# Computations in the Topology of Locally Symmetric Spaces 

Mark McConnell<br>Princeton University

November 8, 2017

Joint with:

Avner Ash, Paul Gunnells, Dan Yasaki
Bob MacPherson

## Introduction

$\mathbf{G}=$ connected semisimple algebraic group defined over $\mathbb{Q}$.
$G=\mathbf{G}(\mathbb{R})$. Maximal compact $K \subset G$.
$X=G / K=$ symmetric space.
$\Gamma=$ arithmetic subgroup.
Example. $G=\mathrm{SL}_{n}(\mathbb{R}) . K=\mathrm{SO}_{n}(\mathbb{R}) . \Gamma \subseteq \mathrm{SL}_{n}(\mathbb{Z})$ congruence subgroup.

Example. $\mathbf{G}$ is the restriction of scalars of $\mathrm{GL}_{n}$ over a number field $k$ with ring of integers $\mathcal{O}_{k}$.
Real quadratic $k$ : Hilbert modular forms.
Imaginary quadratic $k$ : Bianchi groups.

Our $\mathbf{G}$ have $X$ contractible. $\Gamma$ acts properly discontinuously on $X$.

If $\Gamma$ is torsion-free,

$$
H^{*}(\Gamma ; \mathbb{C})=H^{*}(\Gamma \backslash X ; \mathbb{C})
$$

$M=$ rational finite-dimensional representation of $G$ over a field $\mathbb{F}$ (typically $\mathbb{C}$ or $\mathbb{F}_{p}$ ). Gives a rep'n of $\Gamma$, hence a local system $\mathcal{M}$ on $\Gamma \backslash X$, and

$$
\begin{equation*}
H^{*}(\Gamma ; M)=H^{*}(\Gamma \backslash X ; \mathcal{M}) \tag{1}
\end{equation*}
$$

If $\Gamma$ has torsion, (1) is still true as long as the characteristic of $\mathbb{F}$ does not divide the order of any torsion element of $\Gamma$.

Theorem.

$$
\begin{equation*}
H^{*}(\Gamma ; M)=H_{\mathrm{cusp}}^{*}(\Gamma ; M) \oplus \bigoplus_{\{P\}} H_{\{P\}}^{*}(\Gamma ; M) \tag{2}
\end{equation*}
$$

where the sum is over the set of classes of associate proper $\mathbb{Q}$-parabolic subgroups of $G$.

## Projects We've Done.

- Compute the terms in (2) explicitly.
- Compute the Hecke operators on $H^{*}(\Gamma ; M)$, which will help identify the terms on the right.
- Galois representations.
- Compute both non-torsion and torsion classes.


## Case of $\mathrm{SL}_{n}$ : Lattices

$G=\mathrm{SL}_{n}(\mathbb{R})$ is the space of (det 1$)$ bases of $\mathbb{R}^{n}$ by row vectors.
$\mathrm{SL}_{n}(\mathbb{Z}) \backslash G$ is the space of lattices in $\mathbb{R}^{n}$.
$\Gamma \backslash G$ is a space of lattices with extra structure.
Choice of $K \Leftrightarrow$ inner product on lattices.
$X=G / K=$ space of lattice bases, modulo rotations.
$\Gamma \backslash X$ is a space of lattices with extra structure, modulo rotations.

## How to Compute Cohomology

For a lattice $L$, the arithmetic $\min$ is $\min \{\|x\|: x \in L, x \neq 0\}$. The minimal vectors of $L$ are $\{x \in L \mid\|x\|=m(L)\}$.
$L$ is well-rounded if its minimal vectors span $\mathbb{R}^{n}$.
Let $W \subset X$ be the space of bases of well-rounded lattices.
Theorem (Ash, late 1970s).

- There is an $\mathrm{SL}_{n}(\mathbb{Z})$-equivariant deformation retraction $X \rightarrow W$. Call $W$ the well-rounded retract.
- $\operatorname{dim} W=\operatorname{dim} X-(n-1)$, the virtual coh'l dim.
- $W$ is a locally finite regular cell complex. Cells characterized by coords in $\mathbb{Z}^{n}$ of their minimal vectors w.r.t. the basis.
- $\Gamma \backslash W$ is a finite cell complex.

Ash (1984) did this for number fields $k$, not only $\mathbb{Q}$.

Conclusion. $H^{*}(\Gamma ; M)$ can be computed in finite terms.
Appendix 1 discusses our improvements in time and memory performance for these difficult computations.

Example. $n=2$. Then $X=\mathfrak{H}$, the upper half-plane.
Shaded region is fundamental domain for $\mathrm{SL}_{2}(\mathbb{Z})$.
$W$ is the graph.
Vertices of $W$ are bases of the hexagonal lattice $\mathbb{Z}\left[\zeta_{3}\right]$. Edge-centers of $W$ are bases of the square lattice $\mathbb{Z}[i]$.


Example. $n=3$. Then $\operatorname{dim} X=5$ and $\operatorname{dim} W=3$. $W$ is glued together from 3-cells like this one, the Soulé cube.
Four cells meet at each $\triangle$ face, three at each $\square$ face.
Vertices are bases of the $A_{3}=D_{3}$ lattice (oranges at the market).

For example, a "triangle" is a cell of dimension two whose boundary consists of three edges and three vertices. The Soulé cube is a cell of dimension three whose boundary contains four triangles and six hexagons in the following arrangement:


Note. When $k=\mathbb{Q}$, this complex was first constructed by Soulé and Lannes [Sou1] [Sou2].

Theorem (Ash-M, 1996). The well-rounded retraction extends to the Borel-Serre compactification $\bar{X} \rightarrow W$. It is a composition of geodesic flows away from the boundary components.

## Hecke Correspondences

Let $\ell$ be a prime. Take $k \in\{1, \ldots, n\}$.
$\Gamma=\mathrm{SL}_{n}(\mathbb{Z})$ for simplicity. $\Gamma \backslash X$ is the space of lattices.
Given a lattice $L$, there are only finitely many lattices $M \subset L$ with $L / M \cong(\mathbb{Z} / \ell \mathbb{Z})^{k}$.

Def 1. The Hecke correspondence $T(\ell, k)$ is the one-to-many map $\Gamma \backslash X \rightarrow \Gamma \backslash X$ given by $L \mapsto M$.

For $\Gamma$ of level $N$, need to modify Def 1 when $\ell \mid N$.
Example for $\mathrm{SL}_{2}(\mathbb{Z})$ on next page. $T(2,1)$ has 3 sublattices, $T(3,1)$ has 4 sublattices, and $T(6,1)$ has the 12 intersections.


Alternative def: $t=\operatorname{diag}(1, \ldots, 1, \ell, \ldots, \ell)$ with $k$ copies of $\ell$. $\Gamma_{0}(N, k)=$ matrices in $\mathrm{SL}_{n}(\mathbb{Z})$ congruent to $\left[\begin{array}{ll}* & * \\ 0 & *\end{array}\right]$ modulo $N$; top left block is $(n-k) \times(n-k)$, bottom right $k \times k$.

$$
\begin{gathered}
\left(\Gamma \cap \Gamma_{0}(\ell, k)\right) \backslash X \\
r \downarrow \quad \downarrow s \\
\Gamma \backslash X
\end{gathered}
$$

where $r:\left(\Gamma \cap \Gamma_{0}(\ell, k)\right) g \mapsto \Gamma g, \quad s:\left(\Gamma \cap \Gamma_{0}(\ell, k)\right) g \mapsto \Gamma t g$.
Def 2. The Hecke correspondence $T(\ell, k)$ is $s \circ r^{-1}$.
Def. The Hecke operator $T(\ell, k)$ on $H^{*}(\Gamma \backslash X ; \mathcal{M})$ is $r_{*} \circ s^{*}$.
These $(\forall \ell, k)$ generate a commutative algebra, the Hecke algebra.

## How to Compute Hecke Operators

Difficulty: Hecke correspondences do not preserve $W$.
If you retract, cells maps to fractions of cells.


## The Sharbly ${ }^{1}$ Complex

For $k \geqslant 0$, consider $n \times(n+k)$ matrices $A$ over $\mathbb{Q}$.
$\mathrm{Sh}_{k}=$ formal $\mathbb{Z}$-linear combinations of symbols $[A]$, the sharblies.

- Permuting columns of $A$ multiplies $[A]$ by the sign of the permutation.
- Multiplying a column of $A$ by a non-zero scalar does not change $[A]$.
- If $\operatorname{rank} A<n$, then $[A]$ identified with 0 .

$$
\partial_{k}:\left[v_{1}, \ldots, v_{n+k}\right] \mapsto \sum_{i=1}^{n+k}(-1)^{i}\left[v_{1}, \ldots, \hat{v}_{i}, \ldots, v_{n+k}\right]
$$

$\left(\mathrm{Sh}_{*}, \partial_{*}\right)$ is the sharbly complex.
${ }^{1}$ R. Lee, R. H. Szczarba, On $H_{*}$ and $H^{*}$ of Congr. Subgps., Invent., 1976

Tits building $T_{n}$ : simplicial complex whose vertices are the proper non-zero subspaces of $\mathbb{Q}^{n}$, with simplices corresponding to flags. Homotopic to a bouquet of spheres $S^{n-2}$. The Steinberg module is $\mathrm{St}=\tilde{H}_{n-2}\left(T_{n}\right)$.

By Borel-Serre duality, if $\Gamma$ torsion-free, the Steinberg module is the dualizing module.

The Steinberg homology of $\Gamma$ is $H_{*}\left(\Gamma ; \mathrm{St} \otimes_{\mathbb{Z}} M\right)$.
Theorem (L-S). $\cdots \rightarrow \mathrm{Sh}_{1} \rightarrow \mathrm{Sh}_{0} \rightarrow \mathrm{St}$ is an exact sequence of $\mathrm{GL}_{n}(\mathbb{Q})$-modules. If $\Gamma$ torsion-free, the sharbly complex is a $\Gamma$-free resolution of the Steinberg module.

The sharbly homology of $\Gamma$ is $H_{*}\left(\Gamma ; \mathrm{Sh}_{*} \otimes_{\mathbb{Z}} M\right)$.

If $\Gamma$ torsion-free, all are the same: $H^{*}(\Gamma ; M), H^{*}(\Gamma \backslash X ; \mathcal{M})$, $H^{*}(\Gamma \backslash \bar{X} ; \mathcal{M}), H^{*}(\Gamma \backslash W ; \mathcal{M})$, Steinberg homology, sharbly homology.

Also all the same if $M$ is over $\mathbb{F}$ of characteristic $p$ and $p$ does not divide the order of any torsion element of $\Gamma$.

Otherwise, see Appendix 2.

Cells of $W$ are characterized by their minimal vectors $w_{1}, \ldots, w_{n+k} \in \mathbb{Z}^{n}$. Cochains for $W$ map into the sharbly complex as $\left[w_{1}, \ldots, w_{n+k}\right]$, the well-rounded (or Voronoi) sharbly subcomplex.

Only works for a range of dimensions of cells of $W$. Always works for $n=2,3$. For $n=4$, fortunately, the range contains the range of cuspidal cohomology.

Hecke correspondences act on the sharbly complex. They do not carry $W$ to $W$.

Conclusion. In Ash-Gunnells-M computations for $\mathrm{SL}_{4}$, we compute sharbly homology, not $H^{*}(\Gamma \backslash W ; \mathcal{M})$.

For char 0 or $p>5$, all these (co)homologies are the same. For $p=2,3,5$ for $\mathrm{SL}_{4}$, see Appendix 2.

## Computing Hecke Operators in Top Degree

$H^{\mathrm{vcd}}$ corresponds to $\mathrm{Sh}_{0}$, symbols on $n \times n$ matrices.
For $n=2$ and 3 , this is in the cuspidal range.

For $n \leqslant 4$, well-rounded 0 -sharblies have $|\operatorname{det}|=1$.
Hecke correspondences carry these to matrices of $|\operatorname{det}|>1$.
Ash-Rudolph (1979): algorithm to replace $[A]$ with $\sum\left[A_{j}\right]$, homologous in sharbly homology, and where $\left|\operatorname{det} A_{j}\right|$ are decreasing. Recursively, replace any 0 -cycle with an equivalent cycle supported on $W$.

Generalizes modular symbols for $\mathrm{SL}_{2}$ (Birch, Manin, Mazur, Merel, and Cremona). Generalizes continued fractions.

## Computing Hecke Operators in Top Degree Minus One

For $n=4$, top degree is $H^{6}$, but cuspidal range is $H^{5}$ and $H^{4}$.
Gunnells has a Hecke operator algorithm for $H^{5}$ in this case. $H^{5}$ is $\mathrm{Sh}_{1}$, using $4 \times 5$ matrices. Three classes of well-rounded sharblies up to $\mathrm{SL}_{4}(\mathbb{Z})$ :

$$
\left[\begin{array}{lllll}
1 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0
\end{array}\right],\left[\begin{array}{lllll}
1 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 1 & 0
\end{array}\right],\left[\begin{array}{lllll}
1 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 1 & 1
\end{array}\right] .
$$

All $4 \times 4$ subdeterminants are 0 or 1 .
Gunnells uses a detailed study of $4 \times 5$ matrices and their subdeterminants.

Uses LLL to make subdeterminants smaller. Not proved to converge, but has never failed.

## The Well-Tempered Retract

An algorithm for Hecke operators on $H^{i}(W ; M)$ in all degrees $i$.
M. and Bob MacPherson, 2016-17.
$\mathbf{G}=$ restriction of scalars of $\mathrm{GL}_{n}$ for any number field $k$. Any $n$.
Have working code for $\Gamma \subseteq \mathrm{SL}_{n}(\mathbb{Z}), n=2$ and 3 . (Assume these cases in this exposition.)

Fix lattice $L$. Prime $\ell \nmid N . k \in\{1, \ldots, n\}$.
Fix $M \subseteq L$, one of the sublattices so $L / M \cong(\mathbb{Z} / \ell \mathbb{Z})^{k}$.
$t \in[1, \ell]$ real parameter, the temperament.
Definition. $y \in L$ has tempered length

$$
\left\{\begin{array}{cl}
t \cdot\|y\| & \text { if } y \notin M \\
\|y\| & \text { if } y \in M .
\end{array}\right.
$$

Do well-rounded retraction with this notion, in each $t$-slice separately. Get $\tilde{W} \subset X \times[1, \ell]$, the well-tempered retract. Slice at $t$ is $\tilde{W}_{t}$. The $\Gamma$-action preserves slices.

Continuously interpolates between $\tilde{W}_{1}$, making $L$ well-rounded; and $\tilde{W}_{\ell}$, making $M$ well-rounded.

Hecke operator $T(\ell, k)$ defined by $\tilde{W}_{1}$ on left, $\tilde{W}_{\ell}$ on right.

$$
\begin{gathered}
\left(\Gamma \cap \Gamma_{0}(\ell, k)\right) \backslash \tilde{W} \\
\downarrow \quad \downarrow \\
\Gamma \backslash W
\end{gathered}
$$

$X$ is the space of positive-definite matrices $\left(x_{i j}\right)$ modulo homotheties. Open set in $\mathbb{R}^{n(n+1) / 2}$. Linear coordinates.

Fact. A bounded subset of $\tilde{W}$ can be computed as a big linear programming problem in the variables $x_{i j}$ and $u=1 / t^{2}$.

Compute a bounded subset of a polyhedron dual to $\tilde{W}$, the Hecketope. Uses Sage's class Polyhedron over $\mathbb{Q}$.

Depends on $n, \ell, k$.
Choose the bounds large enough to get all cells mod $\Gamma$.

## Hecke Eigenclasses and Galois Representations

$\mathbb{F}=$ finite field of characteristic $p .\left(\operatorname{Not} \mathbb{Q}_{p}.\right)$
Representation $M$ is over $\mathbb{F}$.
Let $z \in H^{i}(\Gamma ; M)$ be a Hecke eigenclass.
$a(\ell, k)=$ eigenvalue for $T(\ell, k)$.
$\rho: \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}) \rightarrow \mathrm{GL}_{n}(\mathbb{F})$ is a Galois representation, semisimple and continuous.

Def. $\rho$ is attached to $z$ if, $\forall \ell \nmid p N$, the characteristic polynomial of $\rho\left(\mathrm{Frob}_{\ell}\right)$ is

$$
\begin{equation*}
\sum_{k=0}^{n}(-1)^{k} \ell^{k(k-1) / 2} a(\ell, k) X^{k} \tag{3}
\end{equation*}
$$

Def. $\rho$ seems to be attached to $z$ if (3) holds for enough $\ell$ that you are confident of the result. Hope that some $\ell$ determine $\rho$, rest offer check.

## Results

Ash and collaborators have many papers on $\mathrm{SL}_{3}$. Use $\Gamma_{0}(N):=\Gamma_{0}(N, 1)$ for a range of $N$.

Various $M$ : constant coefficients, Dirichlet characters, $\operatorname{Sym}^{r}(x, y, z)$ for a range of $r$.

Give Hecke eigenvalues for a range of $\ell$, and $\rho$ that seem to be attached.

Ash-Grayson-Green (1984) found cuspidal cohomology in $H^{3}\left(\Gamma_{0}(N) ; \mathbb{C}\right)$ for $N=53,61,79,89$. (More found since.)

Report on Ash-Gunnells-M's papers on $H^{5}\left(\Gamma_{0}(N) ; M\right)$ for $\mathrm{SL}_{4}$.
Coefficients $M$ :

- Constant coefficients:
- Characteristic 0 (pretend $\mathbb{F}_{12379}=\mathbb{C}$ ). Did all $N \leqslant 56$, prime $N \leqslant 211$. Largest sparse matrix was 1 M by 4 M .
- $\mathbb{F}_{p}$ for a few $p$ not dividing the order of torsion elements of $\Gamma$ (coefficients in $\mathbb{Z}$ ).
- $\mathbb{F}_{3}, \mathbb{F}_{5}$, and $\mathbb{F}_{2}$.
- (being written, 2017) All nebentypes, i.e., all Dirichlet characters on the bottom-right entry of $\Gamma_{0}(N)$, taking values in $M=\mathbb{F}_{p}$ (generic $p$ ). Did all $N \leqslant 28$, prime $N \leqslant 41$.


## Recall

$$
\begin{equation*}
H^{*}(\Gamma ; M)=H_{\text {cusp }}^{*}(\Gamma ; M) \oplus \bigoplus_{\{P\}} H_{\{P\}}^{*}(\Gamma ; M) \tag{2}
\end{equation*}
$$

We split left side $H^{5}\left(\Gamma_{0}(N) ; M\right)$ into Hecke eigenspaces for the $\ell$ we compute.

Each eigenspace always seems to be attached to a Galois representation we recognize. In fact, uniquely. We partly understand the summands for each $\{P\}$.

We have not yet seen any autochthonous cuspidal cohomology, i.e., not a functorial lifting from a lower-rank group. ©

## What Galois Reps do we Search For?

Let $\mathbb{F}^{\prime}$ be a large enough finite extension of $\mathbb{F}_{p}$.
Let $\chi$ be any Dirichlet character $(\mathbb{Z} / N \mathbb{Z})^{\times} \rightarrow \mathbb{F}^{\prime \times}$.
$\varepsilon=$ cyclotomic character for $p$.
$\mathcal{L}_{1}=\left\{\chi \otimes \varepsilon^{i} \mid \forall \chi, \forall i=0,1,2,3\right\}$.
Let $N_{1} \mid N$. Let $\psi$ be any nebentype character $\left(\mathbb{Z} / N_{1} \mathbb{Z}\right)^{\times} \rightarrow \mathbb{C}^{\times}$. Let $f$ be a classical newform of weight $2,3,4$ for $\Gamma_{1}\left(N_{1}\right)$ with nebentype character $\psi$.
Gives a Galois rep'n $\varphi_{f}$ in characteristic 0 defined over a cyclotomic field $K_{f}$. Let $\mathfrak{P}$ be a prime of $K_{f}$ over $p$. If $\mathbb{F}^{\prime}$ is large enough, $\varphi_{f}$ factors through to a rep'n over $\mathbb{F}^{\prime}$.
$\mathcal{L}_{2}=$ set of all these $\varphi_{f}$.
$\mathcal{L}_{3}=$ symmetric squares of rep'ns in $\mathcal{L}_{2}$.
Tensor together repn's from $\mathcal{L}_{1}, \mathcal{L}_{2}, \mathcal{L}_{3}$. Take direct sums of the tensors so total $\operatorname{dim}=4$.

The cuspidal $\mathrm{SL}_{3}$ classes from AGG appear for $N=53,61, \ldots$.

For $N=41$ and quartic nebentype, a cuspidal $\mathrm{SL}_{3}$ class for that nebentype appears.

We get some classes in $H_{\text {cusp }}^{*}(\Gamma ; M)$. They are functorial liftings from holomorphic Siegel modular forms of weight 3 on $\mathrm{GSp}_{4}(\mathbb{Q})$. Ibukiyama: dims of weight 3 cuspidal Siegel modular forms on the paramodular groups of prime level. Gritsenko constructed a lift from Jacobi forms to Siegel modular forms on the paramodular group; ours are not Gritsenko lifts.

For cusp forms of weight 4 and prime $N$, we conjecture that they lift to cohomology if the central special value $\Lambda(2, f)$ vanishes.

We always observe the "epsilon powers" of the rep'ns are $[0,1,2,3]$. The "epsilon power" of $\varepsilon^{i}$ is $i$, of $\chi$ is 0 , and of $\varphi_{f}$ is [ 0 , weight -1$]$.

## Converses

Ash conjectured (1992) that any eigenclass $z$ has an attached $\rho$. $n=2$ : Eichler-Shimura, and Deligne.
Proved by Scholze (2014). The $\rho$ will be odd.
Conversely,
Conjecture: For any odd $\rho, \exists \Gamma \exists M \exists z$ to which $\rho$ is attached. Conjectured by Ash-Sinnott (2000).
Ash-Doud-Pollack-Sinnott (ADPS): refined to predict which $\Gamma$ and $M$ will arise.
Refined further by Florian Herzig (for generic rep'ns).
When $n=2$, this was Serre's Conjecture. Proved by Khare and Wintenberger (2008).

Next project (Ash-Gunnells-M-Pollack, 2018?) Test the ADPS conjecture.

## Appendix 1: Computational Issues

In our (co)homology calculations, the boundary maps are sparse.
Computing $H^{*}(\Gamma ; \mathcal{M})$ when $M$ is a $\mathbb{Z}$-module needs Smith normal form of the boundary operators $A$. If $A$ is $m \times n$ over $\mathbb{Z}$ of rank $r$, then SNF is

$$
A=P D Q, \quad P \in \mathrm{GL}_{m}(\mathbb{Z}), \quad Q \in \mathrm{GL}_{n}(\mathbb{Z})
$$

and $D$ is diagonal with entries $d_{1}, \ldots, d_{r}$, the elementary divisors, with $d_{i} \mid d_{i+1}$. (Possibly $d_{r+1}=\cdots=0$.)

Two approaches to find elementary divisors.
(•) Find elementary divisors $A \bmod p_{i}^{n_{i}}$ for many primes $p_{i}$ in parallel, and reconstruct $D$ by Chinese remainder theorem.

Dumas-Saunders-Villard 2000
Eberly-Giesbrecht-Giorgi-Storjohann-Villard 2006: sub-cubic complexity on sparse matrices.
(•) Parallel methods don't give you $P$ and $Q$. Need $P, Q, P^{-1}$, $Q^{-1}$ to compute cohomology and Hecke operators. Much slower than parallel methods.

Use a Markowitz pivoting strategy to reduce fill-in of the sparse matrix.

Two tricks I found for computing $H^{i}$ at large level (Ash-Gunnells-M 2009):

1. Store $P_{i-1}$ and $Q_{i}^{-1}$ on disk as a product of elementary matrices. Get their inverses by reading the elementary matrices in reverse order and inverting them.
2. Once you know $Q_{i}$, compute SNF of $\eta=Q_{i} A_{i-1}$, not $A_{i-1}$.

The topmost $\operatorname{rank}\left(D_{i}\right)$ rows of $Q_{i} A_{i-1}$ are zero. This compression lets Markowitz be more intelligent at limiting fill-in for $\eta$.

Improvement on a $13614 \times 52766$ matrix is shown by dotted blue line in the figure [A-G-M 2009, p. 10].


Figure 2. Size of the active region during an SNF computation for $d^{4}$ and $\eta$. Here M denotes million.

I have two main bodies of code.

- Sheafhom, for linear algebra and SNF for large sparse matrices over $\mathbb{Q}, \mathbb{F}_{q}, \mathbb{Z}$, or other PIDs. In Common Lisp. http://www.bluzeandmuse.com/oldMarkGeocities/math.html
- Sage code.
- Find $W$ for $\mathrm{SL}_{n}(\mathbb{Z})$ for any $n$. In practice, $n \leqslant 4$.
- Finite-dim rep'ns of $\Gamma$ over $\mathbb{Q}$ or $\mathbb{F}_{q}$. Rep'n-theory operators $\oplus$, Res, Ind, Coind, $\otimes$.
- Hecke operators: Ash-Rudolph for $H^{i}$ at $i=$ vcd.
- Hecke algorithm with MacPherson for $H^{i}$ for all $i$.

Gunnells and Yasaki have code for $W$ for $\mathrm{SL}_{n}$ for a range of $n$ for $k=\mathbb{Q}$, real and imaginary quadratic fields, and some cubic fields. Also rank-one symmetric spaces like $S U(2,1)$. Hecke algorithms.

## Appendix 2: $\mathrm{SL}_{4}$ Sharbly Homology at $p=2,3,5$

Theorem (A-G-M 2012) If $p$ odd divides the order of a torsion element, then the sharbly homology, Steinberg homology, and well-rounded homology are all the same for $\mathrm{SL}_{4}$ in the cuspidal range. At $p=2$, the Steinberg and well-rounded homologies are the same in this range.

