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Introduction

G = connected semisimple algebraic group defined over Q.
G = G(R). Maximal compact K ⊂ G.
X = G/K = symmetric space.
Γ = arithmetic subgroup.

Example. G = SLn(R). K = SOn(R). Γ ⊆ SLn(Z) congruence
subgroup.

Example. G is the restriction of scalars of GLn over a number
field k with ring of integers Ok.
Real quadratic k: Hilbert modular forms.
Imaginary quadratic k: Bianchi groups.



Our G have X contractible. Γ acts properly discontinuously on X.

If Γ is torsion-free,

H∗(Γ;C) = H∗(Γ\X;C).

M = rational finite-dimensional representation of G over a field F
(typically C or Fp). Gives a rep’n of Γ, hence a local system M on
Γ\X, and

H∗(Γ;M) = H∗(Γ\X;M). (1)

If Γ has torsion, (1) is still true as long as the characteristic of F
does not divide the order of any torsion element of Γ.



Theorem.

H∗(Γ;M) = H∗cusp(Γ;M)⊕
⊕

{P}

H∗{P}(Γ;M) (2)

where the sum is over the set of classes of associate proper
Q-parabolic subgroups of G.

Projects We’ve Done.

I Compute the terms in (2) explicitly.

I Compute the Hecke operators on H∗(Γ;M), which will help
identify the terms on the right.

I Galois representations.

I Compute both non-torsion and torsion classes.



Case of SLn: Lattices

G = SLn(R) is the space of (det 1) bases of Rn by row vectors.

SLn(Z)\G is the space of lattices in Rn.

Γ\G is a space of lattices with extra structure.

Choice of K ⇔ inner product on lattices.

X = G/K = space of lattice bases, modulo rotations.

Γ\X is a space of lattices with extra structure, modulo rotations.



How to Compute Cohomology

For a lattice L, the arithmetic min is min{‖x‖ : x ∈ L, x 6= 0}.
The minimal vectors of L are {x ∈ L | ‖x‖ = m(L)}.

L is well-rounded if its minimal vectors span Rn.

Let W ⊂ X be the space of bases of well-rounded lattices.

Theorem (Ash, late 1970s).

I There is an SLn(Z)-equivariant deformation retraction
X →W . Call W the well-rounded retract.

I dimW = dimX − (n− 1), the virtual coh’l dim.

I W is a locally finite regular cell complex. Cells characterized
by coords in Zn of their minimal vectors w.r.t. the basis.

I Γ\W is a finite cell complex.

Ash (1984) did this for number fields k, not only Q.



Conclusion. H∗(Γ;M) can be computed in finite terms.

Appendix 1 discusses our improvements in time and memory
performance for these difficult computations.



Example. n = 2. Then X = H, the upper half-plane.

Shaded region is fundamental domain for SL2(Z).
W is the graph.
Vertices of W are bases of the hexagonal lattice Z[ζ3].
Edge-centers of W are bases of the square lattice Z[i].



Example. n = 3. Then dimX = 5 and dimW = 3.
W is glued together from 3-cells like this one, the Soulé cube.
Four cells meet at each 4 face, three at each 7 face.
Vertices are bases of the A3 = D3 lattice (oranges at the market).



Theorem (Ash–M, 1996). The well-rounded retraction extends to
the Borel-Serre compactification X̄ →W . It is a composition of
geodesic flows away from the boundary components.



Hecke Correspondences

Let ` be a prime. Take k ∈ {1, . . . , n}.

Γ = SLn(Z) for simplicity. Γ\X is the space of lattices.

Given a lattice L, there are only finitely many lattices M ⊂ L with
L/M ∼= (Z/`Z)k.

Def 1. The Hecke correspondence T (`, k) is the one-to-many map
Γ\X → Γ\X given by L 7→M .

For Γ of level N , need to modify Def 1 when ` | N .

Example for SL2(Z) on next page. T (2, 1) has 3 sublattices,
T (3, 1) has 4 sublattices, and T (6, 1) has the 12 intersections.



Hecke Operators T (3) and T (2) Producing T (6)
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Alternative def: t = diag(1, . . . , 1, `, . . . , `) with k copies of `.

Γ0(N, k) = matrices in SLn(Z) congruent to

[
∗ ∗
0 ∗

]
modulo N ;

top left block is (n− k)× (n− k), bottom right k × k.

(Γ ∩ Γ0(`, k))\X
r ↓ ↓ s

Γ\X

where r : (Γ ∩ Γ0(`, k))g 7→ Γg, s : (Γ ∩ Γ0(`, k))g 7→ Γtg.

Def 2. The Hecke correspondence T (`, k) is s ◦ r−1.

Def. The Hecke operator T (`, k) on H∗(Γ\X;M) is r∗ ◦ s∗.

These (∀`, k) generate a commutative algebra, the Hecke algebra.



How to Compute Hecke Operators

Difficulty: Hecke correspondences do not preserve W .

If you retract, cells maps to fractions of cells.



The Sharbly1 Complex

For k > 0, consider n× (n+ k) matrices A over Q.

Shk = formal Z-linear combinations of symbols [A], the sharblies.

I Permuting columns of A multiplies [A] by the sign of the
permutation.

I Multiplying a column of A by a non-zero scalar does not
change [A].

I If rankA < n, then [A] identified with 0.

∂k : [v1, . . . , vn+k] 7→
n+k∑

i=1

(−1)i[v1, . . . , v̂i, . . . , vn+k].

(Sh∗, ∂∗) is the sharbly complex.

1R. Lee, R. H. Szczarba, On H∗ and H∗ of Congr. Subgps., Invent., 1976.



Tits building Tn: simplicial complex whose vertices are the proper
non-zero subspaces of Qn, with simplices corresponding to flags.
Homotopic to a bouquet of spheres Sn−2. The Steinberg module
is St = H̃n−2(Tn).

By Borel-Serre duality, if Γ torsion-free, the Steinberg module is
the dualizing module.

The Steinberg homology of Γ is H∗(Γ; St⊗Z M).

Theorem (L-S). · · · → Sh1 → Sh0 → St is an exact sequence of
GLn(Q)-modules. If Γ torsion-free, the sharbly complex is a Γ-free
resolution of the Steinberg module.

The sharbly homology of Γ is H∗(Γ; Sh∗ ⊗Z M).



If Γ torsion-free, all are the same: H∗(Γ;M), H∗(Γ\X;M),
H∗(Γ\X̄;M), H∗(Γ\W ;M), Steinberg homology, sharbly
homology.

Also all the same if M is over F of characteristic p and p does not
divide the order of any torsion element of Γ.

Otherwise, see Appendix 2.



Cells of W are characterized by their minimal vectors
w1, . . . , wn+k ∈ Zn. Cochains for W map into the sharbly complex
as [w1, . . . , wn+k], the well-rounded (or Voronoi) sharbly
subcomplex.

Only works for a range of dimensions of cells of W . Always works
for n = 2, 3. For n = 4, fortunately, the range contains the range
of cuspidal cohomology.

Hecke correspondences act on the sharbly complex. They do not
carry W to W .

Conclusion. In Ash–Gunnells–M computations for SL4, we
compute sharbly homology, not H∗(Γ\W ;M).

For char 0 or p > 5, all these (co)homologies are the same.
For p = 2, 3, 5 for SL4, see Appendix 2.



Computing Hecke Operators in Top Degree

Hvcd corresponds to Sh0, symbols on n× n matrices.
For n = 2 and 3, this is in the cuspidal range.

For n 6 4, well-rounded 0-sharblies have |det | = 1.

Hecke correspondences carry these to matrices of | det | > 1.

Ash–Rudolph (1979): algorithm to replace [A] with
∑

[Aj ],
homologous in sharbly homology, and where | detAj | are
decreasing. Recursively, replace any 0-cycle with an equivalent
cycle supported on W .

Generalizes modular symbols for SL2 (Birch, Manin, Mazur, Merel,
and Cremona). Generalizes continued fractions.



Computing Hecke Operators in Top Degree Minus One

For n = 4, top degree is H6, but cuspidal range is H5 and H4.

Gunnells has a Hecke operator algorithm for H5 in this case. H5 is
Sh1, using 4× 5 matrices. Three classes of well-rounded sharblies
up to SL4(Z):

[
1 0 0 0 1
0 1 0 0 1
0 0 1 0 0
0 0 0 1 0

]
,

[
1 0 0 0 1
0 1 0 0 1
0 0 1 0 1
0 0 0 1 0

]
,

[
1 0 0 0 1
0 1 0 0 1
0 0 1 0 1
0 0 0 1 1

]
.

All 4× 4 subdeterminants are 0 or 1.

Gunnells uses a detailed study of 4× 5 matrices and their
subdeterminants.

Uses LLL to make subdeterminants smaller. Not proved to
converge, but has never failed.



The Well-Tempered Retract

An algorithm for Hecke operators on H i(W ;M) in all degrees i.

M. and Bob MacPherson, 2016–17.

G = restriction of scalars of GLn for any number field k. Any n.

Have working code for Γ ⊆ SLn(Z), n = 2 and 3. (Assume these
cases in this exposition.)



Fix lattice L. Prime ` - N . k ∈ {1, . . . , n}.
Fix M ⊆ L, one of the sublattices so L/M ∼= (Z/`Z)k.

t ∈ [1, `] real parameter, the temperament.

Definition. y ∈ L has tempered length

{
t · ‖y‖ if y /∈M
‖y‖ if y ∈M.

Do well-rounded retraction with this notion, in each t-slice
separately. Get W̃ ⊂ X × [1, `], the well-tempered retract. Slice
at t is W̃t. The Γ-action preserves slices.

Continuously interpolates between
W̃1, making L well-rounded; and
W̃`, making M well-rounded.



Hecke operator T (`, k) defined by W̃1 on left, W̃` on right.

(Γ ∩ Γ0(`, k))\W̃
↓ ↓
Γ\W

X is the space of positive-definite matrices (xij) modulo
homotheties. Open set in Rn(n+1)/2. Linear coordinates.

Fact. A bounded subset of W̃ can be computed as a big linear
programming problem in the variables xij and u = 1/t2.

Compute a bounded subset of a polyhedron dual to W̃ , the
Hecketope. Uses Sage’s class Polyhedron over Q.

Depends on n, `, k.

Choose the bounds large enough to get all cells mod Γ.



Hecke Eigenclasses and Galois Representations

F = finite field of characteristic p. (Not Qp.)
Representation M is over F.
Let z ∈ H i(Γ;M) be a Hecke eigenclass.
a(`, k) = eigenvalue for T (`, k).

ρ : Gal(Q/Q)→ GLn(F) is a Galois representation, semisimple
and continuous.

Def. ρ is attached to z if, ∀` - pN , the characteristic polynomial
of ρ(Frob`) is

n∑

k=0

(−1)k`k(k−1)/2a(`, k)Xk. (3)

Def. ρ seems to be attached to z if (3) holds for enough ` that
you are confident of the result. Hope that some ` determine ρ, rest
offer check.



Results

Ash and collaborators have many papers on SL3.
Use Γ0(N) := Γ0(N, 1) for a range of N .

Various M : constant coefficients, Dirichlet characters,
Symr(x, y, z) for a range of r.

Give Hecke eigenvalues for a range of `, and ρ that seem to be
attached.

Ash–Grayson–Green (1984) found cuspidal cohomology in
H3(Γ0(N);C) for N = 53, 61, 79, 89. (More found since.)



Report on Ash–Gunnells–M’s papers on H5(Γ0(N);M) for SL4.

Coefficients M :
I Constant coefficients:

I Characteristic 0 (pretend F12379 = C). Did all N 6 56, prime
N 6 211. Largest sparse matrix was 1M by 4M.

I Fp for a few p not dividing the order of torsion elements of Γ
(coefficients in Z).

I F3, F5, and F2.

I (being written, 2017) All nebentypes, i.e., all Dirichlet
characters on the bottom-right entry of Γ0(N), taking values
in M = Fp (generic p). Did all N 6 28, prime N 6 41.



Recall

H∗(Γ;M) = H∗cusp(Γ;M)⊕
⊕

{P}

H∗{P}(Γ;M) (2)

We split left side H5(Γ0(N);M) into Hecke eigenspaces for the `
we compute.

Each eigenspace always seems to be attached to a Galois
representation we recognize. In fact, uniquely. We partly
understand the summands for each {P}.

We have not yet seen any autochthonous cuspidal cohomology,
i.e., not a functorial lifting from a lower-rank group. /



What Galois Reps do we Search For?

Let F′ be a large enough finite extension of Fp.

Let χ be any Dirichlet character (Z/NZ)× → F′×.
ε = cyclotomic character for p.
L1 = {χ⊗ εi | ∀χ, ∀i = 0, 1, 2, 3}.

Let N1 | N . Let ψ be any nebentype character (Z/N1Z)× → C×.
Let f be a classical newform of weight 2, 3, 4 for Γ1(N1) with
nebentype character ψ.
Gives a Galois rep’n ϕf in characteristic 0 defined over a
cyclotomic field Kf . Let P be a prime of Kf over p. If F′ is large
enough, ϕf factors through to a rep’n over F′.
L2 = set of all these ϕf .
L3 = symmetric squares of rep’ns in L2.

Tensor together repn’s from L1, L2, L3. Take direct sums of the
tensors so total dim = 4.



The cuspidal SL3 classes from AGG appear for N = 53, 61, . . . .

For N = 41 and quartic nebentype, a cuspidal SL3 class for that
nebentype appears.

We get some classes in H∗cusp(Γ;M). They are functorial liftings
from holomorphic Siegel modular forms of weight 3 on GSp4(Q).
Ibukiyama: dims of weight 3 cuspidal Siegel modular forms on the
paramodular groups of prime level. Gritsenko constructed a lift
from Jacobi forms to Siegel modular forms on the paramodular
group; ours are not Gritsenko lifts.

For cusp forms of weight 4 and prime N , we conjecture that they
lift to cohomology if the central special value Λ(2, f) vanishes.

We always observe the “epsilon powers” of the rep’ns are
[0, 1, 2, 3]. The “epsilon power” of εi is i, of χ is 0, and of ϕf is
[0,weight− 1].



Converses

Ash conjectured (1992) that any eigenclass z has an attached ρ.
n = 2: Eichler-Shimura, and Deligne.
Proved by Scholze (2014). The ρ will be odd.

Conversely,
Conjecture: For any odd ρ, ∃Γ ∃M ∃z to which ρ is attached.
Conjectured by Ash-Sinnott (2000).
Ash-Doud-Pollack-Sinnott (ADPS): refined to predict which Γ
and M will arise.
Refined further by Florian Herzig (for generic rep’ns).
When n = 2, this was Serre’s Conjecture. Proved by Khare and
Wintenberger (2008).

Next project (Ash–Gunnells–M–Pollack, 2018?) Test the ADPS
conjecture.



Appendix 1: Computational Issues

In our (co)homology calculations, the boundary maps are sparse.

Computing H∗(Γ;M) when M is a Z-module needs Smith normal
form of the boundary operators A. If A is m× n over Z of rank r,
then SNF is

A = PDQ, P ∈ GLm(Z), Q ∈ GLn(Z),

and D is diagonal with entries d1, . . . , dr, the elementary divisors,
with di | di+1. (Possibly dr+1 = · · · = 0.)



Two approaches to find elementary divisors.

(•) Find elementary divisors A mod pni
i for many primes pi in

parallel, and reconstruct D by Chinese remainder theorem.

Dumas–Saunders–Villard 2000
Eberly–Giesbrecht–Giorgi–Storjohann–Villard 2006: sub-cubic
complexity on sparse matrices.

(•) Parallel methods don’t give you P and Q. Need P , Q, P−1,
Q−1 to compute cohomology and Hecke operators. Much slower
than parallel methods.



Use a Markowitz pivoting strategy to reduce fill-in of the sparse
matrix.

Two tricks I found for computing H i at large level
(Ash–Gunnells–M 2009):

· · · ← Ci+1 PiDiQi←−−−−
Ai

Ci Pi−1Di−1Qi−1←−−−−−−−−−
Ai−1

← Ci−1 · · ·

1. Store Pi−1 and Q−1i on disk as a product of elementary
matrices. Get their inverses by reading the elementary matrices in
reverse order and inverting them.



2. Once you know Qi, compute SNF of η = QiAi−1, not Ai−1.

The topmost rank(Di) rows of QiAi−1 are zero. This compression
lets Markowitz be more intelligent at limiting fill-in for η.

Improvement on a 13614× 52766 matrix is shown by dotted blue
line in the figure [A–G–M 2009, p. 10].



I have two main bodies of code.

I Sheafhom, for linear algebra and SNF for large sparse
matrices over Q, Fq, Z, or other PIDs. In Common Lisp.
http://www.bluzeandmuse.com/oldMarkGeocities/math.html

I Sage code.
I Find W for SLn(Z) for any n. In practice, n 6 4.
I Finite-dim rep’ns of Γ over Q or Fq. Rep’n-theory

operators ⊕, Res, Ind, Coind, ⊗.
I Hecke operators: Ash-Rudolph for Hi at i = vcd.
I Hecke algorithm with MacPherson for Hi for all i.

Gunnells and Yasaki have code for W for SLn for a range of n for
k = Q, real and imaginary quadratic fields, and some cubic fields.
Also rank-one symmetric spaces like SU(2, 1). Hecke algorithms.



Appendix 2: SL4 Sharbly Homology at p = 2, 3, 5

Theorem (A–G–M 2012) If p odd divides the order of a torsion
element, then the sharbly homology, Steinberg homology, and
well-rounded homology are all the same for SL4 in the cuspidal
range. At p = 2, the Steinberg and well-rounded homologies are
the same in this range.


