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Random matrices: examples

Gaussian ensemble (GUE, GOE):
MN, N = 1, 2, . . . are hermitian (or real symmetric) N×N matrices:

Mij = N−1/2Wij, E{Wij} = 0, E{|Wij|2} = 1,

where ReWij, ImWij (or Wij) are independent real random
Gaussian variables.

Wigner ensemble: the elements are i.i.d. but not necessary
Gaussian.
Sample covariance matrices:
Am,n, m, n = 1, 2, . . . are complex n×m matrices with independent
variables Ai,j

M = n−1Am,nA∗m,n, E{Aij} = 0, E{|Aij|2} = 1.

Both m, n go to +∞ such that m/n→ c ∈ (0,+∞).
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Global distribution of eigenvalues

Normalized Counting Measure (NCM):

NN(4) = ]{λj ∈ 4, j = 1, . . . ,N}/N, NN(R) = 1,

where 4 is an arbitrary interval of the real axis.

It is shown that for many ensembles of random matrices

NN −→ N .

The density of N is called the density of states of the ensemble, the
support of N is the spectrum.

Wigner ensembles (in particular GUE):

ρ(λ) = (2π)−1
√

4− λ2, λ ∈ (−2, 2).
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Local statistics, localization and delocalization

One of the key physical parameter of models is the localization length,
which describes the typical length scale of the eigenvectors of random
matrices. The system is called delocalized if the localization length ` is
comparable with the matrix size, and it is called localized otherwise.
Let Ψ be an eigenvector correspond to some e.v. λ from the bulk of the
spectrum.

Localized eigenvectors: |Ψj|2 ≈ e−|j−c|/`

lack of transport (insulators), and Poisson local spectral statistics
(strong disorder)
Delocalization: |Ψj|2 ≈ |Λ|−1

diffusion (electric conductors), and GUE local statistics (weak
disorder).

The questions of the order of the localization length are closely related
to the universality conjecture of the bulk local regime of the random
matrix theory.
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The main objects of the local regime are k-point correlation functions
Rk (k = 1, 2, . . .), which can be usually defined as

Rk(λ1, . . . , λk) =

∫
pN(λ1, . . . , λk, λk+1, . . . , λN)dλk+1 . . . dλN,

where pN(λ1, ..., λN) is the joint eigenvalue probability density.

Universality conjecture in the bulk of the spectrum (hermitian
case, deloc.regime) (Wigner – Dyson):

1
(Nρ(λ0)k Rk

(
{λ0 + ξj/Nρ(λ0)}kj=1

) N→∞−→ det
{sinπ(ξi − ξj)

π(ξi − ξj)

}k

i,j=1
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Anderson model (Random Schrödinger operators)

HRS = −4+ V,

where 4 is the discrete Laplacian in lattice box Λ = [1, n]d ∩ Zd, V is a
random potential (i.e. a diagonal matrix with i.i.d. entries).

In d = 1 it corresponds to a narrow band matrix with i.i.d. diagonal

HRS =



V1 1 0 0 . . . 0
1 V2 1 0 . . . 0
0 1 V3 1 . . . 0
...

...
...

. . .
...

...
0 . . . 0 1 Vn−1 1
0 . . . 0 0 1 Vn


.

Localization, Poisson local spectral statistics (Fröhlich, Spencer,
Aizenman, Molchanov )
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Random band matrices
Intermediate model that interpolates between random Schrödinger
operator and Wigner matrices.

Λ = [1, n]d ∩ Zd is a lattice box, N = nd.

H = {Hjk}j,k∈Λ, H = H∗, E{Hjk} = 0.

Entries are independent (up to the symmetry) but no longer identically
distributed. Variance is given by a band profile J (even function with
compact support or rapid decay)

E{|Hjk|2} =
1

Wd J
( |j− k|

W

)
Key parameter: band width W ∈ [1;N].

It also has nontrivial spatial structure like RS, but technically more
accessible.
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Anderson transition in random band matrices

W = O(1) [∼ random Schrödinger] ←→ W = N [Wigner matrices]

Varying W, we can see the transition between localization and
delocalization

Conjecture (in the bulk of the spectrum):

d = 1 : ` ∼W2 W�
√
N Delocalization, GUE statistics

W�
√
N Localization, Poisson statistics

d = 2 : ` ∼ eW W� log N Delocalization, GUE statistics
W� log N Localization, Poisson statistics

d ≥ 3 : ` ∼ N W ≥W0 Delocalization, GUE statistics
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At the present time only some upper and lower bounds on the order of
localization length are proved rigorously (d = 1).

Schenker (2009) ` ≤W8 – localization techniques;
Erdős, Yau, Yin (2010) ` ≥W – RM methods;

By the developing the Erdős-Yau approach, other results were obtained.
In these bounds the localization length is controlled in a rather weak
sense, i.e. the estimates hold for “most” eigenfunctions only:

Erdős, Knowles (2011): `�W7/6;
Erdős, Knowles, Yau, Yin (2012): `�W5/4 (not uniform in N).

Main problem: to control of the resolvent (H− λ− iη)−1 for η ∼ 1/N.
The techniques allows to obtain the control only for η ∼ 1/W.
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Another method, which allows to work with random operators with
non-trivial spatial structures, is supersymmetry techniques (SUSY),
which based on the representation of the determinant as a integral over
the Grassmann variables.

This method is widely (and successively) used in the physics literature
and is potentially very powerful but the rigorous control of the integral
representations, which can be obtained by this method, is quite
difficult.

Part of the formalism is rigorous and can be used. However, good
understanding of saddle point approximation on the supermanifold is
still a major challenge for mathematicians.
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SUSY results, characteristic polynomials

Results for the correlation functions of characteristic polynomials
(d = 1).

Consider Gaussian case and take special covariance (i.e. take specific J,
which is useful for SUSY formalism).

Then

TS, 2013: if W�
√
N,

E
{
det
(
Hn−λ0−x/Nρ(λ0)

)
det
(
Hn−λ0−y/Nρ(λ0)

)}
∼ sinπ(x− y)

π(x− y)

TS, in progress: if W�
√
N,

E
{
det
(
Hn − λ0 − x/Nρ(λ0)

)
det
(
Hn − λ0 − y/Nρ(λ0)

)}
∼ 1
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SUSY results, full model
Consider the special case of random band matrices, namely, block band
matrices (introduced and studied by Wegner).

TS, 2014: Gaussian case, special three diagonal block band
matrices. If W ∼ N, then

1
(Nρ(λ0))2 R2

(
λ0+x/Nρ(λ0), λ0+y/Nρ(λ0)

) N→∞−→ 1−sin2(π(x− y))

π2(x− y)2

Erdős, Bao, 2015: Combining this techniques with Green’s
function comparison strategy (Erdős-Yau), they proved

` ≥W7/6

in a strong sense for the block band matrices with more or less
general element’s distribution (subexponential tails, four Gaussian
moments).
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Open problems

In d = 1, improvement of existing bounds for localization length up
to the crossover point (from both sides), and the proof of
universality of the correlation functions for W�

√
N.

Universality of the characteristic polynomials for d > 1.
The order of localization length and universality of the correlation
functions for d > 1.
More general covariance, non-Gaussian case. . .
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