Computations in the Topology of Locally Symmetric Spaces

Mark McConnell

Princeton University

November 8, 2017

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Joint with:

Avner Ash, Paul Gunnells, Dan Yasaki

Bob MacPherson

Introduction

 \mathbf{G} = connected semisimple algebraic group defined over \mathbb{Q} . $G = \mathbf{G}(\mathbb{R})$. Maximal compact $K \subset G$. X = G/K = symmetric space. Γ = arithmetic subgroup.

Example. $G = SL_n(\mathbb{R})$. $K = SO_n(\mathbb{R})$. $\Gamma \subseteq SL_n(\mathbb{Z})$ congruence subgroup.

Example. G is the restriction of scalars of GL_n over a number field k with ring of integers \mathcal{O}_k . Real quadratic k: Hilbert modular forms. Imaginary quadratic k: Bianchi groups.

Our **G** have X contractible. Γ acts properly discontinuously on X.

If Γ is torsion-free,

$$H^*(\Gamma; \mathbb{C}) = H^*(\Gamma \backslash X; \mathbb{C}).$$

M = rational finite-dimensional representation of G over a field \mathbb{F} (typically \mathbb{C} or \mathbb{F}_p). Gives a rep'n of Γ , hence a local system \mathcal{M} on $\Gamma \setminus X$, and

$$H^*(\Gamma; M) = H^*(\Gamma \backslash X; \mathcal{M}).$$
(1)

If Γ has torsion, (1) is still true as long as the characteristic of \mathbb{F} does not divide the order of any torsion element of Γ .

Theorem.

$$H^*(\Gamma; M) = H^*_{\text{cusp}}(\Gamma; M) \oplus \bigoplus_{\{P\}} H^*_{\{P\}}(\Gamma; M)$$
(2)

where the sum is over the set of classes of associate proper $\mathbb{Q}\text{-}\mathsf{parabolic}$ subgroups of G.

Projects We've Done.

- Compute the terms in (2) explicitly.
- ► Compute the Hecke operators on H*(Γ; M), which will help identify the terms on the right.
- Galois representations.
- Compute both non-torsion and torsion classes.

Case of SL_n : Lattices

 $G = SL_n(\mathbb{R})$ is the space of (det 1) bases of \mathbb{R}^n by row vectors.

 $\operatorname{SL}_n(\mathbb{Z})\backslash G$ is the space of lattices in \mathbb{R}^n .

 $\Gamma \backslash G$ is a space of lattices with extra structure.

Choice of $K \Leftrightarrow$ inner product on lattices.

X = G/K = space of lattice bases, modulo rotations.

 $\Gamma \setminus X$ is a space of lattices with extra structure, modulo rotations.

How to Compute Cohomology

For a lattice L, the arithmetic min is $\min\{||x|| : x \in L, x \neq 0\}$. The minimal vectors of L are $\{x \in L \mid ||x|| = m(L)\}$.

L is well-rounded if its minimal vectors span \mathbb{R}^n .

Let $W \subset X$ be the space of bases of well-rounded lattices.

Theorem (Ash, late 1970s).

- ► There is an SL_n(Z)-equivariant deformation retraction X → W. Call W the well-rounded retract.
- dim $W = \dim X (n-1)$, the virtual coh'l dim.
- ► W is a locally finite regular cell complex. Cells characterized by coords in Zⁿ of their minimal vectors w.r.t. the basis.
- $\Gamma \setminus W$ is a finite cell complex.

Ash (1984) did this for number fields k, not only \mathbb{Q} .

Conclusion. $H^*(\Gamma; M)$ can be computed in finite terms.

Appendix 1 discusses our improvements in time and memory performance for these difficult computations.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Example. n = 2. Then $X = \mathfrak{H}$, the upper half-plane.

Shaded region is fundamental domain for $SL_2(\mathbb{Z})$. W is the graph. Vertices of W are bases of the hexagonal lattice $\mathbb{Z}[\zeta_3]$. Edge-centers of W are bases of the square lattice $\mathbb{Z}[i]$.

Example. n = 3. Then dim X = 5 and dim W = 3. W is glued together from 3-cells like this one, the *Soulé cube*. Four cells meet at each \triangle face, three at each \bigcirc face. Vertices are bases of the $A_3 = D_3$ lattice (oranges at the market).

Theorem (Ash–M, 1996). The well-rounded retraction extends to the Borel-Serre compactification $\bar{X} \rightarrow W$. It is a composition of geodesic flows away from the boundary components.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Hecke Correspondences

Let ℓ be a prime. Take $k \in \{1, \ldots, n\}$.

 $\Gamma = \operatorname{SL}_n(\mathbb{Z})$ for simplicity. $\Gamma \setminus X$ is the space of lattices.

Given a lattice L, there are only finitely many lattices $M \subset L$ with $L/M \cong (\mathbb{Z}/\ell\mathbb{Z})^k$.

Def 1. The *Hecke correspondence* $T(\ell, k)$ is the one-to-many map $\Gamma \setminus X \to \Gamma \setminus X$ given by $L \mapsto M$.

For Γ of level N, need to modify Def 1 when $\ell \mid N$.

Example for $SL_2(\mathbb{Z})$ on next page. T(2,1) has 3 sublattices, T(3,1) has 4 sublattices, and T(6,1) has the 12 intersections.

0 2) 0 2 (0 i) . . . ٠ . ٠ . . . $(1 \ 0$ $(2 \ 0)$ 0 3 0 3 0 6 6 ٠ ٠ . ٠ ٠ . . . - 21 0 6 (0 3) 0 3 0 6 ٠ • . ٠ ٠ ٠ . . • ٠ . ٠ . . 0 3 0 6 0 -6 0 3 . . . ٠ ٠ ٠ . ٠ ٠ ٠ ٠ /3 0 (3 0) (3 1) 0 1 0 2 0 2/ 0 1 ٠ ٠ ٠ ٠ ٠ . . .

.

. .

.

. . . .

Hecke Operators T(3) and T(2) Producing T(6)

Alternative def: $t = \operatorname{diag}(1, \ldots, 1, \ell, \ldots, \ell)$ with k copies of ℓ . $\Gamma_0(N, k) = \operatorname{matrices} \operatorname{in} \operatorname{SL}_n(\mathbb{Z}) \operatorname{congruent} \operatorname{to} \begin{bmatrix} * & * \\ 0 & * \end{bmatrix} \operatorname{modulo} N;$ top left block is $(n - k) \times (n - k)$, bottom right $k \times k$.

 $(\Gamma \cap \Gamma_0(\ell, k)) \backslash X$ $r \downarrow \downarrow s$ $\Gamma \backslash X$

where $r : (\Gamma \cap \Gamma_0(\ell, k))g \mapsto \Gamma g$, $s : (\Gamma \cap \Gamma_0(\ell, k))g \mapsto \Gamma tg$.

Def 2. The Hecke correspondence $T(\ell, k)$ is $s \circ r^{-1}$.

Def. The Hecke operator $T(\ell, k)$ on $H^*(\Gamma \setminus X; \mathcal{M})$ is $r_* \circ s^*$.

These $(\forall \ell, k)$ generate a commutative algebra, the *Hecke algebra*.

How to Compute Hecke Operators

Difficulty: Hecke correspondences do not preserve W.

If you retract, cells maps to fractions of cells.

A B A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

The Sharbly¹ Complex

For $k \ge 0$, consider $n \times (n+k)$ matrices A over \mathbb{Q} .

 $Sh_k = formal \mathbb{Z}$ -linear combinations of symbols [A], the *sharblies*.

- Permuting columns of A multiplies [A] by the sign of the permutation.
- Multiplying a column of A by a non-zero scalar does not change [A].
- ▶ If rank *A* < *n*, then [*A*] identified with 0.

$$\partial_k : [v_1, \dots, v_{n+k}] \mapsto \sum_{i=1}^{n+k} (-1)^i [v_1, \dots, \hat{v}_i, \dots, v_{n+k}].$$

 (Sh_*, ∂_*) is the sharbly complex.

¹R. Lee, R. H. Szczarba, On H_* and H^* of Congr. Subgps., Invent., 1976 Solution 1976 Subgps., Invent., 1976

Tits building T_n : simplicial complex whose vertices are the proper non-zero subspaces of \mathbb{Q}^n , with simplices corresponding to flags. Homotopic to a bouquet of spheres S^{n-2} . The Steinberg module is $\operatorname{St} = \tilde{H}_{n-2}(T_n)$.

By Borel-Serre duality, if Γ torsion-free, the Steinberg module is the dualizing module.

The *Steinberg homology* of Γ is $H_*(\Gamma; \operatorname{St} \otimes_{\mathbb{Z}} M)$.

Theorem (L-S). $\cdots \to \text{Sh}_1 \to \text{Sh}_0 \to \text{St}$ is an exact sequence of $\operatorname{GL}_n(\mathbb{Q})$ -modules. If Γ torsion-free, the sharbly complex is a Γ -free resolution of the Steinberg module.

The sharbly homology of Γ is $H_*(\Gamma; \operatorname{Sh}_* \otimes_{\mathbb{Z}} M)$.

If Γ torsion-free, all are the same: $H^*(\Gamma; M)$, $H^*(\Gamma \setminus X; \mathcal{M})$, $H^*(\Gamma \setminus \overline{X}; \mathcal{M})$, $H^*(\Gamma \setminus W; \mathcal{M})$, Steinberg homology, sharbly homology.

Also all the same if M is over \mathbb{F} of characteristic p and p does not divide the order of any torsion element of Γ .

Otherwise, see Appendix 2.

Cells of W are characterized by their minimal vectors $w_1, \ldots, w_{n+k} \in \mathbb{Z}^n$. Cochains for W map into the sharbly complex as $[w_1, \ldots, w_{n+k}]$, the *well-rounded* (or *Voronoi*) sharbly subcomplex.

Only works for a range of dimensions of cells of W. Always works for n = 2, 3. For n = 4, fortunately, the range contains the range of cuspidal cohomology.

Hecke correspondences act on the sharbly complex. They do not carry \boldsymbol{W} to $\boldsymbol{W}.$

Conclusion. In Ash–Gunnells–M computations for SL_4 , we compute sharbly homology, not $H^*(\Gamma \setminus W; \mathcal{M})$.

For char 0 or p > 5, all these (co)homologies are the same. For p = 2, 3, 5 for SL₄, see Appendix 2.

Computing Hecke Operators in Top Degree

 H^{vcd} corresponds to Sh_0 , symbols on $n \times n$ matrices. For n = 2 and 3, this is in the cuspidal range.

For $n \leq 4$, well-rounded 0-sharblies have $|\det| = 1$.

Hecke correspondences carry these to matrices of $|\det| > 1$.

Ash-Rudolph (1979): algorithm to replace [A] with $\sum [A_j]$, homologous in sharbly homology, and where $|\det A_j|$ are decreasing. Recursively, replace any 0-cycle with an equivalent cycle supported on W.

Generalizes *modular symbols* for SL_2 (Birch, Manin, Mazur, Merel, and Cremona). Generalizes continued fractions.

Computing Hecke Operators in Top Degree Minus One

For n = 4, top degree is H^6 , but cuspidal range is H^5 and H^4 .

Gunnells has a Hecke operator algorithm for H^5 in this case. H^5 is Sh_1 , using 4×5 matrices. Three classes of well-rounded sharblies up to $SL_4(\mathbb{Z})$:

$$\begin{bmatrix} 1 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix}.$$

All 4×4 subdeterminants are 0 or 1.

Gunnells uses a detailed study of 4×5 matrices and their subdeterminants.

Uses LLL to make subdeterminants smaller. Not proved to converge, but has never failed.

An algorithm for Hecke operators on $H^i(W; M)$ in all degrees *i*.

M. and Bob MacPherson, 2016–17.

 $\mathbf{G} = \text{restriction of scalars of } \mathrm{GL}_n$ for any number field k. Any n.

Have working code for $\Gamma \subseteq SL_n(\mathbb{Z})$, n = 2 and 3. (Assume these cases in this exposition.)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Fix lattice L. Prime $\ell \nmid N$. $k \in \{1, ..., n\}$. Fix $M \subseteq L$, one of the sublattices so $L/M \cong (\mathbb{Z}/\ell\mathbb{Z})^k$.

 $t \in [1, \ell]$ real parameter, the *temperament*.

Definition. $y \in L$ has tempered length

 $\begin{cases} t \cdot \|y\| & \text{if } y \notin M \\ \|y\| & \text{if } y \in M. \end{cases}$

Do well-rounded retraction with this notion, in each *t*-slice separately. Get $\tilde{W} \subset X \times [1, \ell]$, the *well-tempered retract*. Slice at *t* is \tilde{W}_t . The Γ -action preserves slices.

Continuously interpolates between \tilde{W}_1 , making L well-rounded; and \tilde{W}_{ℓ} , making M well-rounded.

Hecke operator $T(\ell, k)$ defined by \tilde{W}_1 on left, \tilde{W}_ℓ on right.

$$\begin{array}{c} (\Gamma \cap \Gamma_0(\ell,k)) \backslash \tilde{W} \\ \downarrow & \downarrow \\ \Gamma \backslash W \end{array}$$

X is the space of positive-definite matrices (x_{ij}) modulo homotheties. Open set in $\mathbb{R}^{n(n+1)/2}$. Linear coordinates.

Fact. A bounded subset of \tilde{W} can be computed as a big linear programming problem in the variables x_{ij} and $u = 1/t^2$.

Compute a bounded subset of a polyhedron dual to \tilde{W} , the *Hecketope*. Uses Sage's class Polyhedron over \mathbb{Q} .

Depends on n, ℓ , k.

Choose the bounds large enough to get all cells mod Γ .

Hecke Eigenclasses and Galois Representations

 \mathbb{F} = finite field of characteristic p. (Not \mathbb{Q}_p .) Representation M is over \mathbb{F} . Let $z \in H^i(\Gamma; M)$ be a Hecke eigenclass. $a(\ell, k)$ = eigenvalue for $T(\ell, k)$.

 $\rho: \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to \operatorname{GL}_n(\mathbb{F})$ is a *Galois representation*, semisimple and continuous.

Def. ρ is attached to z if, $\forall \ell \nmid pN$, the characteristic polynomial of $\rho(\operatorname{Frob}_{\ell})$ is

$$\sum_{k=0}^{n} (-1)^{k} \ell^{k(k-1)/2} a(\ell, k) X^{k}.$$
 (3)

Def. ρ seems to be attached to z if (3) holds for enough ℓ that you are confident of the result. Hope that some ℓ determine ρ , rest offer check.

Results

Ash and collaborators have many papers on SL₃. Use $\Gamma_0(N) := \Gamma_0(N, 1)$ for a range of N.

Various M: constant coefficients, Dirichlet characters, Sym^r(x, y, z) for a range of r.

Give Hecke eigenvalues for a range of $\ell,$ and ρ that seem to be attached.

Ash-Grayson-Green (1984) found cuspidal cohomology in $H^3(\Gamma_0(N);\mathbb{C})$ for N = 53, 61, 79, 89. (More found since.)

Report on Ash–Gunnells–M's papers on $H^5(\Gamma_0(N); M)$ for SL₄.

Coefficients M:

- Constant coefficients:
 - ▶ Characteristic 0 (pretend $\mathbb{F}_{12379} = \mathbb{C}$). Did all $N \leq 56$, prime $N \leq 211$. Largest sparse matrix was 1M by 4M.
 - ▶ 𝑘_p for a few p not dividing the order of torsion elements of Γ (coefficients in ℤ).

- \mathbb{F}_3 , \mathbb{F}_5 , and \mathbb{F}_2 .
- being written, 2017) All nebentypes, i.e., all Dirichlet characters on the bottom-right entry of Γ₀(N), taking values in M = 𝔽_p (generic p). Did all N ≤ 28, prime N ≤ 41.

Recall

$$H^*(\Gamma; M) = H^*_{\text{cusp}}(\Gamma; M) \oplus \bigoplus_{\{P\}} H^*_{\{P\}}(\Gamma; M)$$
(2)

We split left side $H^5(\Gamma_0(N); M)$ into Hecke eigenspaces for the ℓ we compute.

Each eigenspace always seems to be attached to a Galois representation we recognize. In fact, *uniquely*. We partly understand the summands for each $\{P\}$.

We have not yet seen any *autochthonous* cuspidal cohomology, i.e., not a functorial lifting from a lower-rank group. ③

What Galois Reps do we Search For?

Let \mathbb{F}' be a large enough finite extension of \mathbb{F}_p .

Let χ be any Dirichlet character $(\mathbb{Z}/N\mathbb{Z})^{\times} \to \mathbb{F}'^{\times}$. $\varepsilon = \text{cyclotomic character for } p.$ $\mathcal{L}_1 = \{\chi \otimes \varepsilon^i \mid \forall \chi, \forall i = 0, 1, 2, 3\}.$

Let $N_1 \mid N$. Let ψ be any nebentype character $(\mathbb{Z}/N_1\mathbb{Z})^{\times} \to \mathbb{C}^{\times}$. Let f be a classical newform of weight 2, 3, 4 for $\Gamma_1(N_1)$ with nebentype character ψ .

Gives a Galois rep'n φ_f in characteristic 0 defined over a cyclotomic field K_f . Let \mathfrak{P} be a prime of K_f over p. If \mathbb{F}' is large enough, φ_f factors through to a rep'n over \mathbb{F}' .

$$\mathcal{L}_2 = \text{set of all these } \varphi_f.$$

 $\mathcal{L}_3 = \text{symmetric squares of rep'ns in } \mathcal{L}_2.$

Tensor together repn's from \mathcal{L}_1 , \mathcal{L}_2 , \mathcal{L}_3 . Take direct sums of the tensors so total dim = 4.

The cuspidal SL_3 classes from AGG appear for $N = 53, 61, \ldots$

For N = 41 and quartic nebentype, a cuspidal SL_3 class for that nebentype appears.

We get some classes in $H^*_{\text{cusp}}(\Gamma; M)$. They are functorial liftings from holomorphic Siegel modular forms of weight 3 on $\text{GSp}_4(\mathbb{Q})$. Ibukiyama: dims of weight 3 cuspidal Siegel modular forms on the paramodular groups of prime level. Gritsenko constructed a lift from Jacobi forms to Siegel modular forms on the paramodular group; ours are not Gritsenko lifts.

For cusp forms of weight 4 and prime N, we conjecture that they lift to cohomology if the central special value $\Lambda(2, f)$ vanishes.

We always observe the "epsilon powers" of the rep'ns are [0, 1, 2, 3]. The "epsilon power" of ε^i is i, of χ is 0, and of φ_f is [0, weight - 1].

Converses

Ash conjectured (1992) that any eigenclass z has an attached ρ . n = 2: Eichler-Shimura, and Deligne. Proved by Scholze (2014). The ρ will be odd.

Conversely,

Conjecture: For any odd ρ , $\exists \Gamma \exists M \exists z$ to which ρ is attached. Conjectured by Ash-Sinnott (2000).

Ash-Doud-Pollack-Sinnott (ADPS): refined to predict which Γ and M will arise.

Refined further by Florian Herzig (for generic rep'ns).

When n = 2, this was Serre's Conjecture. Proved by Khare and Wintenberger (2008).

Next project (Ash–Gunnells–M–Pollack, 2018?) Test the ADPS conjecture.

Appendix 1: Computational Issues

In our (co)homology calculations, the boundary maps are sparse.

Computing $H^*(\Gamma; \mathcal{M})$ when M is a \mathbb{Z} -module needs *Smith normal* form of the boundary operators A. If A is $m \times n$ over \mathbb{Z} of rank r, then SNF is

$$A = PDQ, \qquad P \in \operatorname{GL}_m(\mathbb{Z}), \quad Q \in \operatorname{GL}_n(\mathbb{Z}),$$

and D is diagonal with entries d_1, \ldots, d_r , the elementary divisors, with $d_i \mid d_{i+1}$. (Possibly $d_{r+1} = \cdots = 0$.)

Two approaches to find elementary divisors.

(•) Find elementary divisors $A \mod p_i^{n_i}$ for many primes p_i in parallel, and reconstruct D by Chinese remainder theorem.

Dumas–Saunders–Villard 2000 Eberly–Giesbrecht–Giorgi–Storjohann–Villard 2006: sub-cubic complexity on sparse matrices.

(•) Parallel methods don't give you P and Q. Need P, Q, P^{-1} , Q^{-1} to compute cohomology and Hecke operators. Much slower than parallel methods.

Use a Markowitz pivoting strategy to reduce fill-in of the sparse matrix.

Two tricks I found for computing H^i at large level (Ash–Gunnells–M 2009):

$$\cdots \leftarrow C^{i+1} \xleftarrow{P_i D_i Q_i}{A_i} C^i \xleftarrow{P_{i-1} D_{i-1} Q_{i-1}}{A_{i-1}} \leftarrow C^{i-1} \cdots$$

1. Store P_{i-1} and Q_i^{-1} on disk as a product of elementary matrices. Get their inverses by reading the elementary matrices in reverse order and inverting them.

2. Once you know Q_i , compute SNF of $\eta = Q_i A_{i-1}$, not A_{i-1} .

The topmost $rank(D_i)$ rows of $Q_i A_{i-1}$ are zero. This compression lets Markowitz be more intelligent at limiting fill-in for η .

Improvement on a 13614×52766 matrix is shown by dotted blue line in the figure [A–G–M 2009, p. 10].

FIGURE 2. Size of the active region during an SNF computation for d^4 and η . Here M denotes million.

I have two main bodies of code.

- ► SHEAFHOM, for linear algebra and SNF for large sparse matrices over Q, F_q, Z, or other PIDs. In Common Lisp. http://www.bluzeandmuse.com/oldMarkGeocities/math.html
- Sage code.
 - Find W for $SL_n(\mathbb{Z})$ for any n. In practice, $n \leq 4$.
 - Finite-dim rep'ns of Γ over Q or F_q. Rep'n-theory operators ⊕, Res, Ind, Coind, ⊗.
 - Hecke operators: Ash-Rudolph for H^i at i = vcd.
 - Hecke algorithm with MacPherson for H^i for all *i*.

Gunnells and Yasaki have code for W for SL_n for a range of n for $k = \mathbb{Q}$, real and imaginary quadratic fields, and some cubic fields. Also rank-one symmetric spaces like SU(2, 1). Hecke algorithms. Appendix 2: SL_4 Sharbly Homology at p = 2, 3, 5

Theorem (A–G–M 2012) If p odd divides the order of a torsion element, then the sharbly homology, Steinberg homology, and well-rounded homology are all the same for SL_4 in the cuspidal range. At p = 2, the Steinberg and well-rounded homologies are the same in this range.