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Let P be a polygon (not necessarily convex).

We consider billiard trajectories inside P .

Problem. Compute the asymptotics as T → ∞ of the number of

(cylinders of) periodic trajectories of length at most T .

In general: Seems very difficult. Even for a triangle it is not known if

periodic trajectories always exist. Best known upper bound is that the

growth rate is subexponential.
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Standing Assumption: P is rational (i.e. all angles are rational multiples

of π).

Theorem (H. Masur) There exist constants c1 > 0 and c2 > 0
depending on P such that as T → ∞ the number N(P, T ) of

(cylinders of) periodic trajectories of period at most T satisfies

c1T
2 < N(P, T ) < c2T

2.

Goal. Convert the upper and lower bounds in this theorem to an

asymptotic formula, and compute the constant.
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Construction (Zemlyakov-Katok): Given a rational polygon P construct a

surface S such that billiard trajectories on P correspond to straight lines

on S.
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Construction (Zemlyakov-Katok): Given a rational polygon P construct a

surface S such that billiard trajectories on P correspond to straight lines

on S.

P S

4π

A cylinder of periodic trajectories.
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• The flat metric is nonsingular outside of a finite number of conical

singularities (inherited from the vertices of the polygon).

• The flat metric has trivial holonomy, i.e. parallel transport along any

closed path brings a tangent vector to itself.

• In particular, all cone angles are integer multiples of 2π.

• By convention, the choice of the vertical direction (“direction to the

North”) will be considered as a part of the “ flat structure”.

For example, a surface obtained from a rotated polygon is

considered as a different flat surface.

• A conical singularity with the cone angle 2π ·N has N outgoing

directions to the North.
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A flat surface S is a union of polygons, S = P1 ∪ . . . Pn.

We regard each polygon Pi a subset of R2. The polygons Pi are glued

together along parallel sides. Each side is glued to exactly one other.

P

P

P
1 2

3

Suppose g ∈ SL(2,R), e.g. g =

(

1 1/3
0 1

)

. Since g acts on R2, we

may define

gS = gP1 ∪ . . . ∪ gPn,

with the same identifications of the sides as S.
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Consider the natural coordinate z in the complex plane. In this

coordinate the parallel translations which we use to identify the sides of

the polygon are represented as z′ = z + const.

Since this correspondence is holomorphic, our flat surface S with

punctured conical points has a natural complex structure. This complex

structure extends to the punctured points.

Consider now a holomorphic 1-form dz in the complex plane. The

coordinate z is not globally defined on the surface S. However, since the

changes of local coordinates are defined as z′ = z+ const, we see that

dz = dz′. Thus, the holomorphic 1-form dz on C defines a holomorphic

1-form ω on S which in local coordinates has the form ω = dz.

The form ω has zeroes exactly at those points of S where the flat

structure has conical singularities.
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Reciprocally a pair (Riemann surface M , holomorphic 1-form ω)

uniquely defines a flat structure.

• In the neighborhood of a point where ω is non-zero, there exists a

local coordinate z such that ω = dz. This coordinate is unique up to

translation z → z + c.
• If we use an atlas of charts using these coordinates in each chart,

we get transition functions which are translations.

• In a neighborhood of zero a holomorphic 1-form can be represented

as ζd dζ , where d is the degree of zero. The form ω has a zero of

degree d at a conical point with cone angle 2π(d+ 1).
• The moduli space of pairs (complex structure, holomorphic 1-form) is

naturally stratified by the strata H(d1, . . . , dm) enumerated by

unordered partitions d1 + · · · + dm = 2g − 2.

• Any holomorphic 1-form corresponding to a fixed stratum

H(d1, . . . , dm) has exactly m zeroes; their degrees are d1, . . . , dm.



Flat structure canonically defined by a holomor-

phic 1-form

10 / 33

Reciprocally a pair (Riemann surface M , holomorphic 1-form ω)

uniquely defines a flat structure.

• In the neighborhood of a point where ω is non-zero, there exists a

local coordinate z such that ω = dz. This coordinate is unique up to

translation z → z + c.
• If we use an atlas of charts using these coordinates in each chart,

we get transition functions which are translations.

• In a neighborhood of zero a holomorphic 1-form can be represented

as ζd dζ , where d is the degree of zero. The form ω has a zero of

degree d at a conical point with cone angle 2π(d+ 1).
• The moduli space of pairs (complex structure, holomorphic 1-form) is

naturally stratified by the strata H(d1, . . . , dm) enumerated by

unordered partitions d1 + · · · + dm = 2g − 2.

• Any holomorphic 1-form corresponding to a fixed stratum

H(d1, . . . , dm) has exactly m zeroes; their degrees are d1, . . . , dm.



Flat structure canonically defined by a holomor-

phic 1-form

10 / 33

Reciprocally a pair (Riemann surface M , holomorphic 1-form ω)

uniquely defines a flat structure.

• In the neighborhood of a point where ω is non-zero, there exists a

local coordinate z such that ω = dz. This coordinate is unique up to

translation z → z + c.
• If we use an atlas of charts using these coordinates in each chart,

we get transition functions which are translations.

• In a neighborhood of zero a holomorphic 1-form can be represented

as ζd dζ , where d is the degree of zero. The form ω has a zero of

degree d at a conical point with cone angle 2π(d+ 1).
• The moduli space of pairs (complex structure, holomorphic 1-form) is

naturally stratified by the strata H(d1, . . . , dm) enumerated by

unordered partitions d1 + · · · + dm = 2g − 2.

• Any holomorphic 1-form corresponding to a fixed stratum

H(d1, . . . , dm) has exactly m zeroes; their degrees are d1, . . . , dm.



Flat structure canonically defined by a holomor-

phic 1-form

10 / 33

Reciprocally a pair (Riemann surface M , holomorphic 1-form ω)

uniquely defines a flat structure.

• In the neighborhood of a point where ω is non-zero, there exists a

local coordinate z such that ω = dz. This coordinate is unique up to

translation z → z + c.
• If we use an atlas of charts using these coordinates in each chart,

we get transition functions which are translations.

• In a neighborhood of zero a holomorphic 1-form can be represented

as ζd dζ , where d is the degree of zero. The form ω has a zero of

degree d at a conical point with cone angle 2π(d+ 1).
• The moduli space of pairs (complex structure, holomorphic 1-form) is

naturally stratified by the strata H(d1, . . . , dm) enumerated by

unordered partitions d1 + · · · + dm = 2g − 2.

• Any holomorphic 1-form corresponding to a fixed stratum

H(d1, . . . , dm) has exactly m zeroes; their degrees are d1, . . . , dm.



Flat structure canonically defined by a holomor-

phic 1-form

10 / 33

Reciprocally a pair (Riemann surface M , holomorphic 1-form ω)

uniquely defines a flat structure.

• In the neighborhood of a point where ω is non-zero, there exists a

local coordinate z such that ω = dz. This coordinate is unique up to

translation z → z + c.
• If we use an atlas of charts using these coordinates in each chart,

we get transition functions which are translations.

• In a neighborhood of zero a holomorphic 1-form can be represented

as ζd dζ , where d is the degree of zero. The form ω has a zero of

degree d at a conical point with cone angle 2π(d+ 1).
• The moduli space of pairs (complex structure, holomorphic 1-form) is

naturally stratified by the strata H(d1, . . . , dm) enumerated by

unordered partitions d1 + · · · + dm = 2g − 2.

• Any holomorphic 1-form corresponding to a fixed stratum

H(d1, . . . , dm) has exactly m zeroes; their degrees are d1, . . . , dm.



The (relative) period map and period coordinates

11 / 33

For a path γ ∈ S = (M,ω) we denote hol(γ) =
∫

γ
ω. Informally, the

real and imaginary parts of hol(γ) are how far “east” and “north” one

travels along γ.

Coordinates on H(α). Let Σ denote the set of singularities (aka

zeroes). Choose a basis {γ1, . . . γn} for the relative homology group

H1(S,Σ,Z). Then the map Φ : H(α) → (R2)n ≈ Cn given by

Φ(S) = (hol(γ1), . . . , hol(γn))

is a local coordinate system on H(α).

Measure. Let λ be the measure on H(α) which is the pullback of

Lebesque measure on (R2)n. Then λ is well defined, and is invariant

under the SL(2,R) action.

Thm(Masur, Veech) λ(H1(α)) < ∞.
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flat structure (including a choice complex structure and a choice

of the vertical direction) of a holomorphic 1-form ω

conical point zero of degree d
with a cone angle 2π(d+ 1) of the holomorphic 1-form ω

(in local coordinates ω = ξd dξ)

side ~vj of a polygon relative period
∫ Pj+1

Pj
ω

family of flat surfaces sharing stratum H(d1, . . . , dm) in the

the same cone angles moduli space of holomorphic 1-forms

2π(d1 + 1), . . . , 2π(dm + 1)

coordinates in the family: coordinates in H(d1, . . . , dm) :

vectors ~vi corresponding

to an independent set of cohomology class of ω in

edges in a triangulation H1(S, {P1, . . . , Pm};C)
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Let X be a topological space, and let T : X → X be a map,

which preserves a measure ν on X . We assume ν(X) = 1
(so ν is a “probability measure”).

Definition ν is called ergodic if for any T -invariant subset

E ⊂ X , either ν(E) = 0 or ν(E) = 1.

Theorem (Birkhoff) Suppose ν is ergodic. Then for any

f ∈ L1(X, ν) and ν-almost all x ∈ X ,

lim
N→∞

1

N

N−1
∑

n=0

f(T nx) =

∫

X

f dν
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What if we want to know what happens for all x?
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Fact. Let P ⊂ H1(α) denote the flat surfaces which arise

from unfolding a polygon. Then

λ(P ) = 0.
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Fact. Let P ⊂ H1(α) denote the flat surfaces which arise

from unfolding a polygon. Then

λ(P ) = 0.

Using general ergodic theorems (A. Nevo) one can prove

theorems like:

Theorem (Masur and E., Veech) Let N(S, T ) denote the

number of cylinders of closed geodesics on S of period at

most T . There exists a constant bα such that for λ-almost all

S ∈ H1(α), as T → ∞,

N(S, T ) ∼ πbαT
2,
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Fact. Let P ⊂ H1(α) denote the flat surfaces which arise

from unfolding a polygon. Then

λ(P ) = 0.

Using general ergodic theorems (A. Nevo) one can prove

theorems like:

Theorem (Masur and E., Veech) Let N(S, T ) denote the

number of cylinders of closed geodesics on S of period at

most T . There exists a constant bα such that for λ-almost all

S ∈ H1(α), as T → ∞,

N(S, T ) ∼ πbαT
2,

but this says nothing about polygons.



Uniquely ergodic systems

Polygons and flat

surfaces

Holomorphic 1-forms

versus flat surfaces

Ergodic Theory

• The Birkhoff Ergodic

Theorem

• A big problem

• Uniquely ergodic

systems

• Unipotent Flows and

Ratner’s Theorem

The SL(2, R) action

Towards a classification

of affine manifolds

16 / 33

Definition A map T : X → X is called uniquely ergodic if

there exists a unique invariant measure ν.

Proposition If T : X → X is uniquely ergodic and X is

compact, then for any f ∈ C(X) and for all x ∈ X ,

lim
N→∞

1

N

N−1
∑

n=0

f(T nx) =

∫

X

f dν

In a uniquely ergodic system, all points behave the same way.
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Let G be a semisimple Lie group with finite center, and let Γ ⊂ G be a

lattice. Let U ⊂ G be a unipotent one-parameter subgroup. Then U
acts on X = G/Γ by left multiplication.

Theorem (Ratner)

(i) Any ergodic U -invariant measure on X is homogeneous, i.e. is

L-invariant measure supported on a closed orbit of a subgroup L,

with U ⊆ L ⊆ G.

(ii) For any x ∈ X , Ux = Lx for some subgroup L, with U ⊆ L ⊆ G.

In particular, Ux is a homogeneous submanifold of X .

(iii) “Any orbit is uniformly distributed in its closure”.
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Let G be a semisimple Lie group with finite center, and let Γ ⊂ G be a

lattice. Let U ⊂ G be a unipotent one-parameter subgroup. Then U
acts on X = G/Γ by left multiplication.

Theorem (Ratner)

(i) Any ergodic U -invariant measure on X is homogeneous, i.e. is

L-invariant measure supported on a closed orbit of a subgroup L,

with U ⊆ L ⊆ G.

(ii) For any x ∈ X , Ux = Lx for some subgroup L, with U ⊆ L ⊆ G.

In particular, Ux is a homogeneous submanifold of X .

(iii) “Any orbit is uniformly distributed in its closure”.

This theorem makes it possible to control all orbits of U .

Theorems are false if one replaces U by a 1-parameter diagonalizable

subgroup (e.g. orbit closures can be Cantor sets).
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Let P = AU =

(

∗ ∗
0 ∗

)

⊂ SL(2,R).

Definition An ergodic SL(2,R)-invariant probability measure ν on

H1(α) is called affine if in local coordinates it is the restriction to H1(α)
of the Lebesgue measure on a complex subspace of H1(M,Σ,C).

Definition An (immersed) submanifold of H1(α) is called affine if it is

the support of an affine measure. (So in particular, it is closed,

SL(2,R)-invariant, and in local coordinates it is a linear subspace).

Theorem (joint work with Maryam Mirzakhani)

(i) Any ergodic P -invariant measure on H1(α) is SL(2,R)-invariant and

affine.

(ii) For any x, Px = SL(2,R)x is an affine submanifold.

(iii) “Any P -orbit is uniformly distributed in its closure”.
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(iii) “Any P -orbit is uniformly distributed in its closure”.

In genus 2, the SL(2,R) case of statements (i) and (ii) is due to Curt

McMullen (who also does the classification in genus 2).

The proof of (i) is the longest. Then one proves

(i) =⇒ (iii) =⇒ (ii). These proofs rely on the amenability of P ,

and the adaptation of some techniques of Margulis (joint work with Amir

Mohammadi). In particular, one needs the following:

Proposition Any stratum H(α) contains at most countably many affine

submanifolds.

There is another proof of the Proposition by Alex Wright (showing that

any affine manifold is defined over a number field).
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(joint work with Maryam Mirzakhani and Amir Mohammadi)

Theorem Any closed SL(2,R)-invariant (or P -invariant)

subset of H1(α) is a finite union of affine manifolds.

Theorem The space of ergodic P -invariant measures on

H1(α) is compact in the weak-* topology.

Theorem Suppose Mn is a sequence of affine manifolds, and

suppose the associated affine measures νMn
converge to ν.

Then, ν = νN is an affine measure supported on an affine

manifold N . Furthermore, Mn ⊂ N for all but finitely many

n.

(The last theorem essentially says that any infinite sequence of

affine manifolds has to equidistribute in a bigger affine

manifold).
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We will consider GL(2,R)-orbit closures (i.e. drop the restriction on the

area). Let M be an affine manifold (so it is locally a subspace in Cn cut

out by linear equations with real coefficients). Let TM be the tangent

space of M.

• dim(M) = dimC(TM) means the complex dimension.

• Let p : H1(M,Σ,C) → H1(M,C) be the natural map.

The rank of an affine manifold M is 1

2
dimC p(TM).

(Directions in M where one deforms relative periods while keeping

the absolute periods fixed contribute to the dimension but not to the

rank).

• Let κ(M) be the smallest field such that that M can be defined by

linear equations in period coordinates with coefficients in κ(M).

κ(M) is called the affine field of definition of M.



More on the field of definition and the rank

24 / 33

Theorem (A. Wright)

• κ(M) is always a totally real number field. We use the shorthand

degree(M) for the degree of the extension [κ(M) : Q]

• degree(M) rank(M) ≤ g.

• “κ(M) knows about the flat structures”. E.g.

If there exists S ∈ M and a direction in which S has exactly one

cylinder, then κ(M) = Q.

• “rank(M) also knows about the flat structures”. E.g.

There exists horizontally periodic S ∈ M such that the core curves

of horizontal cylinders in S span a subspace of dimension rank(M).
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Any stratum of genus g and n zeros is an affine manifold. It has rank g,

dimension 2g + n− 1 and is defined over Q.
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Any stratum of genus g and n zeros is an affine manifold. It has rank g,

dimension 2g + n− 1 and is defined over Q.

Covering constructions. Suppose (Y, ω) is a translation surface, and

f : X → Y is a (branched) covering map. Then (X, f∗(ω)) is also a

translation surface. Furthermore f commutes with the GL(2,R) action.

This passes to the orbit closures. As a consequence, every point in

M′ ≡ GL(2,R)(X, f∗(ω)) is a cover of some point in

M ≡ GL(2,R)(Y, ω). We say that M′ is obtained from M by a

covering constuction.

We may have dim(M′) > dim(M), but always

rank(M′) = rank(M).
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A Teichmüller curve M is a closed GL(2,R) orbit. Each point of M is

called a “Veech surface”. Veech surfaces are characterized by the

property that their stabilizer in SL(2,R) is a lattice (Smillie).

A Teichmuller curve has rank 1 and dimension 2.

Square-tiled surfaces. If a surface is tiled by squares, then it’s

stabilizer in SL(2,R) is a finite index subgroup of SL(2,Z) (typically

non-congruence), and thus it’s SL(2,R) orbit is a Teichmüller curve.

These curves are defined over Q. Their union is dense in any stratum of

the moduli space: in fact any point in moduli space with rational period

coordinates parametrizes a square-tiled surface.

Easy fact: M is an affine manifold of rank 1 which is defined over Q

⇐⇒ M is obtained by a covering constuction from a torus. (The

dimension of M may be large since some branch points may be

allowed to move freely).
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First constructions: Thurston and Veech.
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• In H(2) there is one infinite family of non-square tiled Veech

surfaces (construction done independently by Calta and McMullen).

These consist of pairs (M,ω) where the curve M has a Jacobian

which admits real multiplication by a quadratic number field, and ω is

an eigenform. (defined over Q(
√
d).)

• In H(1, 1) the only non square-tiled Veech surface is the regular

10-gon. (McMullen, using a theorem of Möller). (defined over

Q(
√
5).)
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First constructions: Thurston and Veech.

Genus 2: Classification problem is done. (McMullen)

• In H(2) there is one infinite family of non-square tiled Veech

surfaces (construction done independently by Calta and McMullen).

These consist of pairs (M,ω) where the curve M has a Jacobian

which admits real multiplication by a quadratic number field, and ω is

an eigenform. (defined over Q(
√
d).)

• In H(1, 1) the only non square-tiled Veech surface is the regular

10-gon. (McMullen, using a theorem of Möller). (defined over

Q(
√
5).)

Genus 3 or higher: Classification problem is open.

• There are infinite families in genus 3 and 4 constructed by McMullen

(coming from Prym loci). (defined over Q(
√
d).)

• There is a family found by Bouw and Möller (with finitely many curves

in each genus). (these may have large degrees).

• Two more sporadic examples are known.
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Theorem (McMullen) In genus 2: Besides the Teichmüller

curves, the only (non-obvious) affine submanifolds are the sets

of curves whose Jacobian admits real multiplication by a

quadratic number field, with the given holomorphic form as

eigenform. (These have rank 1, dimension 3 and are defined

over quadratic number fields).

There are similar examples in Prym loci in genus 3, 4 and 5
(McMullen). (These have rank 1, dimension 3 and are defined

over quadratic number fields).

Some of these Prym loci contain Teichmüller curves. These

are classified by Lanneau and Nguyen.
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Conjectures (Mirzakhani). Let M be an affine invariant manifold.

• (Arithmeticity Conjecture). If κ(M) 6= Q, then rank(M) = 1.

• (Covering Conjecture). If κ(M) = Q then M is given by a

“covering construction”.
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Conjectures (Mirzakhani). Let M be an affine invariant manifold.

• (Arithmeticity Conjecture). If κ(M) 6= Q, then rank(M) = 1.

• (Covering Conjecture). If κ(M) = Q then M is given by a

“covering construction”.

Consistent with all previous examples.

Theorem (Aulicino, Nguyen, Wright) Mirzakhani’s conjectures are true

in H(4), H(3, 1), H(2, 2) (genus 3).

Theorem (Apisa) Mirzakhani’s conjectures are true in hyperelliptic

components of strata.

Proofs use following theorem:
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Let ut =

(

1 t
0 1

)

, as =

(

1 0
0 et

)

⊂ GL(2,R).

Let x be a translation surface. Let C be the (possibly empty) set of

horizontal cylinders in x.

Let uC
t (x) be the translation surface obtained by applying the horocycle

flow ut to the cylinders in C, but not to the rest of x.

Let aCt (x) be the translation surface obtained by applying the vertical

stretch at to the cylinders in C, but not to the rest of x.

Theorem (A. Wright) For any x,t, the “Cylinder Shear” uC
t (x) and the

“Cylinder Stretch” aCt (x) are both contained in the orbit closure

GL(2,R)x.
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Let x be a translation surface. Let C be the (possibly empty) set of

horizontal cylinders in x.

Let uC
t (x) be the translation surface obtained by applying the horocycle

flow ut to the cylinders in C, but not to the rest of x.

Let aCt (x) be the translation surface obtained by applying the vertical

stretch at to the cylinders in C, but not to the rest of x.

Theorem (A. Wright) For any x,t, the “Cylinder Shear” uC
t (x) and the

“Cylinder Stretch” aCt (x) are both contained in the orbit closure

GL(2,R)x.

This has many important consequences.
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(Previous results: Bainbridge-Habegger-Möller, Matheus-Wright,

Lanneau-Nguyen-Wright.)

Theorem (Filip-Wright-E) In any fixed stratum H(α) there are only

finitely many affine manifolds except for the following situations:

(i) If there exists M ⊂ H(α) with rank(M) = 2, κ(M) = Q with

dim(M) = k, then M =
⋃Mn where ∀n, rank(Mn) = 1

dim(Mn) = k − 2, and degree κ(Mn) = 2.

(ii) For any M ⊂ H(α) with κ(M) = Q, we have M =
⋃Mn where

∀n, rank(Mn) = 1 and κ(Mn) = Q.

Cor 1: In any genus there exist only finitely many M with degree

κ(M) ≥ 3.

Cor 2: H(α) contains infinitely many Teichmuller curves not defined

over Q if and only if H(α) contains an affine manifold of rank 2
dimension 4 defined over Q. (e.g H(2), Prym loci).
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Suppose there are infinitely many Mn in a fixed stratum. Then

M =
⋃∞

n=1
Mn is (a finite union of) affine manifolds.

For every affine manifold M we can consider the monodromy group.

(Parts of) the Zariski closure of this group are well understood.

The “algebraic hull” is the analogous object but when you only consider

monodromy along the SL(2,R) orbits (“dynamical monodromy”). This

is simple to define but usually uncomputable.

The main part of our proof is the computation of the algebraic hull for

any affine manifold (in terms of the Zariski closure of monodromy). We

also prove that if Mn → M then eventually the algebraic hulls of Mn

coincide with the algebraic hull of M. This (with some more work)

implies the theorem.
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Theorem (S. Filip) Any affine manifold is an quasi-projective subvariety

of moduli space.

The proof combines ideas from dynamics and Hodge theory. The main

technique is constructing (in various clever ways) subharmonic functions

on affine manifolds, and then using the dynamics to show they are

constant. Some intermediate results (of independent interest):

• The Jacobians of the family of curves comprising the affine manifold

all admit real multiplication.

• The difference between zeroes is always a (twisted) torsion point in

the Jacobian.

These two items in fact define the manifold: these are the algebraic

equations.

For Teichmüller curves, these results are due to Matrin Möller. Filip’s

proof is substantially different.
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