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Outline

I. Guiding questions and notations

II. Summary of some results about Question A

III. Summary of some results about Questions B, B′, B′′

IV. Brief indication of proofs

V. Final remarks

References

This talk will be mostly rather expository; the objective is to
give an overview that blends the purely Hodge-theoretic and
algebro-geometric approaches. It will be largely drawn from
the literature and a list of some representative references is
given at the end.
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I. Discussion of the geometric questions

Question A: What can a smooth, projective variety Xη

degenerate to?

We imagine X→ ∆ with generic fibre Xη and central fibre X
a local normal crossing divisor, and are interested in the
extreme cases of

I a generic degeneration Xη → X ;

I the “most singular” degeneration Xη → X .

The Hodge theoretic translation is

Hn(Xη)prim → Hn
lim.

Here Hn
lim is an equivalence class of limiting mixed Hodge

structures.
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Question A translates to

What are the extremal degenerations of a polarized
Hodge structure?

We will define “extremal” below.

Question B: What Hodge-theoretic information about
smoothings of X are contained in

I X alone;

I (X ,TXDef(X ))?

Here X is a projective variety that is locally a product of
normal crossing divisors as arises in a semi-stable reduction in
a several parameter family. Among other things we will see
that the Hodge-theoretic smoothings (to be defined) may be
strictly larger than the algebro-geometric ones.
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Question B′: What is the cohomological formulation of the
refined differential of the period mapping at infinty?

The “refined differential” will be defined below.

Question B′′: What are the maximal monodrony cones that
can arise algebro-geometrically?

Related to this question is to give algebro-geometric
interpretations for the three properties of monodromy cones
predicted by Deligne and proved by Cattani-Kaplan-Schmid
and discuss a possible fourth such property.
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Terms and Notations

From Hodge theory

I (V ,Q,F •) = polarized Hodge structure;

I D = period domain, or more generally a Mumford-Tate
domain with compact dual Ď;

I D = GR/H and Ď = GC/P is the compact dual;

I Φ : S∗ → Γ\D = variation of Hodge structure, where
S∗ = S\Z and where the image of π1(S∗)→ Γ is abelian
with unipotent monodromies having logarithms
N1, . . . ,N`;

I frequently, but not always, S∗ = ∆∗`;
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I (V ,W ,F •) = mixed Hodge structure, throughout
assumed to be polarizable;

I (V ,W , F̃ •) where F̃ • = e−iδF • is the Deligne canonical
R-split MHS;

I σ = spanR>0{N1, . . . ,N`} is a monodromy cone;

I (V ,W (N),F •) is a limiting mixed Hodge structure,
defined for each N ∈ σ with

Nk : Gr
W (N)
k V → Gr

W (N)
−k V ;
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I



(V ,W (N),F •) = limiting mixed Hodge structurexy
nilpotent orbit

{
NiF

p ⊂ F p−1

exp(ΣziNi) · F • ∈ D, Im zi � 0

}
;

I equivalence class of limiting mixed Hodge structures
means F • ∼ exp(ΣλiNi) · F •, λi ∈ C;

I Y is a grading element for N , [Z ,N] = −2N and
W (N)k = ⊕

j5k
E (Y )j ;
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From algebraic geometry

I X→ ∆` has central fibre X and is given locally by
xI1 = ti1

...

xI` = ti` ;

We adopt the convention that if the index set Ii is empty
then the equation doesn’t appear; e.g., at a smooth point
of X there are no equations. It is locally a product of
reduced normal crossing divisors times parameters;

I the type of X is the maximum of singular factors that
appear in the local descriptions;
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I for k = [k1, . . . , k`], X [k] = {x ∈ X : multxti = ki}; for
` = 1 we just write X [k] for the usual stratification of X ;

I smoothing of X as above is X→ S where X = Xs0 and
the fibres over S∗ are smooth and the monodromy
representation is abelian.

An example of a several parameter family is

X× X→ ∆×∆

which may be used to study natural classes, such as N , in
Hom

(
H∗(Xη),H∗(Xη)

)
.
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I Def(X ) = Kuranishi versal deformation space of X with
Zariski tangent space

TXDef(X ) = Ext1
OX

(
Ω1

X ,OX

)
;

I T ⊂ TXDef(X ) will be a subspace transverse to
TXDef

es(X ) and where a general ξ ∈ T is smoothing (to
1st order); the corresponding family is

XT → Tε, OTε
∼= T ∗;

for one ξ we write

Xξ → ∆ε = SpecC[ε], ε2 = 0;
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II. Statements of results about Question A∗

I D ⊂ Ď is an open GR-orbit and ∂D =
⋃

GR-orbits O with
codimO ≥ 1. In general there are

I several codimension 1 orbits in ∂D;
I a unique closed orbit Oc ;

I Oc may be �

@

totally real ⇐⇒ Oc = GR/PR
⇐⇒ the Levi form LOc = 0

not totally real (e.g., G = SO(2a, b))

Almost simplest example: D = SU(2, 1)/T and
Ď = SL(3,C)/B is the incidence variety

��
��

�
��t

p
L
⊂ P2 × P̌2

∗Based on joint work with Mark Green and Colleen Robles and
uses results from [KP1] and [KP2].



13/69

Orbit structure is

D D ′′D ′
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I D ′,D ′′ classical;

I D non-classical and is Mumford-Tate domain for
polarized Hodge structures of weight n = 3, Hodge
numbers (1, 2, 2, 1) and an action of Q(

√
−d).



15/69

Reduced limit period mapping (or näıve limit)
Φ : ∆∗ → Γ\D lifts to

Φ̃ : H→ D ⊂ Ď, Φ̃(z + 1) = exp N · Φ̃(z).

(i) (Schmid) for Ψ̃(z) = exp(−zN)Φ̃(z) : H→ Ď unwinds Φ
and we get {

Ψ : ∆∗ → Ď,

Ψ(0) = F •lim

=⇒ exp(zN)F •lim is a nilpotent orbit with corresponding
limiting mixed Hodge structure (V ,W (N),F •lim).
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(ii) Set

F •∞ = lim
Im z→∞

Φ̃(z) = lim
Im z→∞

exp(zN) · F •lim ∈ ∂D

= lim
Im z→∞

exp(zN) · F̃ •lim.

For B(N) = equivalence classes of (V ,W (N),F •)’s and
B(N)R the R-split ones we have

B(N)

��

Φ∞

##H
HH

HH
HH

H

∂D

B(N)R

;;v
v

v
v

v
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Then Φ∞ is holomorphic, factors as above, and is
maximal with respect to these properties.

N+

N

F •lim

F •∞

F̃ •lim
Here, {N ,Y ,N+} is an sl2.
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F •∞ successively
picks out the

highest powers
of N



F∞

{ {
D classical =⇒ Φ∞ = GrW (extension data lost). In general,
Φ∞ retains some but not all of the extension data
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Definition: The degeneration Xη → X is

(i) minimal if Φ∞ belongs to a codimension 1 orbit;

(ii) maximal if Φ∞ belongs to the closed orbit.

Theorem: For minimal degeneration when D is a period
domain, either

I N2 = 0 and rank N = 1, 2;

I N2 6= 0, N3 = 0 and rank N = 2.
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n = 4
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For dim Xη = 5,
x1x2 + x3x4 + x4x5 = 0 double point

x1x2 + x3x4 = 0 double surface

x1x2 = 0 double fourfold

Theorem′ [KP1] and [GGR]: For maximal deformations and
general Mumford-Tate domains{

limiting mixed Hodge structure

is of Hodge-Tate type

}
⇐⇒ {closed orbit is totally real}.
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It is elementary that a necessary, but in general not sufficient,
condition is

hn,0 5 hn−1,1 5 · · · 5 hn−[n/2],[n/2].

Theorem′′: In the period domain case, if the closed orbit is
not totally real, then N = 2m is even and

I k 6= 0 =⇒ Gr
W (N)
n+k,prim is Hodge-Tate;

I Gr
W (N)
n+k,prim 6= 0 =⇒ k ≡ 2mod 4;

I GrW (N)
n 6= 0 and the non-zero I p,qprim are Im+1,m−1

prim and

Im−1,m+1
prim (no Im,mprim).
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Example: n = 4 s
s s?
s s??s s
??s s
?s

(3, 1) (1, 3)

Picture a family of fourfolds Xη → X where Xη is a product of
polarized K3 surfaces each of which has a type III
degeneration.

In general, for maximal degenerations, GrW (LMHS) is rigid.
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Remarks:
I The picture for general Mumford-Tate domains is more

complex, and in some ways more interesting. For
example,

I G2 is singled out as an exception in the classification;
I if there is a Hodge-Tate degeneration, then for

D = GC/P the Lie algebra p is an even
Jacobson-Morosov parabolic.
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I In general the Hodge-theoretic aspects of the GR-orbit
structure of ∂D may help guide the algebro-geometric
properties of boundary strata in a moduli problem

I curves and abelian varieties, K3 surfaces, cubic
threefolds and fourfolds (Laza) (these are all classical
D’s and only local normal crossings seem to occur),
mirror quintics (non-classical D);

I more non-classical examples? e.g., quintic surfaces and
threefolds? May locally products of normal crossing
varieties occur as they do Hodge-theoretically?
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I In the classical case Mumford et. al., and in the general
case Kato-Usui have constructed maximal completions of
Γ/D’s

∆∗` // Γ/D

∩ ∩

∆` // Γ/DΣ, DΣ = toroidal object
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Are there minimal completions

S∗ // Γ/D

∩ ∩

S
ΦB // Γ/DB

any S∗ = S\Z and where
HΦ(S) > 0 where

H = (det Hn,0)n(det Hn−1,1)n−1

· · · det H1,n−1.

In the classical case, as a set
DB = DGrΣ and a power
Ha = ωD gives an ample
line bundle on ΦB(S).
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III. Statements of results about

Questions B, B′, B′′∗

Definition: Ext1
OX

(
Ω1

X ,OX

)
is the infinitesimal normal bundle

of X .

I For Ext1
OX

(
Ω1

X ,OX

)
= E we have a stratification{

X0 ⊃ X1 ⊃ · · · ⊃ X`, where if X 0
k = Xk\Xk+1

E
∣∣
X 0
k

is locally free of rank k .

∗Much of this was motivated by [Fr1].
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Example: Locally X = X1 × X2 and stratification is

X1 × X2 ⊃ (X1,sing × X2) ∪ (X1 × X2,sing) ⊃ X1,sing × X2,sing.

Definition: E is trivializable if there are e1, . . . , e` ∈ H0(X ,E)
such that for each connected component of X 0

k there are
ei1 , . . . , eik that frame E over that component;

I X = central fibre in X→ ∆` =⇒ Ext1
OX

(
Ω1

X ,OX

)
is

trivializable with ei = dti .
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Example: X = locally a normal crossing divisor. Then

I X = X0 ⊃ X1 = Xsing = DX ;

I Ext1
OX

(
Ω1

X ,OX

) ∼= ODX
(X ) is the infinitesimal normal

bundle in [Fr1].

If DX =
∐̀
i=1

Di then ODX
(X ) trivializable gives

ODX
(X ) ∼=

⊕̀
i=1

ODi

with sections 1Di
∈ H0(ODi

).
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We suggest that in this case X should be thought of as
potentially the central fibre in a family where over the origin
the i th factor in the local product representation of X is
singular along Di and is smoothed along the i th coordinate
axis. Thus, even normal crossing divisors should be thought of
as occurring in multi-parameter families.

(∗) Assumption: Ext1
OX

(
Ω1

X ,OX

)
is trivializable.
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In the simpler case where X is locally a normal crossing
divisor, from the standard local to global spectral sequence for
Ext we have

C`

∼ =

TXDefes(X ) // TXDef(X )
ρ // `⊕

i
CDi

δ // H2(DerOX )

∼ = ∼ = ∼ = ∼ =

H1
(
Ext1

OX

(
Ω1
X ,OX

)) // Ext1
OX

(
Ω1
X ,OX

) // H0
(
Ext1

OX

(
Ω1
X ,OX

)) // H2
(
ExtOX

(
Ω1
X ,OX

))
.
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Theorem I: Under the assumption (∗) there exists an
`-parameter split limiting mixed Hodge structure with
1Di
↔ Ni .

This is defined in terms of X alone. In case δ = 0 and
T ⊂ TXDef(X ) is unobstructed so that we have a family

X→ ∆`

where everything is smooth over X∗ → ∆∗`, the limiting mixed
Hodge structure is the associated graded to the one given by
the family.

We will explain below how the assumption ODi
(X ) ∼= ODi

enters into the construction.
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Still in the case where X = locally a normal crossing divisor,
we have

Theorem II: Let TS ⊂ T be a k-dimensional subspace such
that ρ(L) does not lie in any coordinate hyperplane in C`.
Then there exists a k-parameter limiting mixed Hodge
structure whose commuting monodromies are linear
combinations of the 1Di

’s.

If there exists a family X→ S whose tangent space is TS ,
then we obtain the limiting mixed Hodge structure associated
to this family.

In general we do not have S∗ = ∆∗`, as illustrated by the
following
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Example: X0 = nodal variety of dimension 2n − 1 with nodes
p1, . . . , p`;

X = X̃0 ∪
(⋃̀

i=1

Xi

)
, Xi

∼= P2n−1 and X̃0 ∩ Xi = Qi

the normal crossing variety that would be the central fibre in
the standard semi-stable reduction of a smoothing of X0.
Then the limiting mixed Hodge structure in Theorem I is the
associated graded to the one that would arise if we could
independently smooth the nodes.

In Theorem II, the assumption just below it implies that X0

may be smoothed. Moreover, we have

TX0Def(X0) ∼= TXDef(X )

(to 1st order, deforming X0 is the same as deforming X )
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and on L = ρ−1(coordinate hyperplanes in C`) subsets of the
nodes may be smoothed

�
�
�
�

case ` = 3, k = 2

Monodromies are N1 + N2, N1 + N3, N2 + N3.
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Three properties of nodal degenerations are

(i) the Koszul group H1(V ; {N1, . . . ,N`}) ∼= {group of
relations among the nodes};

(ii) the monodromy cone σ = {σλ = ΣλiNi , λi > 0} is
strictly smaller than the polarizing cone

σpol =: {σλ : W (Nλ) gives a polarized limiting mixed
Hodge structure}

if, and only if, the nodes are dependent (relations among
nodes gives a larger polarizing cone);

(iii) there is an obstruction to extending the Ni to commuting
sl2,i ’s in the split limiting mixed Hodge structure in
Theorem I, and this obstruction vanishes if, and only if,
the nodes are independent.
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Example: Another example where DX has multiple
components is obtained by applying semi-stable reduction to a
pencil of surfaces Xt ⊂ P3 where the singularities of the base
locus are transverse intersections along the double curve of X0.
These all contribute components to DX . Taking for example
the familiar case when deg Xt = 4 all of the possible limiting
mixed Hodge structures are extremal in the sense of the
theorem and may be pictured as
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minimal, N2 = 0s
s

s
ss17

? ?

X0 = Q1 ∩ Q2

maximal, N2 6= 0sss s18?

?

X0 = tetrahedron

which are familiar from the work of Kulikov, Friedman et al.
(cf. [Fr1] and [Fr2]).

It may be that a similar story about extremal degenerations
holds in the work of Laza [La] on the cubic fourfold, but I
haven’t had a chance to check this.
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Two general properties associated to families X→ ∆` having
as central fibre X are

I dimσ ≤ # components of DX ;

This inequality can be substantially improved by a more
precise statement extracted from the mechanics in the proof of
Theorem I.
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For X locally a product of normal crossing divisors

I Na1
i1
· · ·Naj

ij
= 0 if some ai > |Ii |, or if j > type of X .

This bounds from below the singularities that the central fibre
must have in any semi-stable reduction of X∗ → ∆∗`. Thus, if
N1N2 6= 0 then X must somewhere be locally X1 × X2×
(parameters) where X1 and X2 are singular.

Example: Hodge theory suggests that for some surfaces with
pg = 2 the moduli space (if such exists) would have to include
singular surfaces of type k = 2.
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One of our original motivations was to have a refined and
computationally useful formulation for the period mapping at
infinity.

Example:

δ1 δ2 δ3

γ1 γ2 γ3 γ1 γ2 X

X̃• p1

• q1

• p2

• q2

Xt
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For t = (t1, t2) and `(t) = (1/2πi)(log t1 + log t2) the period
matrix is

Ω(t) =



1

1

1

`(t) + a11(t) a12(t) b1(t)

a21(t) `(t) + a22(t) b2(t)

b1(t) b2(t) c(t)


,

a12(t) = a21(t)

and Imc(t) > 0.
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The nilpotent orbit is

1
1

1
`(t) + a11 a12 b1

a21 `(t) + a22 b2

b1 b2 c
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Rescaling gives {
a11 → a11 + λ1

a22 → a22 + λ2.

For the correspoinding equivalence class of limiting mixed
Hodge structures

s
s
s
s

s s
??

Gr2

Gr1

Gr0

— (b1, b2) ∈ Ext1
MHS(Gr0,Gr1)↔ AJ(pi − qi)

— c gives Gr1

— a12 = a21 gives part of the extension upon
extension data for Gr2 over Gr0.
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For ω̃1, ω̃2 = limt→0 ω1(t), ω2(t) where ω1(t), ω2(t) =
normalized differentials of the 3rd kind

I aij =
´ pi
qi
ω̃j , i 6= j ;

I may normalize ti , t2 to make the logarithmic singularities
cancel and have well defined a11, a22.

Refined dΩ has dc ; db1, db2; da12 and da11, da22.
Moduli picture:

∂M3 ⊂M3 − dim = 6

∪
C = codimension 2 boundary component

I dimC = 4 and c , b1, b2, a12 give local coordinates;

I a11, a22 give normal parameters to C ⊂M3.
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Theorem: ξ ∈ Ext1
OX

(
Ω1

X ,OX

)
defines a class

ξ(1) ∈ Ext1
OX

(
Ω1

Xξ/∆ε(log X )⊗ OX ,OX

)
,

and the refined differential of the period mapping at infinity is
expressed by the cup product

Ext1
OX

(
Ω1

Xξ/∆ε(log X )⊗ OX ,OX

)
→ EndLMHSHn

(
Ω•Xξ/∆ε(log X )⊗ OX

)
.

This is meant to give the flavor of the definition of and
expression for the refined differential of the period mapping at
infinity.
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IV. Discussion of proofs

Question A ([GGR]): Builds on [KP1], [KP2] and the later
work [GG]; main points include

I (V ,Q,F •)→ (g,B ,F •g ), g ⊂ EndQ(V );

I (V ,W ,F •)→ (V ,W , F̃ •) with

I F •∞ = F̃ •∞,

I (F̃ •)g = (̃F •g );
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I thus we may assume{
VC = ⊕I p,q

gC = ⊕gp,q
, I p,q = I q,p and gp,q = gq,p;

I then one matches the gp,q decomposition with the
standard root theoretic description of the orbit structure.

Questions B, B′, B′′: Recast and extend arguments in the
literature, including [Fr1], [Fr2], [St1], [PS],. . . in the
1-parameter case. Some work in the `-parameter case has
been done in [Fu].
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Example: In the 1-parameter case, E p,q
1 terms are sums of

groups Ha(X [b])(−c) where

I d1 is expressed in terms of various restriction and Gysin
maps;

I E2 = E∞ = Gr(LMHS).

Convenient to picture a split limiting mixed Hodge structure in
terms of N-strings

H0(−m)→ · · · · · · · · · · · · → H0(−1)→ H0

H1(−1)→ · · · → H1

...

Hm

where Nk = Hodge structure of weight k .
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Theorem: If OD(X ) ∼= OD , there are complexes

Hq−4(X [k+2])(−2)

⊕ Hq−2(X [k+1])(−1)

→ Hq−2(X [k])(−1) → ⊕ → Hq(X [k])

⊕ Hq(X [k−1])

Hq(X [k−2])

such that for 0 5 j 5 m − i the terms in the N-strings are

Hm−i(−j) ∼= (H∗Rest“+” H∗Gy)
(
Hm−i(X [i+1])

)
(−j).

Moreover, the monodromy N = N1 + · · ·+ N` is induced by

N =
∑
i

1Di
(1)
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where for b = 2, X [b] =
∐

i X
[b]
i and

Ha
(
X

[b]
i

)
(−c)

1Di
∼−→ Ha

(
X

[b]
i

)
(−(c − 1)).

The important observation is that having trivializations

ODi
(X ) ∼= ODi

implies that
Gy ·Rest = −Rest ·Gy,

so that the diagram in the statement of the theorem is
actually a complex.
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A perhaps new ingredient is the observation that the N
decomposes as Σ1Di

(1). As in Theorem II we may then define
an `-parameter 1st order family and Nλ = ΣλiNi , λi 6= 0. Here
the 1Di

correspond to a trivialization ODi
(X ) ∼= ODi

and means
that to 1st order we have a specified parameter in the
smoothing of the component Di of XSing. We also have an
sl2,i acting on E1 where

Yi = (2c − b + 1)1Di

on Ha(X
[b]
i )(−c), b = 2. Then for Y = ΣYi ,

[d1,Y ] = −d1

so that Y acts on E2 = E∞ = GrW (N) V .
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In general [d1,Yi ] + d1 6= 0 and measures the linking between
vanishing cycles and their duals associated to different
components of Xsing. This gives a geometric description of the
obstructions to having commuting sl2,i ’s acting on GrW (N) V .

Example:

none commuting sl2’s

commuting sl2’s

In both cases GrW (LMHS) is the same over Q.
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For general X = locally a product of normal crossing varieties
there are a few additional points that arise.

A first step is a fairly straightforward extension from the case
` = 1 of the identification for families X→ ∆`,

Hn(Xη) ∼= Hn
(
Ω•X/∆`(log X )⊗ OX

)
.

The complex Ω•
X/∆`(log X )⊗ OX depends only on

T{0}∆
` ⊂ TDef(X ) and is identified as the cokernel of the

map

Ω•X(log X )
dt1/t1∧···∧dt`/t`−−−−−−−−−→ Ω•+`X (log X ),

which can be defined in terms of T{0}∆
` alone. Note the

`-fold wedge product here.
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A second point is that the Ni are defined in terms of the
connected components in the highest dimensional strata of the
support of Ext1

OX
(Ω1

X ,OX ).

One subtlety is that as in the case ` = 1 one cannot define a
weight filtration on the complex Ω•X(log X )⊗ OX . To have a
monodromy weight filtration W , whose Wk are expressed on
E1 by linear inequalities among a, b, c , on Hn

lim the indices have
to have length 2n + 1, and we can only get n + 1 out of the
usual filtration on Ω•X(log X ). The correct thing to do is
suggested by the map above, which is the first term in a
resolution of Ω•X(log)⊗ OX from which some numerology
suggests what the weight filtration should be.
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A central point is to use the hard Lefschetz theorem on the
normalized strata of X and both Hodge-Riemann bilinear
relations to deduce that W , which easily satisfies

Nλ : Wk → Wk−2,

for all λ in fact satisfies

Nk
λ : Wk

∼−→ W−k

when k = 0 and λ = (λ1, . . . λ`), λi > 0. Without this from
the weight filtration W we get a mixed Hodge structure but
not a limiting mixed Hodge structure with W = W (N). The
proof of the result involves extending the nice argument due to
Guillén and Navaro Anzar to the several parameter case.



58/69

V. Final remarks

In closing there were three classical properties of monodromy
cones for degenerating families of Hodge structures, predicted
by Deligne (and established by him in the `-adic setting and
proved in the Hodge-theoretic setting in [CKS1], [CKS2]).

(a) W (Nλ) is independent of λ with λi > 0;

(b) W (N) is a relative weight filtration for W (Ni);

(c) the Koszul groups Hi(V ; {N1, . . . ,N`}) vanish in positive
weight (purity).
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The statement (b) means that we easily have that
N : Wk(Ni)→ Wk−2(Ni), and then the much more subtle
result, whose proof uses Hodge-Riemann I, II,

W (N) induces W
(

N
∣∣GrW (Ni )

)
on GrW (Ni )

is true. It follows from this and the above construction that,
e.g., when ` = 2 we have the picture
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variation of mixed Hodge structure
induced by X∗1 → ∆∗1 × {0}

?

induced variation of mixed
Hodge structure in the sense of [S]

variation of Hodge structure
associated to X∗ → ∆∗1 ×∆∗2

and the limiting mixed Hodge structure “limt→0(t, t)” along
the dotted line may be identified with “limt1→0 limt2→0.” This
result is true by Deligne’s argument in the `-adic case; the
geometric argument may be useful in the computation of
examples.
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The result (b) means that the C[Ns , . . . ,Nλ]-module V has
very special properties. For example, it implies that as a
C[Nλ,Ni ]-module it is a direct sum of C[Nλ,Ni ]/(Np

λ ,N
q
i )’s.

These statements can be verified using the above, which gives
some slight refinements. For instance in the example of a
nodal X0

(iv) the weight filtration W (Nλ) is independent of the
λi ∈ C∗ if, and only if, the nodes are independent.
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Another motivation for the above is this: Given a nilpotent
N ∈ End(V ), Robles has formulated and proved a precise
result which has as a corollary that N is the monodromy of a
variation of Hodge structure over ∆∗ constructed in an explicit
way from (N ,V ). One may ask

Given commuting Ni ∈ End(V ), is
σ = spanR>0{N1, . . . ,N`} that satisfies (a), (b), (c)
above a monodromy cone?
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She has shown by example that when ` > 1 this may not be
the case. This of course raises the question: can one find
additional conditions that σ be a monodromy cone? By having
an explicit description of σ in the geometric case one might
hope to identify additional conditions, but so far this has not
been carried out.
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We conclude with a final speculative comment. On GrW V
there is an induced action of the Nλ and N1, . . . ,N`. For each
λ with the λi > 0 we have {Nλ,Y ,N

+
λ } giving an

sl2,λ ⊂ End(GrW V ), and by a result of Looijenga-Lunts
(whose proof uses Hodge-Riemann I, II) these sl2,λ’s generate
a semi-simple Lie algebra gσ ⊂ End(GrW V ).

We have noted above that in the geometric case the Yi for Ni

do not in general pass to E2 = GrW V . However, a linear
algebra construction of Deligne gives canonically a set Y ′i of
grading elements for the Ni , and from this we obtain a set of
sl2,i ’s. These generate a Lie algebra g′σ ⊂ End(GrW V ), one
that in the geometric case measures the obstruction to having
the commuting sl2,i ’s on E1 survive to GrW V .
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In some examples, using the polarization conditions, one may
show that

gσ = g′σ.

If true in general the condition

(d) g′σ is semi-simple

should then be added to the properties of monodromy cones.

—Thank you—
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