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The Switching Network Model

Problem

f:{0,1}" — {0,1}
input size n
variables  x; i€ [n]

literals Xiy Xi i€ [n]
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Q
X5
undirected G’ = (V' E’)
@ o source s €V’
sink t' eV’
X2 & X2 labeling )\ : E' — literals
O
Q
_ X1
X1
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t
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— X4
X2 X2
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Computation

1) x € {0,1}" reaches & € V'

0
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The Switching Network Model

t/
“ Computation
X5
1) x € {0,1}" reaches & € V'
)
3 path P’ connecting s’ and &’
X2 & X2 labeled with literals in x.
Instance 2
x=0 0 0 1 1
X1

X1 X1 Xo X3 Xa Xs



The Switching Network Model

Computation

1) x € {0,1}" reaches & € V'
)
3 path P’ connecting s’ and &’

labeled with literals in x.

2) Reachability table R, for & € V'
Ry (x) = TRUE if x reaches a'.
Ry (x) = f(x)




Monotone SN

A switching network G’ labeled
only with positive literals.
N E' — positive literals.

= Computes only
monotone functions.




k-CLIQUE Problem

over vertices V

Input  a set of edges E C (\2/)

Output if the graph G = (V, E) has a k-clique P
ie. PC V |P|=k
Yu#veP, {uv}eE.






t
{a,d} {a,c}

{b,d} {a,d}
{a, c} {b, c}

{b,c} {b,d}

{c,d} {a, b}



{a,d}
{b.d} B
{a,c} (b, c} '
{b.c} {Sd}\
{Cad} {a’ b} V:{a, b, C, d}
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Monotone SN
for k-CLIQUE

has size n°) and n®(k)
when k < n°()
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Y ES instances

min terms

k-clique P
PCV,|Pl=k

{u,v} € instance(P)

0

ue P,veP

NO instances

structured

(k — 1)-colorable C
C:V —[k-1]

{u, v} € instance(C)

0
C(u) # C(v)
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Inner Product Space over C¢

All (k — ].) colorings of V' (2 structured No instances)
cEiC.Vvolk-1}=k-1"

C-vector
_ gecCe
g: C — C a complex vector indexed by C
e.g. Ry is a C-vector for any &’ on SN
Inner Product
) f,g € CC
(f.8) S E[F(Cg(O)] = 5 D> f(C
&

J/

~
average reachability over NO instances



Fourier Analysis over C¢

Fourier Basis
XU(C) = Dver UE) xu € CC for UeC

{xu}uvec is Orthonormal

1 fU=W
= for U WeC
<XU>XW> {O i U £ W or U, €



Fourier Analysis over C¢

Fourier Basis
XU(C) = Dver UE) xu € CC for UeC

Primitive Root of Unity

o (k — 1)* root
w 9 g2mi/(k-1)

{xu}uvec is Orthonormal

1 fU=WwW
= for U W e C
<XU7XW> {O if U % W or U, €



Recall: Bottleneck Argument

B k-cliques — nodes on SN

Vv on SN |37H(V')| < few k-cliques

#k-cliques = o)

#nodes on SN > n®0) [
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V k-Clique P, construct gp: C — C satisfying
1. (non-negligible work) \vd k_clique P, Eb;;. c G/ s.t.

(gp: Rey,) = Q<‘é,‘)

2. (locality) gp depends only on coloring on P
gp(Cl) = gp(Cg) if Cl(u) = Cg(u) Yue P
gr(U)=0 if suppU € P

3. ((k1)-wise ind.) gp is “(k — 1)-wise independent”

(gp,f) =0 if fisa (k—1)-junta
gp(U)=0 if [supp(U)| < k —1

4. (short)

def
(gp.gp)*? = |gp|| < K
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(2) & (3) = {gp} is orthogonal
= {gr/||gp|} is orthonormal

Va e G’ Ra/ R > Z‘ s ||g || ‘

Size of SN = |G'| = Z 1

a'eG’

EZZ

aeG p n

2
Pe()

2
< "lep H>’

2
<Rb;,7H§£H>‘

v
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(2) & (3) = {gp} is orthogonal
= {gr/||gp|} is orthonormal
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(2) & (3) = {gp} is orthogonal
= {gr/||gp|} is orthonormal

Va e G’ Ra/ R > Z‘ s ||g || ‘

Size of SN = |G'| = Z 1

aeG’
2
2 & |y
a/EG/ n ”g H
gpP 2
> <R/,>‘
Zn % [lgp
Pe(y)
k1 1

2GR ek

k
|G/|3 > (%) > nQ(k) for k < no(l)



(2) & (3) = {gp} is orthogonal
= {gr/||gp|} is orthonormal

Va e G’ Ra/ R > Z‘ s ||g || ‘

Size of SN = |G'| = Z 1

a'eG’

2
a;/ Z < "|lgp H>’
2
> R, &P
i g(:z)< g ngu>‘

> pk 1 1

K
G > (%) > 020 for k < nO)



V k-Clique P, construct gp: C — C satisfying
1_ (non—negligible work) v k-Chque P, E'b;) c G/ s.t.

(gp: Rey,) = Q<|é,|)

2. (locality) gp depends only on coloring on P

gp(Cl) = gp(Cg) if Cl(u) = CQ(U) Yue P (a)
gp(U) =0 if suppU P (b)

3. ((ke1)-wise ind.) gp is “(k — 1)-wise independent”

(gp,f)=0 if fisa (k—1)-junta (a)
gp(U) =0 if |supp(U)| < k-1 (b)

4, (short)

def
(gp.gp)"? = |gp|| < K



V k-Clique P in a NW design, construct gp: C — C satisfying
1. (non-negiigivle work) V' k-Clique P in a NW design, 3bj € G’ s.t.

1
’ R ; > Q( )
<gP bP> = |G/|
2. (locality) gp depends only on coloring on P

gp(Cl) = gp(Cg) if Cl(u) = Cg(u) Yue P (a)
gp(U) =0 if suppU P (b)

3. ((k-2)-wise ind.) gp is “(k — 2)-wise independent”

(gp,f)=0 if fisa (k—2)-junta (a)
gp(U) =0 if |supp(U)| < k —2 (b)

4, (short)

def
(gp.gp)"? = |gp|| < K
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Invariant Cover

Definition (Invariant)
For a literal ¢ (edge {u, v}), for a m-k-Clique SN G’

¢
g is l-invariant on G’ ifVa' — b, (R.s,g) = {(Rw,g)
g is f-invariant if VG', g is f-invariant on G’

Definition (Invariant Cover)

For a k-Clique P, say a collection {gp , }vecp is an invariant cover if
. Y{u,v}e G(P) 3veP gp,is{u,v}-invariant
. VveP (1gpy)=(xe,8pv) =8pv(0) =1

Lemma (Discrepancy in Progress)
Fix a k-clique P and an invariant cover {gp ,},cp

1

Vpath P’ accepting P~ 3node bp  3u,v € P (Ry,,gp,u — &P,v) > 1
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Constructing Invariant Cover

Scaling factor ¢(k) & (k — 1)*1/(k — 2)I(k — 2)

For any vertex v in a k-clique P, define gp ,: C — C by

if C (restricted to P) has a
def | ¢(k)(=1)*(w —2)! monopoly with y vertices and the
)= monopoly does not contain v,
0 otherwise.

gP,v(C

Lemma (Invariant Cover)

1. {gpv} is an invariant cover

2. gp,, depends only on coloring on P
3. gp,, agrees up to degree k — 2

4. |lgpll < k<2
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Summary
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k-Clique under the monotone
restriction on switching networks, by
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Question: More lower bounds?



Reachability is Reversible

If &’ and b’ are connected by an edge €’
whose label \'(e’) = e where e € C

Ra’(C) — Rb’(C)

al

For locating invariants gp = gp , — gp,, for some u,v € P.

b/
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