Birational Geometry and Algebraic Dynamics

John Lesieutre

October 1, 2014

Positive entropy automorphisms of varieties

- $\phi: X \to X$ a self-map of a compact metric space.
- ▶ Entropy = "how fast does ϕ separate points of X?"
 - N(n, ε) = maximum size of set of points such that any two have d(f^k(p₁), f^k(p₂)) ≥ ε for some 0 ≤ k ≤ n.

•
$$h_{top} = \lim_{\epsilon \to 0} \left(\limsup_{n \to \infty} \frac{\log N(n, \epsilon)}{n} \right)$$

- Theorem (Gromov-Yomdin). For automorphisms of varieties over C, entropy can be computed in cohomology.
- Non-example: $\phi \in \mathsf{PGL}(3)$ acting on \mathbb{P}^2 .

An example (J. Blanc)

• Fix an elliptic curve $E \subset \mathbb{P}^2$, $p \in E$.

- ▶ Define $\sigma_p : \mathbb{P}^2 \dashrightarrow \mathbb{P}^2$ to act on L_{pxy} by the involution of \mathbb{P}^1 fixing x and y.
- Not defined where the line is tangent to E!

An example, cont.

- To resolve σ_p , blow up p and the four points p_i .
- $\tilde{\sigma}_p: X_p \to X_p$ is an involution, fixing the curve *E*.
- Same thing with different initial point q gives $\tilde{\sigma}_q: X_q \to X_q$.
- Both σ_p and σ_q lift to the common blow-up $X_{p,q}$.
- $\tilde{\sigma}_p \circ \tilde{\sigma}_q$ is a positive entropy automorphism of $\mathsf{Bl}_{10 \text{ pts}} \mathbb{P}^2$.
- Many other constructions: McMullen, Bedford–Kim,...

- It's sometimes hard to find examples of "pathological" behaviors on high-dimensional varieties.
- Varieties with interesting dynamics provide a good source: rich geometry, tractable computations.

Question: (Kawamata)

Fix a smooth projective variety X. Is the number of smooth projective varieties Y with $D^b \operatorname{Coh}(X) \cong D^b \operatorname{Coh}(Y)$ finite?

 Yes, for many nice classes: curves, surfaces, abelian, toric, Fano, K_X ample,...

Question: (Kawamata)

Fix a smooth projective variety X. Is the number of smooth projective varieties Y with $D^b \operatorname{Coh}(X) \cong D^b \operatorname{Coh}(Y)$ finite?

- Yes, for many nice classes: curves, surfaces, abelian, toric, Fano, K_X ample,...
- No, for X the blow-up of \mathbb{P}^3 at ≥ 8 general points.
- ► The Y's are all P³ blown up at different configurations of 8 points, arising from dynamics of the Cremona group Bir(P³).

classification Algebraic dynamics

Theorem: (De-Qi Zhang)

Suppose that $\phi : X \dashrightarrow X$ is a birational automorphism of infinite order. Then either:

• ϕ is imprimitive: $0 < \dim B < \dim X$ and

$$\begin{array}{ccc} X & - & - & \succ \\ & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ &$$

- X is birational to a weak Calabi-Yau or abelian variety;
- X is rationally connected.

Question: (Bedford '11)

Does there exist a blow-up of \mathbb{P}^3 that admits an automorphism of positive entropy?

Question: (Kawamata–Matsuda–Matsuki '87)

Does there exist a variety of non-negative Kodaira dimension with infinitely many flipping curves?