN is 3-AP-free, then |A| = o(N).

Given A, construct tripartite
graph GA with vertex sets
X = Y = Z = ZN .

Triangle xyz in GA ⇐⇒
2x + y , x − z , −y − 2z ∈ A

It’s a 3-AP with diff −x − y − z

GA

X

Y Z

No triangles? Only triangles ←→ trivial 3-APs with diff 0.
Every edge of the graph is contained in exactly one triangle
(the one with x + y + z = 0).
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(the one with x + y + z = 0).
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Constructed a graph with
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every edge in exactly one triangle

Theorem (Ruzsa & Szemerédi ’76)

If every edge in a graph G = (V ,E ) is contained in exactly one

triangle, then |E | = o(|V |2).

(a consequence of the triangle removal lemma)

So 3N|A| = o(N2). Thus |A| = o(N).
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Relative Roth theorem

Roth’s theorem (1952)

If A ⊆ ZN is 3-AP-free, then |A| = o(N).

Relative Roth theorem (Conlon, F., Zhao)

If S ⊆ ZN satisfies the 3-linear forms condition,

and A ⊆ S is 3-AP-free, then |A| = o(|S |).

ZN

ZNZN

GS x

y z

x ∼ y iff

2x + y ∈ S

x ∼ z iff

x − z ∈ S

y ∼ z iff

−y − 2z ∈ S

3-linear forms condition:
GS has asymp. the expected number of
embeddings of K2,2,2 & its subgraphs
(compared to random graph of same density)

K2,2,2 & subgraphs,

e.g.,
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Relative Szemerédi theorem

Relative Szemerédi theorem (Conlon, F., Zhao)

Fix k ≥ 3. If S ⊆ ZN satisfies the k-linear forms condition,

and A ⊆ S is k-AP-free, then |A| = o(|S |).

k = 4: build a weighted 4-partite 3-uniform hypergraph

Vertex sets W = X = Y = Z = ZN

x y

zw

X Y

ZW
xyz ∈ E ⇐⇒ 3w + 2x + y ∈ S

wxz ∈ E ⇐⇒ 2w + x − z ∈ S

wyz ∈ E ⇐⇒ w − y − 2z ∈ S

xyz ∈ E ⇐⇒ −x − 2y − 3z ∈ S

common diff: −w − x − y − z

4-linear forms condition: correct count of the 2-blow-up of the

simplex K
(3)
4 (as well as its subgraphs)
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Avoiding regularity

A major drawback of the regularity lemma is the tower dependence.

Problem

Find alternative proofs of the applications which avoid using the

regularity lemma and give improved bounds.



Preview of the next lecture

Green developed an arithmetic regularity lemma and used it to
prove the following two extensions of Roth’s theorem:

Green’s Arithmetic Removal Lemma

For each ε > 0 there is δ > 0 such that if G is an abelian group

and A,B,C ⊂ G with at most δ|G |2 triples (a, b, c) ∈ A× B × C

with a + b + c = 0, then we can delete ε|G | elements from A,B,C

and get rid of all solutions.

Green’s Roth theorem with popular differences

For each ε > 0 there is N(ε) such that if G is an abelian group

with |G | ≥ N(ε) and A ⊂ G with |A| = α|G |, then there is a

nonzero d ∈ G such that the density of three-term arithmetic

progressions with common difference d in A is at least α3 − ε.

Next lecture: tight quantitative bounds in vector spaces.
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