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Theorem

(M. Gromov) Let Mn be a closed manifold. Consider its
(isometric) Kuratowski embedding in L∞(M). Then Mn bounds in

its c(n)vol
1
n (M)-neighbourhood. In other terms,

FillRad(Mn) ≤ c(n)vol
1
n (Mn).

Essential manifolds: A class of closed non-simply connected
manifolds that includes all non-simply connected closed surfaces,
RPn, aspherical manifolds (including tori), etc.
Mn is essential if the classifying map f : Mn −→ Bπ1(Mn) satisfies
f∗([Mn]) 6= 0 ∈ Hn(Bπ1(Mn)).
Here: Bπ1(Mn) is the aspherical space with the fundamental
group π1(Mn); f∗ homomorphism of homology groups induced by
f ; if Mn is non-orientable, one considers homology grouos with Z2

coefficients; [Mn] is the fundamental homology class.
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Corollary

(M. Gromov) Let Mn be an essential manifold. Then the length of
the shortest non-contractible closed curve does not exceed
6FillRad(Mn) ≤ const(n)vol

1
n (Mn).

Proof (in case Mn aspherical): Fill Mn by chain W n+1 in
FillRad(Mn)-neighbourhood of Mn in L∞. Procced by
contradiction. Assume not. Each closed curve of length
≤ 6FillRad(Mn) is contractible. One can bring this assumption to
a contradiction by constructing an (impossible!) retraction of
W n+1 to Mn. Take a fine triangulation of W n+1. Send vertices to
the closest vertices in Mn, edges to geodesics in Mn. Triangle
inequality implies thatthe image of each edge has length
≤ 2FillRad . the image of each boundary of a 2-simplex has length
≤ 6FillRad . All are contractible. Hence there is extendion to the
2-skeleton. Therefore, there is an extension to all W n+1 because of
the assumed asphericity of Mn (higher-dimensional obstructions
living in πi (M

n), i > 1, all vanish).
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Predcessors: H. Federer-W.Fleming, J. Michael-L. Simon
Followers: S. Wenger, L. Guth
Larry Guth: Two important advances solving two Gromov’s
conjectures:

1. First, FillRad(Mn) ≤ 1 follows already from the assumption
that the volume of each metric ball of radius 1 is less than come
const(n) rather than assuming Vol(Mn) ≤ const(n).
2. The assumption that the volume of all balls of radius 1 are
small yields more: One can conclude that the (n − 1)-dimensional
Urysohn width of Mn is less than 1.
Urysohn (n − 1)-dimensional width, UWn−1, of X : the infimum of
d such that there exists a continuous map X −→ Kn−1 such that
Kn−1 is a (n − 1)-dim CW-complex, and for each y ∈ Kn−1

diam(F−1(y)) ≤ d . Informally: If volumes of all balls of radius 1 in
Mn are sufficiently small, then Mn is close to a (n− 1)-dimensional
CW-complex.
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Theorem

(L. Guth). There exists εn > 0 with the following property:
Assume that each metric ball of radius 1 in a closed Riemannian
manifold Mn has volume less than εn. Then the Urysohn
(n − 1)-width of Mn is less than or equal to 1.



Problems :
1. (Gromov-Guth) Is this result true for compact n-dimensional
metric spaces with n-dimensional Hausdorff measure instead of the
volume?

m-dimensional Hausdorff content HCm(K ) of a compact

set K in X :
The infimum over all coverings of K by (closed) metric balls of
radii ri in X of

∑
i r

m
i .

Finite for all m regardless of dim K : Can always cover by one
metric ball. For m-dimensional K HCm(K ) ≤ the m-Hasdorff
measure of K .
2. (Guth) Is it true that there exists εm > 0 with the following
property: Let X be a compact metric space such that the
m-dimensional Hausdorff content of each metric ball of radius 1 is
less than εm. Then UWm−1(X ) ≤ 1.
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Main result: Guth’s conjecture is true:

Theorem

(Y. Liokumovich, B. Lishak, A.N., R. Rotman) There exists a
positive εm with the following property. Let X be a compact (or
even boundedly compact) metric space. Assume that for some
positive R HCm(B) ≤ εmRm for each metric ball B of radius R in
X . Then UWm−1(X ) ≤ R.

Corollary

For each compact metric space X

UWm−1(X ) ≤ const(m)HC
1
m
m (X ).

Motivation(s):
1.Even for Riemannian manifolds this gives an intrinsic metric
criterion when a n-dimensional closed or complete non-compact
manifold is close not merely to a (n − 1)-dimensional CW-complex
but a (m − 1)-dimensional one for any m ≤ n.
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2. If m-dimensional Hausdorff measure (X ) = 0, then
HCm(X ) = 0. Now the corollary implies that UWm−1(X ) = 0.
Thus, the covering dimension of X ≤ m − 1. We obtained the
Szpilrajn theorem.

Our result is an Ulam-style quantitative version
of Szpilrajn theorem, asserting that a compact metric space with
m-dimensional Hausdorff measure zero has topological (covering)
dimension at most (m − 1).
3. Even for m-dimenional Riemannian manifolds this is a
strengthening of previous results by Gromov and Guth, as
HCm(Mm) ≤ vol(Mm), and, in fact, can be much smaller. (Think
about hyperbolic disc of radius 1 but with a very large negative
curvature.)
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Proof of Gromov’s theorem:
Pseudo-proof. Pretend that L∞(Mn) is RN . Fill Mn by a minimal
surface W n+1.
Isoperimetric inequality: vol(W n+1) ≤ C vol(Mn)

n+1
n .

C = CN (H. Federer-W. Fleming);
C = Cn (J. Michel- L. Simon).
Monotonicity formula mplies that W n+1 is in the

∼ vol(W )
1

n+1 = const(n)vol(Mn)
1
n -neighbourhood of Mn.
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S. Wenger’s version of Gromov’s proof of the isoperimetric
inequality:
Based on 1) Coarea inequality; 2) Cone inequality.
Induction with respect to n.
The base (filling of closed curves) is easy by coning.

Induction step:
Improve M: Cover a significant part of volume of M by disjoint
metric balls Bi (ri ) in the ambient Banach space.
vol(Bi

⋃
M) ≥ ( ri

1000)n, and is an almost maximal among
concentric balls with this property.

voln−1(∂Bi
⋂
M) ≤ rn−1

i
1000n

(Use coarea inequality).
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Now cut Bi out, replace by a “good” filling (that exists by
induction assumption), and project the filling inside Bi .
Fill the gap between M = M1 and the “improved version” M2 of
M1 by coning (in B1).

Improve M1 = Mn inductively obtaining M2,M3, . . ..
On each step the volume drops by a constant factor.
When it becomes very small, just cone off MN in the ambient
space.
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Proof of Guth’s theorem (=case when Mn is Riemannian manifold;
m = n; n-dimensional Hausdorff measure = the volume instead of
HCn):
Guth:
1. Find a “good covering” of the manifold Mn by “small” balls.

2. Map Mn to a “rectangular” nerve of the covering.
The Lipschitz constant of the map is controlled; so the volume of
the image inside each face (or even the star of each face) is small.
3. Replace the image of the mainifold in each face of the maximal
dimension by the (almost) minimal surface with the same
boundary. Monotonicity implies that this (almost) minimal surface
is near the boundary of the face.
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The radial projection from the center of the face has Lipschitz
constant, Ld close to 1, where d is the dimension of the face.

After the projection the image of M is in a lower-dimensional
skeleton. Its intersection with each face of smaller dimension that
is now maximal still has a small volume. We can repeat the
procedure (replace, project) pushing to skeleta of smaller and
smaller dimensions until we reach dimension n − 1.. The singular
n-cycles in the constructed sequence are all homologous; the last
one is in a (n − 1)-complex. Therefore, the filling radius is
bounded in terms of the size of faces of the nerve that are less
than the maximal radius of the balls of chosen covering < 0.01.
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n-cycles in the constructed sequence are all homologous; the last
one is in a (n − 1)-complex. Therefore, the filling radius is
bounded in terms of the size of faces of the nerve that are less
than the maximal radius of the balls of chosen covering < 0.01.
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Instead taking (almost) minimal surface improve the map to the
nerve as in Wenger’s proof of Gromov’s inequallity. Then as before
compose it with a projection to the lower dimensional skeleton.

When we reach the (n− 1)-dimensional skeleton, the inverse image
of each point is in the star of the corresponding simplex. This
implies that each pair of points in the inverse image are in
intersecting balls of the covering. Hence, these points are 1-close
as long as all balls of the covering have radius < 0.5.
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When we project, each time volume estimate gets multiplied by a
constant Ld > 1. Yet we do not have any control over how many
times we need to project. The product of all Ld must converge.

Need:

vol(φ(X )
⋂

StarF ) ≤ const(n)εmr
m
i exp(−Const(n) dim(F )),

where φ is the map to the nerve, F is a face, r1 is the smallest
radius of a ball in the intersection of metric balls corresponding to
F .
Need: if d “good” balls in the covering intersect, then the smallest
radius behaves as exp(−const(n)d).
By-product of Guth’s construction: If B is a good ball of radius r ,
εn small, then vol(B) ≤ ( r

1000)n (in fact even ≤ ( r
1000)

n+1).
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HCm. Main problem: Struggle against non-additivity of HCm.

Assume we have B1
⋃
B2, where Bi is a ball of radius ri , and ri are

comparable.
Non-additivity: due an overlap in optimal coverings of B1 and B2.
Idea: HCm(Bi ) < ( ri

1000)m implies one need to use balls of radius
< r

100 to cover B1
⋃

B2. The sum of mth powers of radii is greater
than HCm of (1− 1

100)B1
⋃

(1− 1
100)B2. It remains to ensure that

HCm of the somewhat smaller balls is comparable with a content
of larger balls.
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Lemma

(Co-area inequality) Let U ⊂ B(R2) \B(R1) be a closed set. Then,∫ ∗R2

R1

HCm−1(SR
⋂

U) dR ≤ 2HCm(U).

Therefore, there exists R ∈ [R1,R2], such that
HCm−1(SR ∩ U) ≤ 2

R2−R1
HCm(U).



Proof.

Let {Bri (pi )} be a covering of U with
∑

i r
m
i ≤ HCm(U) + ε, where

i ∈ {1, . . . ,N} for some N. The desired inequality would follow

from the inequality
∫ ∗R2

R1
HCm−1(SR

⋂
U) dR ≤ 2

∑
i r

m
i . We are

going to prove a stronger inequality, where HCm−1(SR
⋂
U) is

replaced by the following quantity that is obviously not less than
HCm−1(SR

⋂
U), namely,

∑
i∈I (R) r

m−1
i , where I (R) denotes the

set of all indices i such that the intersection of Bri (pi ) and S(R) is
not empty. The left hand side of the desired inequality becomes∫ R2

R1

∑
i∈I (R)

rm−1i dR =

∫ R2

R1

N∑
i=1

rm−1i χi (R)dR =
N∑
i=1

rm−1i

∫ R2

R1

χi (R)dR,

where the characteristic function χi (R) is equal to 1 for all
R ∈ [R1,R2] such that SR and Bri (pi ) have a non-empty
intersection, and to 0 otherwise. Finally, observe that∫ R2

R1
χi (R)dR ≤ 2ri , which implies the desired inequality.


